tp@0: function [rs,thetas,zs,rr,thetar,zr] = EDB1coordtrans2(xsou,xrec,xwedge,nvec1) tp@0: % EDB1coordtrans2 - Transforms two sets of cartesian coordinates to edge-related cylindrical coordinates. tp@0: % The cyl. coord. system is defined so that: tp@0: % ¥ A z-axis is placed along the edge, from the given endpoint 1 to the given tp@0: % endpoint 2. tp@0: % ¥ The origo of the cyl. syst. will be edge endpoint 1. tp@0: % ¥ The theta-angles of the cyl. coord. syst. will refer to the tp@0: % reference plane of the edge. tp@0: % The ref. plane of the edge is described by its normal vector. tp@0: % NB! The order of the edge points is important!! tp@0: % The vector going from xwedge(1,:) to xwedge(2,:) must be tp@0: % oriented so that if the RH thumb is along this vector, the tips tp@0: % of the fingers "come out of" the open face of plane1, i.e. where nvec1 tp@0: % is the normal vector. tp@0: % tp@0: % Input parameters: tp@0: % xsou Matrix, [n1,3] of cartesian coordinates of n1 points. tp@0: % xrec Matrix, [n2,3] of cartesian coordinates of n2 other points. tp@0: % xwedge Matrix, [2,3], with the cartesian coordinates of the two tp@0: % wedge end points: [xw1 yw1 zw1;xw2 yw2 zw2]. tp@0: % nvec1 List, [1,3], with the normal vector of the reference plane tp@0: % of the edge. tp@0: % tp@0: % Output parameters: tp@0: % rs, thetas, zs cyl. coord. of the points in xsou tp@0: % rr, thetar, zr cyl. coord. of the points in xrec tp@0: % tp@0: % Uses the function EDB1cross tp@0: % tp@0: % ---------------------------------------------------------------------------------------------- tp@0: % This file is part of the Edge Diffraction Toolbox by Peter Svensson. tp@0: % tp@0: % The Edge Diffraction Toolbox is free software: you can redistribute it and/or modify tp@0: % it under the terms of the GNU General Public License as published by the Free Software tp@0: % Foundation, either version 3 of the License, or (at your option) any later version. tp@0: % tp@0: % The Edge Diffraction Toolbox is distributed in the hope that it will be useful, tp@0: % but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS tp@0: % FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. tp@0: % tp@0: % You should have received a copy of the GNU General Public License along with the tp@0: % Edge Diffraction Toolbox. If not, see . tp@0: % ---------------------------------------------------------------------------------------------- tp@0: % Peter Svensson (svensson@iet.ntnu.no) 20050922 tp@0: % tp@0: % [rs,thetas,zs,rr,thetar,zr] = EDB1coordtrans2(xsou,xrec,xwedge,nvec1) tp@0: tp@0: xneworigo = xwedge(1,:); tp@0: tp@0: xknown1 = xwedge(2,:) - xneworigo; tp@0: xknown1 = xknown1 / sqrt( sum( xknown1.^2 )); tp@0: tp@0: A = [0 1 0;0 0 1;1 0 0]*inv([xknown1.' EDB1cross(nvec1.',xknown1.') nvec1.']); tp@0: tp@0: [npoints,slask] = size(xsou); tp@0: xsou = (A*( xsou.' - xneworigo(ones(npoints,1),:).' )).'; tp@0: tp@0: rs = sqrt( sum(xsou(:,1:2).'.^2) ).'; tp@0: zs = xsou(:,3); tp@0: thetas = zeros(npoints,1); tp@0: iv = find(rs>0); tp@0: if ~isempty(iv) tp@0: thetas(iv) = real( acos( xsou(iv,1)./rs(iv) ).*( xsou(iv,2) ~= 0) ); tp@0: thetas(iv) = thetas(iv) + pi*( (xsou(iv,2)==0) & xsou(iv,1) < 0 ); tp@0: thetas(iv) = thetas(iv).*( xsou(iv,2) >=0 ) + (2*pi - thetas(iv)).*( xsou(iv,2) < 0 ); tp@0: end tp@0: tp@0: [npoints,slask] = size(xrec); tp@0: if npoints >0 tp@0: xrec = (A*( xrec.' - xneworigo(ones(npoints,1),:).' )).'; tp@0: rr = sqrt( sum(xrec(:,1:2).'.^2) ).'; tp@0: zr = xrec(:,3); tp@0: thetar = zeros(npoints,1); tp@0: iv = find(rr>0); tp@0: if ~isempty(iv), tp@0: thetar(iv) = real( acos( xrec(iv,1)./rr(iv) ).*( xrec(iv,2) ~= 0) ); tp@0: thetar(iv) = thetar(iv) + pi*( (xrec(iv,2)==0) & xrec(iv,1) < 0 ); tp@0: thetar(iv) = thetar(iv).*( xrec(iv,2) >=0 ) + (2*pi - thetar(iv)).*( xrec(iv,2) < 0 ); tp@0: end tp@0: else tp@0: rr = []; thetar =[]; zr = []; tp@0: end