Mercurial > hg > from-my-pen-to-your-ears-supplementary-material
view results/data/saves/plots.ipynb @ 1:eb3b846ae0ef tip
second commit
author | Emmanouil Theofanis Chourdakis <e.t.chourdakis@qmul.ac.uk> |
---|---|
date | Wed, 16 May 2018 18:13:41 +0100 |
parents | 4dad87badb0c |
children |
line wrap: on
line source
{ "cells": [ { "cell_type": "code", "execution_count": 1, "metadata": {}, "outputs": [], "source": [ "import glob\n", "import pandas as pd\n", "\n", "from matplotlib import rc\n", "rc('font',**{'family':'sans-serif','sans-serif':['Helvetica']})\n", "## for Palatino and other serif fonts use:\n", "#rc('font',**{'family':'serif','serif':['Palatino']})\n", "rc('text', usetex=True)\n", "\n", "import matplotlib.pyplot as plt\n" ] }, { "cell_type": "code", "execution_count": 2, "metadata": {}, "outputs": [], "source": [ "page1_df = pd.read_csv('ratings/page1-default-ratings.csv').set_index('file_keys')\n", "page2_df = pd.read_csv('ratings/page2-default-ratings.csv').set_index('file_keys')\n", "page3_df = pd.read_csv('ratings/page3-default-ratings.csv').set_index('file_keys')\n", "page4_df = pd.read_csv('ratings/page4-default-ratings.csv').set_index('file_keys')\n", "page5_df = pd.read_csv('ratings/page5-default-ratings.csv').set_index('file_keys')\n", "page6_df = pd.read_csv('ratings/page6-default-ratings.csv').set_index('file_keys')\n", "page7_df = pd.read_csv('ratings/page7-default-ratings.csv').set_index('file_keys')\n", "page8_df = pd.read_csv('ratings/page8-default-ratings.csv').set_index('file_keys')\n", "page9_df = pd.read_csv('ratings/page9-default-ratings.csv').set_index('file_keys')" ] }, { "cell_type": "code", "execution_count": 3, "metadata": {}, "outputs": [ { "data": { "text/html": [ "<div>\n", "<style scoped>\n", " .dataframe tbody tr th:only-of-type {\n", " vertical-align: middle;\n", " }\n", "\n", " .dataframe tbody tr th {\n", " vertical-align: top;\n", " }\n", "\n", " .dataframe thead th {\n", " text-align: right;\n", " }\n", "</style>\n", "<table border=\"1\" class=\"dataframe\">\n", " <thead>\n", " <tr style=\"text-align: right;\">\n", " <th></th>\n", " <th>a0000</th>\n", " <th>a0011</th>\n", " <th>a1011</th>\n", " <th>a1101</th>\n", " <th>a1110</th>\n", " <th>a1111</th>\n", " </tr>\n", " <tr>\n", " <th>file_keys</th>\n", " <th></th>\n", " <th></th>\n", " <th></th>\n", " <th></th>\n", " <th></th>\n", " <th></th>\n", " </tr>\n", " </thead>\n", " <tbody>\n", " <tr>\n", " <th>IXHrDvdwYoDCO7bvwRMB7jD46hoWAjDi</th>\n", " <td>0.06</td>\n", " <td>0.13</td>\n", " <td>0.68</td>\n", " <td>0.71</td>\n", " <td>0.65</td>\n", " <td>0.65</td>\n", " </tr>\n", " <tr>\n", " <th>iWogwaa7GooHWHcp8C0ZjRrTMDgcae0t</th>\n", " <td>0.00</td>\n", " <td>0.04</td>\n", " <td>0.95</td>\n", " <td>1.00</td>\n", " <td>0.80</td>\n", " <td>0.95</td>\n", " </tr>\n", " <tr>\n", " <th>bOyRMU1QCcMqMpcjcHNBuVMF45oksQMD</th>\n", " <td>0.24</td>\n", " <td>0.24</td>\n", " <td>0.76</td>\n", " <td>0.75</td>\n", " <td>1.00</td>\n", " <td>0.76</td>\n", " </tr>\n", " <tr>\n", " <th>U6mgdJX1DgAfYJ6DR7sKY0CL4YgcwZKq</th>\n", " <td>0.00</td>\n", " <td>0.00</td>\n", " <td>0.83</td>\n", " <td>0.97</td>\n", " <td>0.86</td>\n", " <td>0.90</td>\n", " </tr>\n", " <tr>\n", " <th>9UODgpqx7pTDhiiLm7ds39wh59aYBrHK</th>\n", " <td>0.06</td>\n", " <td>0.20</td>\n", " <td>0.72</td>\n", " <td>0.77</td>\n", " <td>0.55</td>\n", " <td>0.91</td>\n", " </tr>\n", " <tr>\n", " <th>VyX492RQzqQXRL84PByL9pLt8C5p4c50</th>\n", " <td>0.00</td>\n", " <td>0.00</td>\n", " <td>0.63</td>\n", " <td>0.87</td>\n", " <td>0.84</td>\n", " <td>1.00</td>\n", " </tr>\n", " <tr>\n", " <th>bkHwhN78d7k2kIanOievgityZQD7gVOr</th>\n", " <td>0.08</td>\n", " <td>0.25</td>\n", " <td>0.93</td>\n", " <td>0.98</td>\n", " <td>0.78</td>\n", " <td>0.92</td>\n", " </tr>\n", " <tr>\n", " <th>bKhIcFzfZ3YXPxNiw4E7kFyoTFAqeFTp</th>\n", " <td>0.00</td>\n", " <td>0.00</td>\n", " <td>1.00</td>\n", " <td>0.76</td>\n", " <td>1.00</td>\n", " <td>0.77</td>\n", " </tr>\n", " <tr>\n", " <th>ufohn9b31ZNI2zLGNqmmRYOMtIwiw6o1</th>\n", " <td>0.09</td>\n", " <td>0.10</td>\n", " <td>0.92</td>\n", " <td>0.91</td>\n", " <td>0.09</td>\n", " <td>0.92</td>\n", " </tr>\n", " <tr>\n", " <th>fZGbsBmuEtrB35G2IzQu0IxOCVoljWpz</th>\n", " <td>0.00</td>\n", " <td>0.00</td>\n", " <td>1.00</td>\n", " <td>1.00</td>\n", " <td>1.00</td>\n", " <td>0.97</td>\n", " </tr>\n", " <tr>\n", " <th>YMVW8vVq8kZbGFRMWn9ElJBJ38bVV5GU</th>\n", " <td>0.00</td>\n", " <td>0.00</td>\n", " <td>0.95</td>\n", " <td>0.42</td>\n", " <td>0.92</td>\n", " <td>0.93</td>\n", " </tr>\n", " <tr>\n", " <th>G2WO7k3tSjvBrlMG1Nqz4DsKBO8oaEcQ</th>\n", " <td>0.00</td>\n", " <td>0.14</td>\n", " <td>0.70</td>\n", " <td>0.54</td>\n", " <td>1.00</td>\n", " <td>1.00</td>\n", " </tr>\n", " <tr>\n", " <th>OK2yLWD54tr3klqiS631VXjQlroZfmD3</th>\n", " <td>0.06</td>\n", " <td>0.03</td>\n", " <td>0.52</td>\n", " <td>1.00</td>\n", " <td>0.68</td>\n", " <td>0.89</td>\n", " </tr>\n", " <tr>\n", " <th>t1Ybl1O1EAdpBEbxOLbaU4QlHtAcGCxa</th>\n", " <td>0.09</td>\n", " <td>0.11</td>\n", " <td>1.00</td>\n", " <td>0.99</td>\n", " <td>0.65</td>\n", " <td>0.54</td>\n", " </tr>\n", " <tr>\n", " <th>JZaBaWCeuGjSAyoUrfwdASaIHXkHCZml</th>\n", " <td>0.00</td>\n", " <td>0.00</td>\n", " <td>0.71</td>\n", " <td>0.83</td>\n", " <td>0.84</td>\n", " <td>0.93</td>\n", " </tr>\n", " <tr>\n", " <th>uoBPmOWdbNI4uowtBZRZK8BIEUVvUn1o</th>\n", " <td>0.23</td>\n", " <td>0.23</td>\n", " <td>0.62</td>\n", " <td>1.00</td>\n", " <td>0.79</td>\n", " <td>0.84</td>\n", " </tr>\n", " <tr>\n", " <th>lIOWKvmCLdlUhGFYwE3lOfizSeqtxyNT</th>\n", " <td>0.11</td>\n", " <td>0.24</td>\n", " <td>0.69</td>\n", " <td>1.00</td>\n", " <td>0.66</td>\n", " <td>0.83</td>\n", " </tr>\n", " </tbody>\n", "</table>\n", "</div>" ], "text/plain": [ " a0000 a0011 a1011 a1101 a1110 a1111\n", "file_keys \n", "IXHrDvdwYoDCO7bvwRMB7jD46hoWAjDi 0.06 0.13 0.68 0.71 0.65 0.65\n", "iWogwaa7GooHWHcp8C0ZjRrTMDgcae0t 0.00 0.04 0.95 1.00 0.80 0.95\n", "bOyRMU1QCcMqMpcjcHNBuVMF45oksQMD 0.24 0.24 0.76 0.75 1.00 