p@27
|
1 \boolfalse {citerequest}\boolfalse {citetracker}\boolfalse {pagetracker}\boolfalse {backtracker}\relax
|
p@27
|
2 \defcounter {refsection}{0}\relax
|
p@25
|
3 \contentsline {chapter}{\numberline {1}Introduction}{1}{chapter.1}
|
p@27
|
4 \defcounter {refsection}{0}\relax
|
p@26
|
5 \contentsline {section}{\numberline {1.1}Motivation}{2}{section.1.1}
|
p@27
|
6 \defcounter {refsection}{0}\relax
|
p@27
|
7 \contentsline {section}{\numberline {1.2}Aims}{3}{section.1.2}
|
p@27
|
8 \defcounter {refsection}{0}\relax
|
p@27
|
9 \contentsline {section}{\numberline {1.3}Thesis outline}{4}{section.1.3}
|
p@27
|
10 \defcounter {refsection}{0}\relax
|
p@26
|
11 \contentsline {chapter}{\numberline {2}Background}{5}{chapter.2}
|
p@27
|
12 \defcounter {refsection}{0}\relax
|
p@26
|
13 \contentsline {section}{\numberline {2.1}Online Social Networks}{6}{section.2.1}
|
p@27
|
14 \defcounter {refsection}{0}\relax
|
p@26
|
15 \contentsline {section}{\numberline {2.2}Music services platforms}{7}{section.2.2}
|
p@27
|
16 \defcounter {refsection}{0}\relax
|
p@27
|
17 \contentsline {section}{\numberline {2.3}Recommender Systems}{8}{section.2.3}
|
p@27
|
18 \defcounter {refsection}{0}\relax
|
p@27
|
19 \contentsline {subsection}{\numberline {2.3.1}Collaborative filtering}{8}{subsection.2.3.1}
|
p@27
|
20 \defcounter {refsection}{0}\relax
|
p@27
|
21 \contentsline {subsubsection}{The cold start problem}{10}{section*.8}
|
p@27
|
22 \defcounter {refsection}{0}\relax
|
p@27
|
23 \contentsline {subsubsection}{The long tail phenomenon}{11}{section*.9}
|
p@27
|
24 \defcounter {refsection}{0}\relax
|
p@27
|
25 \contentsline {subsection}{\numberline {2.3.2}Content-based filtering}{11}{subsection.2.3.2}
|
p@27
|
26 \defcounter {refsection}{0}\relax
|
p@27
|
27 \contentsline {subsubsection}{Limitations of CB filtering}{12}{section*.11}
|
p@27
|
28 \defcounter {refsection}{0}\relax
|
p@27
|
29 \contentsline {subsection}{\numberline {2.3.3}Item Representation}{12}{subsection.2.3.3}
|
p@27
|
30 \defcounter {refsection}{0}\relax
|
p@27
|
31 \contentsline {subsection}{\numberline {2.3.4}User Modelling}{13}{subsection.2.3.4}
|
p@27
|
32 \defcounter {refsection}{0}\relax
|
p@27
|
33 \contentsline {subsection}{\numberline {2.3.5}Hybrid recommender approaches}{13}{subsection.2.3.5}
|
p@27
|
34 \defcounter {refsection}{0}\relax
|
p@27
|
35 \contentsline {section}{\numberline {2.4}Music Information Retrieval}{15}{section.2.4}
|
p@27
|
36 \defcounter {refsection}{0}\relax
|
p@27
|
37 \contentsline {subsection}{\numberline {2.4.1}Genre classification}{15}{subsection.2.4.1}
|
p@27
|
38 \defcounter {refsection}{0}\relax
|
p@27
|
39 \contentsline {subsection}{\numberline {2.4.2}Music recommender systems}{16}{subsection.2.4.2}
|
p@27
|
40 \defcounter {refsection}{0}\relax
|
p@29
|
41 \contentsline {subsubsection}{Collaborative retrieval music recommender}{16}{section*.12}
|
p@27
|
42 \defcounter {refsection}{0}\relax
|
p@29
|
43 \contentsline {subsubsection}{Hybrid music recommender}{16}{section*.13}
|
p@27
|
44 \defcounter {refsection}{0}\relax
|
p@30
|
