p@33
|
1 \begin{thebibliography}{10}
|
p@33
|
2
|
p@33
|
3 \bibitem{melville2010recommender}
|
p@33
|
4 Prem Melville and Vikas Sindhwani,
|
p@33
|
5 \newblock ``Recommender systems,''
|
p@33
|
6 \newblock in {\em Encyclopedia of machine learning}, pp. 829--838. Springer,
|
p@33
|
7 2010.
|
p@33
|
8
|
p@33
|
9 \bibitem{Yao2015453}
|
p@33
|
10 L.~Yao, Q.Z. Sheng, A.H.H. Ngu, J.~Yu, and A.~Segev,
|
p@33
|
11 \newblock ``Unified collaborative and content-based web service
|
p@33
|
12 recommendation,''
|
p@33
|
13 \newblock {\em IEEE Transactions on Services Computing}, vol. 8, no. 3, pp.
|
p@33
|
14 453--466, 2015.
|
p@33
|
15
|
p@33
|
16 \bibitem{Burke2002331}
|
p@33
|
17 R.~Burke,
|
p@33
|
18 \newblock ``Hybrid recommender systems: Survey and experiments,''
|
p@33
|
19 \newblock {\em User Modelling and User-Adapted Interaction}, vol. 12, no. 4,
|
p@33
|
20 pp. 331--370, 2002.
|
p@33
|
21
|
p@33
|
22 \bibitem{Hu2008263}
|
p@33
|
23 Y.~Hu, C.~Volinsky, and Y.~Koren,
|
p@33
|
24 \newblock ``Collaborative filtering for implicit feedback datasets,''
|
p@35
|
25 \newblock {\em Proceedings - IEEE International Conference on Data Mining,
|
p@35
|
26 ICDM}, pp. 263--272, 2008.
|
p@33
|
27
|
p@33
|
28 \bibitem{Yin2012896}
|
p@33
|
29 H.~Yin, B.~Cui, J.~Li, J.~Yao, and C.~Chen,
|
p@33
|
30 \newblock ``Challenging the long tail recommendation,''
|
p@35
|
31 \newblock {\em Proceedings of the VLDB Endowment}, vol. 5, no. 9, pp. 896--907,
|
p@35
|
32 2012.
|
p@33
|
33
|
p@33
|
34 \bibitem{Dai20141760}
|
p@33
|
35 C.~Dai, F.~Qian, W.~Jiang, Z.~Wang, and Z.~Wu,
|
p@33
|
36 \newblock ``A personalized recommendation system for netease dating site,''
|
p@35
|
37 \newblock {\em Proceedings of the VLDB Endowment}, vol. 7, no. 13, pp.
|
p@35
|
38 1760--1765, 2014.
|
p@33
|
39
|
p@33
|
40 \bibitem{Lops2011}
|
p@33
|
41 Pasquale Lops, Marco de~Gemmis, and Giovanni Semeraro,
|
p@33
|
42 \newblock ``Content-based recommender systems: State of the art and trends,''
|
p@33
|
43 \newblock in {\em Recommender Systems Handbook}, Francesco Ricci, Lior Rokach,
|
p@33
|
44 Bracha Shapira, and Paul~B. Kantor, Eds., pp. 73--105. Springer US, 2011.
|
p@33
|
45
|
p@33
|
46 \bibitem{Yoshii2008435}
|
p@33
|
47 K.~Yoshii, M.~Goto, K.~Komatani, T.~Ogata, and H.G. Okuno,
|
p@33
|
48 \newblock ``An efficient hybrid music recommender system using an incrementally
|
p@33
|
49 trainable probabilistic generative model,''
|
p@33
|
50 \newblock {\em IEEE Transactions on Audio, Speech and Language Processing},
|
p@33
|
51 vol. 16, no. 2, pp. 435--447, 2008.
|
p@33
|
52
|
p@33
|
53 \bibitem{NIPS2013_5004}
|
p@33
|
54 Aaron van~den Oord, Sander Dieleman, and Benjamin Schrauwen,
|
p@33
|
55 \newblock ``Deep content-based music recommendation,''
|
p@33
|
56 \newblock in {\em Advances in Neural Information Processing Systems 26}, C.J.C.
|
p@33
|
57 Burges, L.~Bottou, M.~Welling, Z.~Ghahramani, and K.Q. Weinberger, Eds., pp.
|
p@33
|
58 2643--2651. Curran Associates, Inc., 2013.
|
p@33
|
59
|
p@33
|
60 \bibitem{Bengio-et-al-2015-Book}
|
p@33
|
61 Yoshua Bengio, Ian~J. Goodfellow, and Aaron Courville,
|
p@33
|
62 \newblock ``Deep learning,''
|
p@33
|
63 \newblock Book in preparation for MIT Press, 2015.
