annotate paper/chiliguano.bbl @ 47:b0186d4a4496 tip

Move 7Digital dataset to Downloads
author Paulo Chiliguano <p.e.chiliguano@se14.qmul.ac.uk>
date Sat, 09 Jul 2022 00:50:43 -0500
parents c268fcd77848
children
rev   line source
p@33 1 \begin{thebibliography}{10}
p@33 2
p@33 3 \bibitem{melville2010recommender}
p@33 4 Prem Melville and Vikas Sindhwani,
p@33 5 \newblock ``Recommender systems,''
p@33 6 \newblock in {\em Encyclopedia of machine learning}, pp. 829--838. Springer,
p@33 7 2010.
p@33 8
p@33 9 \bibitem{Yao2015453}
p@33 10 L.~Yao, Q.Z. Sheng, A.H.H. Ngu, J.~Yu, and A.~Segev,
p@33 11 \newblock ``Unified collaborative and content-based web service
p@33 12 recommendation,''
p@33 13 \newblock {\em IEEE Transactions on Services Computing}, vol. 8, no. 3, pp.
p@33 14 453--466, 2015.
p@33 15
p@33 16 \bibitem{Burke2002331}
p@33 17 R.~Burke,
p@33 18 \newblock ``Hybrid recommender systems: Survey and experiments,''
p@33 19 \newblock {\em User Modelling and User-Adapted Interaction}, vol. 12, no. 4,
p@33 20 pp. 331--370, 2002.
p@33 21
p@33 22 \bibitem{Hu2008263}
p@33 23 Y.~Hu, C.~Volinsky, and Y.~Koren,
p@33 24 \newblock ``Collaborative filtering for implicit feedback datasets,''
p@35 25 \newblock {\em Proceedings - IEEE International Conference on Data Mining,
p@35 26 ICDM}, pp. 263--272, 2008.
p@33 27
p@33 28 \bibitem{Yin2012896}
p@33 29 H.~Yin, B.~Cui, J.~Li, J.~Yao, and C.~Chen,
p@33 30 \newblock ``Challenging the long tail recommendation,''
p@35 31 \newblock {\em Proceedings of the VLDB Endowment}, vol. 5, no. 9, pp. 896--907,
p@35 32 2012.
p@33 33
p@33 34 \bibitem{Dai20141760}
p@33 35 C.~Dai, F.~Qian, W.~Jiang, Z.~Wang, and Z.~Wu,
p@33 36 \newblock ``A personalized recommendation system for netease dating site,''
p@35 37 \newblock {\em Proceedings of the VLDB Endowment}, vol. 7, no. 13, pp.
p@35 38 1760--1765, 2014.
p@33 39
p@33 40 \bibitem{Lops2011}
p@33 41 Pasquale Lops, Marco de~Gemmis, and Giovanni Semeraro,
p@33 42 \newblock ``Content-based recommender systems: State of the art and trends,''
p@33 43 \newblock in {\em Recommender Systems Handbook}, Francesco Ricci, Lior Rokach,
p@33 44 Bracha Shapira, and Paul~B. Kantor, Eds., pp. 73--105. Springer US, 2011.
p@33 45
p@33 46 \bibitem{Yoshii2008435}
p@33 47 K.~Yoshii, M.~Goto, K.~Komatani, T.~Ogata, and H.G. Okuno,
p@33 48 \newblock ``An efficient hybrid music recommender system using an incrementally
p@33 49 trainable probabilistic generative model,''
p@33 50 \newblock {\em IEEE Transactions on Audio, Speech and Language Processing},
p@33 51 vol. 16, no. 2, pp. 435--447, 2008.
p@33 52
p@33 53 \bibitem{NIPS2013_5004}
p@33 54 Aaron van~den Oord, Sander Dieleman, and Benjamin Schrauwen,
p@33 55 \newblock ``Deep content-based music recommendation,''
p@33 56 \newblock in {\em Advances in Neural Information Processing Systems 26}, C.J.C.
p@33 57 Burges, L.~Bottou, M.~Welling, Z.~Ghahramani, and K.Q. Weinberger, Eds., pp.
p@33 58 2643--2651. Curran Associates, Inc., 2013.