45 \contentsline {section}{\numberline {2.5}Deep Learning}{18}{section.2.5}
|
p@27
|
46 \defcounter {refsection}{0}\relax
|
p@27
|
47 \contentsline {subsection}{\numberline {2.5.1}Deep Neural Networks}{18}{subsection.2.5.1}
|
p@27
|
48 \defcounter {refsection}{0}\relax
|
p@30
|
49 \contentsline {subsubsection}{Music Feature Learning}{20}{section*.16}
|
p@27
|
50 \defcounter {refsection}{0}\relax
|
p@27
|
51 \contentsline {subsection}{\numberline {2.5.2}Convolutional Deep Neural Networks}{20}{subsection.2.5.2}
|
p@27
|
52 \defcounter {refsection}{0}\relax
|
p@30
|
53 \contentsline {subsubsection}{Deep content-based music recommendation}{22}{section*.18}
|
p@27
|
54 \defcounter {refsection}{0}\relax
|
p@30
|
55 \contentsline {section}{\numberline {2.6}Estimation of Distribution Algorithms}{23}{section.2.6}
|
p@27
|
56 \defcounter {refsection}{0}\relax
|
p@28
|
57 \contentsline {subsection}{\numberline {2.6.1}A Hybrid Recommendation Model Based on EDA}{24}{subsection.2.6.1}
|
p@27
|
58 \defcounter {refsection}{0}\relax
|
p@28
|
59 \contentsline {subsection}{\numberline {2.6.2}Continuous Univariate Marginal Distribution Algorithm}{26}{subsection.2.6.2}
|
p@27
|
60 \defcounter {refsection}{0}\relax
|
p@29
|
61 \contentsline {section}{\numberline {2.7}Summary}{27}{section.2.7}
|
p@27
|
62 \defcounter {refsection}{0}\relax
|
p@28
|
63 \contentsline {chapter}{\numberline {3}Methodology}{28}{chapter.3}
|
p@27
|
64 \defcounter {refsection}{0}\relax
|
p@29
|
65 \contentsline {section}{\numberline {3.1}Data collection}{29}{section.3.1}
|
p@27
|
66 \defcounter {refsection}{0}\relax
|
p@28
|
67 \contentsline {subsection}{\numberline {3.1.1}Taste Profile subset cleaning}{29}{subsection.3.1.1}
|
p@27
|
68 \defcounter {refsection}{0}\relax
|
p@28
|
69 \contentsline {subsection}{\numberline {3.1.2}Fetching audio data}{30}{subsection.3.1.2}
|
p@27
|
70 \defcounter {refsection}{0}\relax
|
p@28
|
71 \contentsline {subsection}{\numberline {3.1.3}Intermediate time-frequency representation for audio signals}{31}{subsection.3.1.3}
|
p@27
|
72 \defcounter {refsection}{0}\relax
|
p@29
|
73 \contentsline {section}{\numberline {3.2}Data preprocessing}{34}{section.3.2}
|
p@27
|
74 \defcounter {refsection}{0}\relax
|
p@29
|
75 \contentsline {subsection}{\numberline {3.2.1}Rating from implicit user feedback}{34}{subsection.3.2.1}
|
p@27
|
76 \defcounter {refsection}{0}\relax
|
p@29
|
77 \contentsline {subsection}{\numberline {3.2.2}Standardise time-frequency representation}{35}{subsection.3.2.2}
|
p@27
|
78 \defcounter {refsection}{0}\relax
|
p@30
|
79 \contentsline {section}{\numberline {3.3}Algorithms}{36}{section.3.3}
|
p@27
|
80 \defcounter {refsection}{0}\relax
|
p@29
|
81 \contentsline {subsection}{\numberline {3.3.1}Probability of music genre representation}{36}{subsection.3.3.1}
|
p@27
|
82 \defcounter {refsection}{0}\relax
|
p@30
|
83 \contentsline {subsubsection}{CDNN architecture}{37}{section*.24}
|
p@27
|
84 \defcounter {refsection}{0}\relax
|
p@30
|
85 \contentsline {subsubsection}{Learning parameters}{38}{section*.26}
|
p@27
|
