annotate private/EDB1coordtrans1.m @ 18:2d5f50205527 jabuilder_int tip

Escape the trailing backslash as well
author Chris Cannam
date Tue, 30 Sep 2014 16:23:00 +0100
parents 90220f7249fc
children
rev   line source
tp@0 1 function [rs,thetas,zs] = EDB1coordtrans1(xsou,xwedge,nvec1)
tp@0 2 % EDB1coordtrans1 - Transforms one set of cartesian coordinates to edge-related cylindrical coordinates.
tp@0 3 % The cyl. coord. system is defined so that:
tp@0 4 % A z-axis is placed along the edge, from the given endpoint 1 to the given
tp@0 5 % endpoint 2.
tp@0 6 % The origo of the cyl. syst. will be edge endpoint 1.
tp@0 7 % The theta-angles of the cyl. coord. syst. will refer to the
tp@0 8 % reference plane of the edge.
tp@0 9 % The ref. plane of the edge is described by its normal vector.
tp@0 10 % NB! The order of the edge points is important!!
tp@0 11 % The vector going from xwedge(1,:) to xwedge(2,:) must be
tp@0 12 % oriented so that if the RH thumb is along this vector, the tips
tp@0 13 % of the fingers "come out of" the open face of plane1, i.e. where nvec1
tp@0 14 % is the normal vector.
tp@0 15 %
tp@0 16 % Input parameters:
tp@0 17 % xsou Matrix, [n1,3] of cartesian coordinates of n1 points.
tp@0 18 % xwedge Matrix, [2,3], with the cartesian coordinates of the two
tp@0 19 % wedge end points: [xw1 yw1 zw1;xw2 yw2 zw2].
tp@0 20 % nvec1 List, [1,3], with the normal vector of the reference plane
tp@0 21 % of the edge.
tp@0 22 %
tp@0 23 % Output parameters:
tp@0 24 % rs, thetas, zs cyl. coord. of the points in xsou
tp@0 25 %
tp@0 26 % Uses the function EDB1cross
tp@0 27 %
tp@0 28 % ----------------------------------------------------------------------------------------------
tp@0 29 % This file is part of the Edge Diffraction Toolbox by Peter Svensson.
tp@0 30 %
tp@0 31 % The Edge Diffraction Toolbox is free software: you can redistribute it and/or modify
tp@0 32 % it under the terms of the GNU General Public License as published by the Free Software
tp@0 33 % Foundation, either version 3 of the License, or (at your option) any later version.
tp@0 34 %
tp@0 35 % The Edge Diffraction Toolbox is distributed in the hope that it will be useful,
tp@0 36 % but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
tp@0 37 % FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details.
tp@0 38 %
tp@0 39 % You should have received a copy of the GNU General Public License along with the
tp@0 40 % Edge Diffraction Toolbox. If not, see <http://www.gnu.org/licenses/>.
tp@0 41 % ----------------------------------------------------------------------------------------------
tp@0 42 % Peter Svensson (svensson@iet.ntnu.no) 20061118
tp@0 43 %
tp@0 44 % [rs,thetas,zs] = EDB1coordtrans1(xsou,xwedge,nvec1)
tp@0 45
tp@0 46 npoints = size(xsou,1);
tp@0 47 if npoints == 1
tp@0 48 xneworigo = xwedge(1,:);
tp@0 49
tp@0 50 xknown1 = xwedge(2,:) - xneworigo;
tp@0 51 xknown1 = xknown1 / norm(xknown1);
tp@0 52
tp@0 53 A = [nvec1(2)*xknown1(3)-nvec1(3)*xknown1(2) ; nvec1(3)*xknown1(1)-nvec1(1)*xknown1(3) ; nvec1(1)*xknown1(2)-nvec1(2)*xknown1(1)];
tp@0 54 A = inv([xknown1.' A nvec1.']);
tp@0 55
tp@0 56 xsou = (A([2 3 1],:)*( xsou.' - xneworigo.' )).';
tp@0 57
tp@0 58 rs = norm(xsou(1:2));
tp@0 59 zs = xsou(:,3);
tp@0 60 thetas = 0;
tp@0 61 if rs > 0
tp@0 62 thetas = real( acos( xsou(1)./rs ).*( xsou(2) ~= 0) );
tp@0 63 thetas = thetas + pi*( (xsou(2)==0) & xsou(1) < 0 );
tp@0 64 thetas = thetas.*( xsou(2) >=0 ) + (2*pi - thetas).*( xsou(2) < 0 );
tp@0 65 end
tp@0 66
tp@0 67 else
tp@0 68 xneworigo = xwedge(1,:);
tp@0 69
tp@0 70 xknown1 = xwedge(2,:) - xneworigo;
tp@0 71 xknown1 = xknown1 / sqrt( sum( xknown1.^2 ));
tp@0 72
tp@0 73
tp@0 74 A = [0 1 0;0 0 1;1 0 0]*inv([xknown1.' EDB1cross(nvec1.',xknown1.') nvec1.']);
tp@0 75
tp@0 76 [npoints,slask] = size(xsou);
tp@0 77 xsou = (A*( xsou.' - xneworigo(ones(npoints,1),:).' )).';
tp@0 78
tp@0 79 rs = sqrt( sum(xsou(:,1:2).'.^2) ).';
tp@0 80 zs = xsou(:,3);
tp@0 81 thetas = zeros(npoints,1);
tp@0 82 iv = find(rs>0);
tp@0 83 if ~isempty(iv)
tp@0 84 thetas(iv) = real( acos( xsou(iv,1)./rs(iv) ).*( xsou(iv,2) ~= 0) );
tp@0 85 thetas(iv) = thetas(iv) + pi*( (xsou(iv,2)==0) & xsou(iv,1) < 0 );
tp@0 86 thetas(iv) = thetas(iv).*( xsou(iv,2) >=0 ) + (2*pi - thetas(iv)).*( xsou(iv,2) < 0 );
tp@0 87 end
tp@0 88
tp@0 89 end