|
p@33
|
64
|
p@33
|
65 \bibitem{Bertin-Mahieux2011}
|
p@33
|
66 Thierry Bertin-Mahieux, Daniel~P.W. Ellis, Brian Whitman, and Paul Lamere,
|
p@33
|
67 \newblock ``The million song dataset,''
|
p@33
|
68 \newblock in {\em {Proceedings of the 12th International Conference on Music
|
p@33
|
69 Information Retrieval ({ISMIR} 2011)}}, 2011.
|
p@33
|
70
|
p@33
|
71 \bibitem{pelikan2015estimation}
|
p@33
|
72 Martin Pelikan, Mark~W Hauschild, and Fernando~G Lobo,
|
p@33
|
73 \newblock ``Estimation of distribution algorithms,''
|
p@33
|
74 \newblock in {\em Springer Handbook of Computational Intelligence}, pp.
|
p@33
|
75 899--928. Springer, 2015.
|
p@33
|
76
|
p@33
|
77 \bibitem{Ding2015451}
|
p@33
|
78 C.~Ding, L.~Ding, and W.~Peng,
|
p@33
|
79 \newblock ``Comparison of effects of different learning methods on estimation
|
p@33
|
80 of distribution algorithms,''
|
p@33
|
81 \newblock {\em Journal of Software Engineering}, vol. 9, no. 3, pp. 451--468,
|
p@33
|
82 2015.
|
p@33
|
83
|
p@33
|
84 \bibitem{Santana:Bielza:Larrañaga:Lozano:Echegoyen:Mendiburu:Armañanzas:Shakya:2009:JSSOBK:v35i07}
|
p@33
|
85 Roberto Santana, Concha Bielza, Pedro Larrañaga, Jose~A. Lozano, Carlos
|
p@33
|
86 Echegoyen, Alexander Mendiburu, Rubén Armañanzas, and Siddartha Shakya,
|
p@33
|
87 \newblock ``Mateda-2.0: A matlab package for the implementation and analysis of
|
p@33
|
88 estimation of distribution algorithms,''
|
p@33
|
89 \newblock {\em Journal of Statistical Software}, vol. 35, no. 7, pp. 1--30, 7
|
p@33
|
90 2010.
|
p@33
|
91
|
p@33
|
92 \bibitem{1242}
|
p@33
|
93 \`{O}. Celma,
|
p@33
|
94 \newblock {\em Music Recommendation and Discovery in the Long Tail},
|
p@33
|
95 \newblock Ph.D. thesis, Universitat Pompeu Fabra, Barcelona, 2008.
|
p@33
|
96
|
p@33
|
97 \bibitem{Tzanetakis2002293}
|
p@33
|
98 G.~Tzanetakis and P.~Cook,
|
p@33
|
99 \newblock ``Musical genre classification of audio signals,''
|
p@33
|
100 \newblock {\em IEEE Transactions on Speech and Audio Processing}, vol. 10, no.
|
p@33
|
101 5, pp. 293--302, 2002.
|
p@33
|
102
|
p@33
|
103 \bibitem{DBLP:journals/corr/KereliukSL15}
|
p@33
|
104 Corey Kereliuk, Bob~L. Sturm, and Jan Larsen,
|
p@33
|
105 \newblock ``Deep learning and music adversaries,''
|
p@33
|
106 \newblock {\em CoRR}, vol. abs/1507.04761, 2015.
|
p@33
|
107
|
p@33
|
108 \bibitem{Liang2014781}
|
p@33
|
109 T.~Liang, Y.~Liang, J.~Fan, and J.~Zhao,
|
p@33
|
110 \newblock ``A hybrid recommendation model based on estimation of distribution
|
p@33
|
111 algorithms,''
|
p@33
|
112 \newblock {\em Journal of Computational Information Systems}, vol. 10, no. 2,
|
p@33
|
113 pp. 781--788, 2014.
|
p@33
|
114
|
p@33
|
115 \bibitem{gallagher2007bayesian}
|
p@33
|
116 Marcus Gallagher, Ian Wood, Jonathan Keith, and George Sofronov,
|
p@33
|
117 \newblock ``Bayesian inference in estimation of distribution algorithms,''
|
p@33
|
118 \newblock in {\em Evolutionary Computation, 2007. CEC 2007. IEEE Congress on}.
|
p@33
|
119 IEEE, 2007, pp. 127--133.
|
p@33
|
120
|
p@33
|
121 \end{thebibliography}
|