86 \defcounter {refsection}{0}\relax
|
p@30
|
87 \contentsline {subsubsection}{Vector representation}{39}{section*.27}
|
p@27
|
88 \defcounter {refsection}{0}\relax
|
p@30
|
89 \contentsline {subsection}{\numberline {3.3.2}User profile modelling}{39}{subsection.3.3.2}
|
p@27
|
90 \defcounter {refsection}{0}\relax
|
p@30
|
91 \contentsline {subsubsection}{Modelling with Permutation EDA}{40}{section*.28}
|
p@27
|
92 \defcounter {refsection}{0}\relax
|
p@30
|
93 \contentsline {subsubsection}{Modelling with $UMDA_c^G$}{40}{section*.29}
|
p@27
|
94 \defcounter {refsection}{0}\relax
|
p@30
|
95 \contentsline {subsection}{\numberline {3.3.3}Top-N songs recommendation}{41}{subsection.3.3.3}
|
p@27
|
96 \defcounter {refsection}{0}\relax
|
p@30
|
97 \contentsline {subsubsection}{Top-N recommendations in CB baseline}{42}{section*.30}
|
p@27
|
98 \defcounter {refsection}{0}\relax
|
p@30
|
99 \contentsline {subsubsection}{Top-N recommendations in hybrid music recommender}{43}{section*.31}
|
p@27
|
100 \defcounter {refsection}{0}\relax
|
p@30
|
101 \contentsline {section}{\numberline {3.4}Summary}{43}{section.3.4}
|
p@27
|
102 \defcounter {refsection}{0}\relax
|
p@30
|
103 \contentsline {chapter}{\numberline {4}Experiments}{44}{chapter.4}
|
p@27
|
104 \defcounter {refsection}{0}\relax
|
p@30
|
105 \contentsline {section}{\numberline {4.1}Evaluation for recommender systems}{44}{section.4.1}
|
p@27
|
106 \defcounter {refsection}{0}\relax
|
p@30
|
107 \contentsline {subsection}{\numberline {4.1.1}Types of experiments}{44}{subsection.4.1.1}
|
p@27
|
108 \defcounter {refsection}{0}\relax
|
p@30
|
109 \contentsline {subsection}{\numberline {4.1.2}Evaluation strategies}{45}{subsection.4.1.2}
|
p@27
|
110 \defcounter {refsection}{0}\relax
|
p@30
|
111 \contentsline {subsection}{\numberline {4.1.3}Decision based metrics}{46}{subsection.4.1.3}
|
p@27
|
112 \defcounter {refsection}{0}\relax
|
p@30
|
113 \contentsline {section}{\numberline {4.2}Evaluation method}{47}{section.4.2}
|
p@27
|
114 \defcounter {refsection}{0}\relax
|
p@30
|
115 \contentsline {subsection}{\numberline {4.2.1}Training set and test set}{47}{subsection.4.2.1}
|
p@27
|
116 \defcounter {refsection}{0}\relax
|
p@30
|
117 \contentsline {subsection}{\numberline {4.2.2}Top-N evaluation}{47}{subsection.4.2.2}
|
p@28
|
118 \defcounter {refsection}{0}\relax
|
p@30
|
119 \contentsline {chapter}{\numberline {5}Results}{48}{chapter.5}
|
p@28
|
120 \defcounter {refsection}{0}\relax
|
p@30
|
121 \contentsline {section}{\numberline {5.1}Genre classification results}{48}{section.5.1}
|
p@29
|
122 \defcounter {refsection}{0}\relax
|
p@30
|
123 \contentsline {section}{\numberline {5.2}Recommender evaluation results}{49}{section.5.2}
|
p@29
|
124 \defcounter {refsection}{0}\relax
|
p@30
|
125 \contentsline {chapter}{\numberline {6}Conclusion}{51}{chapter.6}
|
p@29
|
126 \defcounter {refsection}{0}\relax
|
p@30
|
127 \contentsline {section}{\numberline {6.1}Future work}{52}{section.6.1}
|
p@30
|
128 \defcounter {refsection}{0}\relax
|
p@30
|
129 \contentsline {chapter}{References}{53}{section.6.1}
|