p@33 59
p@33 60 \bibitem{Bengio-et-al-2015-Book}
p@33 61 Yoshua Bengio, Ian~J. Goodfellow, and Aaron Courville,
p@33 62 \newblock ``Deep learning,''
p@33 63 \newblock Book in preparation for MIT Press, 2015.
p@33 64
p@33 65 \bibitem{Bertin-Mahieux2011}
p@33 66 Thierry Bertin-Mahieux, Daniel~P.W. Ellis, Brian Whitman, and Paul Lamere,
p@33 67 \newblock ``The million song dataset,''
p@33 68 \newblock in {\em {Proceedings of the 12th International Conference on Music
p@33 69 Information Retrieval ({ISMIR} 2011)}}, 2011.
p@33 70
p@33 71 \bibitem{pelikan2015estimation}
p@33 72 Martin Pelikan, Mark~W Hauschild, and Fernando~G Lobo,
p@33 73 \newblock ``Estimation of distribution algorithms,''
p@33 74 \newblock in {\em Springer Handbook of Computational Intelligence}, pp.
p@33 75 899--928. Springer, 2015.
p@33 76
p@33 77 \bibitem{Ding2015451}
p@33 78 C.~Ding, L.~Ding, and W.~Peng,
p@33 79 \newblock ``Comparison of effects of different learning methods on estimation
p@33 80 of distribution algorithms,''
p@33 81 \newblock {\em Journal of Software Engineering}, vol. 9, no. 3, pp. 451--468,
p@33 82 2015.
p@33 83
p@33 84 \bibitem{Santana:Bielza:Larrañaga:Lozano:Echegoyen:Mendiburu:Armañanzas:Shakya:2009:JSSOBK:v35i07}
p@33 85 Roberto Santana, Concha Bielza, Pedro Larrañaga, Jose~A. Lozano, Carlos
p@33 86 Echegoyen, Alexander Mendiburu, Rubén Armañanzas, and Siddartha Shakya,
p@33 87 \newblock ``Mateda-2.0: A matlab package for the implementation and analysis of
p@33 88 estimation of distribution algorithms,''
p@33 89 \newblock {\em Journal of Statistical Software}, vol. 35, no. 7, pp. 1--30, 7
p@33 90 2010.
p@33 91
p@33 92 \bibitem{1242}
p@33 93 \`{O}. Celma,
p@33 94 \newblock {\em Music Recommendation and Discovery in the Long Tail},
p@33 95 \newblock Ph.D. thesis, Universitat Pompeu Fabra, Barcelona, 2008.
p@33 96
p@33 97 \bibitem{Tzanetakis2002293}
p@33 98 G.~Tzanetakis and P.~Cook,
p@33 99 \newblock ``Musical genre classification of audio signals,''
p@33 100 \newblock {\em IEEE Transactions on Speech and Audio Processing}, vol. 10, no.
p@33 101 5, pp. 293--302, 2002.
p@33 102
p@33 103 \bibitem{DBLP:journals/corr/KereliukSL15}
p@33 104 Corey Kereliuk, Bob~L. Sturm, and Jan Larsen,
p@33 105 \newblock ``Deep learning and music adversaries,''
p@33 106 \newblock {\em CoRR}, vol. abs/1507.04761, 2015.
p@33 107
p@33 108 \bibitem{Liang2014781}
p@33 109 T.~Liang, Y.~Liang, J.~Fan, and J.~Zhao,
p@33 110 \newblock ``A hybrid recommendation model based on estimation of distribution
p@33 111 algorithms,''
p@33 112 \newblock {\em Journal of Computational Information Systems}, vol. 10, no. 2,
p@33 113 pp. 781--788, 2014.
p@33 114
p@33 115 \bibitem{gallagher2007bayesian}
p@33 116 Marcus Gallagher, Ian Wood, Jonathan Keith, and George Sofronov,
p@33 117 \newblock ``Bayesian inference in estimation of distribution algorithms,''
p@33 118 \newblock in {\em Evolutionary Computation, 2007. CEC 2007. IEEE Congress on}.
p@33 119 IEEE, 2007, pp. 127--133.
p@33 120
p@33 121 \end{thebibliography}