annotate Code/genre_classification/classification/preprocess_spectrograms_7digital.py @ 47:b0186d4a4496
tip
Move 7Digital dataset to Downloads
author |
Paulo Chiliguano <p.e.chiliguano@se14.qmul.ac.uk> |
date |
Sat, 09 Jul 2022 00:50:43 -0500 |
parents |
68a62ca32441 |
children |
|
rev |
line source |
p@24
|
1 # -*- coding: utf-8 -*-
|
p@24
|
2 """
|
p@24
|
3 Created on Thu Jul 23 21:55:58 2015
|
p@24
|
4
|
p@24
|
5 @author: paulochiliguano
|
p@24
|
6 """
|
p@24
|
7
|
p@24
|
8
|
p@24
|
9 import tables
|
p@24
|
10 import numpy as np
|
p@24
|
11 import cPickle
|
p@24
|
12 import sklearn.preprocessing as preprocessing
|
p@24
|
13
|
p@24
|
14 #Read HDF5 file that contains log-mel spectrograms
|
p@24
|
15 filename = '/homes/pchilguano/msc_project/dataset/7digital/features/\
|
p@24
|
16 feats.h5'
|
p@24
|
17 with tables.openFile(filename, 'r') as f:
|
p@24
|
18 features = f.root.x.read()
|
p@24
|
19 #filenames = f.root.filenames.read()
|
p@24
|
20
|
p@24
|
21 #Pre-processing of spectrograms mean=0 and std=1
|
p@24
|
22 n_per_example = np.prod(features.shape[1:-1])
|
p@24
|
23 number_of_features = features.shape[-1]
|
p@24
|
24 flat_data = features.view()
|
p@24
|
25 flat_data.shape = (-1, number_of_features)
|
p@24
|
26 scaler = preprocessing.StandardScaler().fit(flat_data)
|
p@24
|
27 flat_data = scaler.transform(flat_data)
|
p@24
|
28 flat_data.shape = (features.shape[0], -1)
|
p@24
|
29
|
p@24
|
30 f = file('/homes/pchilguano/msc_project/dataset/7digital/features/\
|
p@24
|
31 feats.pkl', 'wb')
|
p@24
|
32 cPickle.dump(flat_data, f, protocol=cPickle.HIGHEST_PROTOCOL)
|
p@24
|
33 f.close()
|