Mercurial > hg > gpsynth
diff src/statistics.hpp @ 0:add35537fdbb tip
Initial import
author | irh <ian.r.hobson@gmail.com> |
---|---|
date | Thu, 25 Aug 2011 11:05:55 +0100 |
parents | |
children |
line wrap: on
line diff
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/src/statistics.hpp Thu Aug 25 11:05:55 2011 +0100 @@ -0,0 +1,139 @@ +// Copyright 2011, Ian Hobson. +// +// This file is part of gpsynth. +// +// gpsynth is free software: you can redistribute it and/or modify +// it under the terms of the GNU General Public License as published by +// the Free Software Foundation, either version 3 of the License, or +// (at your option) any later version. +// +// gpsynth is distributed in the hope that it will be useful, +// but WITHOUT ANY WARRANTY; without even the implied warranty of +// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the +// GNU General Public License for more details. +// +// You should have received a copy of the GNU General Public License +// along with gpsynth in the file COPYING. +// If not, see http://www.gnu.org/licenses/. + +// Some useful stats functions + +#pragma once + +#include "range.hpp" +#include "std_ex.hpp" + +#include <algorithm> +#include <iterator> +#include <numeric> +#include <sstream> +#include <stdexcept> + +namespace stats { + +// Sum +template<typename Iterator> +typename std::iterator_traits<Iterator>::value_type Sum(Iterator start, + Iterator end) { + typename std::iterator_traits<Iterator>::value_type initializer(0); + return std::accumulate(start, end, initializer); +} + +// Sum - container +template<typename Container> +typename Container::value_type Sum(const Container& container) { + return Sum(container.begin(), container.end()); +} + +// Mean +template<typename Iterator> +typename std::iterator_traits<Iterator>::value_type Mean(Iterator start, + Iterator end) { + return Sum(start, end) / std::distance(start, end); +} + +// Mean - container +template<typename Container> +typename Container::value_type Mean(const Container& container) { + return Mean(container.begin(), container.end()); +} + +// measures the MSE between a range and a target +template<typename Iterator1, typename Iterator2> +typename std::iterator_traits<Iterator1>::value_type +MeanSquaredError(Iterator1 start1, Iterator1 end1, Iterator2 start2) { + typedef typename std::iterator_traits<Iterator1>::value_type Value; + Value n = std::distance(start1, end1); + Value error(0); + while (start1 != end1) { + error += std::pow(*start1 - *start2, Value(2)); + ++start1; + ++start2; + } + return error / n; +} + +// MeanSquaredError - container adaptor +template<typename Container> +typename Container::value_type MeanSquaredError(const Container& x, + const Container& y) { + return MeanSquaredError(x.begin(), x.end(), y.begin()); +} + +// root mean square error +template<typename Iterator1, typename Iterator2> +double RMSE(Iterator1 start, Iterator1 end, Iterator2 target) { + return std::sqrt(MeanSquaredError(start, end, target)); +} + +// normalized root mean square error, using precomputed minima and maxima +template<typename Iterator1, typename Iterator2, typename T> +T NRMSE(Iterator1 start, Iterator1 end, Iterator2 target, + const stdx::Range<T>& range1, const stdx::Range<T>& range2) { + T range = std::max(range1.Maximum(), range2.Maximum()) + - std::min(range1.Minimum(), range2.Minimum()); + return RMSE(start, end, target) / range; +} + +// Takes a set of numbers with sum <= 1 which define a distribution. +// operator() returns index chosen randomly with distribution defined by the +// provided probabilites. +// if the probabilites have sum < 1 then the difference is taken to imply a +// single additional index +// e.g. given: +// ProbabilitySelector selector(boost::assign::list_of(0.1)(0.8)); +// selector() will yield +// '0' 10%, +// '1' 80%, +// '2' 10% +class ProbabilitySelector { + std::vector<double> boundaries_; + +public: + ProbabilitySelector() {} + ProbabilitySelector(const std::vector<double>& probabilities) + { + SetProbabilities(probabilities); + } + + void SetProbabilities(const std::vector<double>& probabilities) { + if (std::count_if(probabilities.begin(), probabilities.end(), + stdx::LessThan<double>(0.0))) { + throw std::runtime_error("ProbabilitySelector: negative value found"); + } + // assign range boundaries + std::partial_sum(probabilities.begin(), probabilities.end(), + std::back_inserter(boundaries_)); + } + + std::size_t operator()() const { + double random = rand() / static_cast<double>(RAND_MAX); + std::vector<double>::const_iterator index; + index = std::upper_bound(boundaries_.begin(), boundaries_.end(), random); + return std::distance(boundaries_.begin(), index); + } + + bool Initialized() const { return !boundaries_.empty(); } +}; + +} // stats namespace