0.76\n", "U6mgdJX1DgAfYJ6DR7sKY0CL4YgcwZKq 0.00 0.00 0.83 0.97 0.86 0.90\n", "9UODgpqx7pTDhiiLm7ds39wh59aYBrHK 0.06 0.20 0.72 0.77 0.55 0.91\n", "VyX492RQzqQXRL84PByL9pLt8C5p4c50 0.00 0.00 0.63 0.87 0.84 1.00\n", "bkHwhN78d7k2kIanOievgityZQD7gVOr 0.08 0.25 0.93 0.98 0.78 0.92\n", "bKhIcFzfZ3YXPxNiw4E7kFyoTFAqeFTp 0.00 0.00 1.00 0.76 1.00 0.77\n", "ufohn9b31ZNI2zLGNqmmRYOMtIwiw6o1 0.09 0.10 0.92 0.91 0.09 0.92\n", "fZGbsBmuEtrB35G2IzQu0IxOCVoljWpz 0.00 0.00 1.00 1.00 1.00 0.97\n", "YMVW8vVq8kZbGFRMWn9ElJBJ38bVV5GU 0.00 0.00 0.95 0.42 0.92 0.93\n", "G2WO7k3tSjvBrlMG1Nqz4DsKBO8oaEcQ 0.00 0.14 0.70 0.54 1.00 1.00\n", "OK2yLWD54tr3klqiS631VXjQlroZfmD3 0.06 0.03 0.52 1.00 0.68 0.89\n", "t1Ybl1O1EAdpBEbxOLbaU4QlHtAcGCxa 0.09 0.11 1.00 0.99 0.65 0.54\n", "JZaBaWCeuGjSAyoUrfwdASaIHXkHCZml 0.00 0.00 0.71 0.83 0.84 0.93\n", "uoBPmOWdbNI4uowtBZRZK8BIEUVvUn1o 0.23 0.23 0.62 1.00 0.79 0.84\n", "lIOWKvmCLdlUhGFYwE3lOfizSeqtxyNT 0.11 0.24 0.69 1.00 0.66 0.83" ] }, "execution_count": 3, "metadata": {}, "output_type": "execute_result" } ], "source": [ "page1_df" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [] }, { "cell_type": "code", "execution_count": 4, "metadata": {}, "outputs": [ { "data": { "text/html": [ "<div>\n", "<style scoped>\n", " .dataframe tbody tr th:only-of-type {\n", " vertical-align: middle;\n", " }\n", "\n", " .dataframe tbody tr th {\n", " vertical-align: top;\n", " }\n", "\n", " .dataframe thead th {\n", " text-align: right;\n", " }\n", "</style>\n", "<table border=\"1\" class=\"dataframe\">\n", " <thead>\n", " <tr style=\"text-align: right;\">\n", " <th></th>\n", " <th>a0000</th>\n", " <th>a0011</th>\n", " <th>a1011</th>\n", " <th>a1101</th>\n", " <th>a1110</th>\n", " <th>a1111</th>\n", " <th>b0000</th>\n", " <th>b0011</th>\n", " <th>b1011</th>\n", " <th>b1101</th>\n", " <th>...</th>\n", " <th>a10113</th>\n", " <th>a11013</th>\n", " <th>a11103</th>\n", " <th>a11113</th>\n", " <th>b00003</th>\n", " <th>b00113</th>\n", " <th>b10113</th>\n", " <th>b11013</th>\n", " <th>b11103</th>\n", " <th>b11113</th>\n", " </tr>\n", " <tr>\n", " <th>file_keys</th>\n", " <th></th>\n", " <th></th>\n", " <th></th>\n", " <th></th>\n", " <th></th>\n", " <th></th>\n", " <th></th>\n", " <th></th>\n", " <th></th>\n", " <th></th>\n", " <th></th>\n", " <th></th>\n", " <th></th>\n", " <th></th>\n", " <th></th>\n", " <th></th>\n", " <th></th>\n", " <th></th>\n", " <th></th>\n", " <th></th>\n", " <th></th>\n", " </tr>\n", " </thead>\n", " <tbody>\n", " <tr>\n", " <th>IXHrDvdwYoDCO7bvwRMB7jD46hoWAjDi</th>\n", " <td>0.06</td>\n", " <td>0.13</td>\n", " <td>0.68</td>\n", " <td>0.71</td>\n", " <td>0.65</td>\n", " <td>0.65</td>\n", " <td>0.01</td>\n", " <td>0.02</td>\n", " <td>0.70</td>\n", " <td>0.68</td>\n", " <td>...</td>\n", " <td>0.77</td>\n", " <td>0.78</td>\n", " <td>0.69</td>\n", " <td>0.76</td>\n", " <td>0.11</td>\n", " <td>0.21</td>\n", " <td>0.66</td>\n", " <td>0.95</td>\n", " <td>0.56</td>\n", " <td>0.85</td>\n", " </tr>\n", " <tr>\n", " <th>iWogwaa7GooHWHcp8C0ZjRrTMDgcae0t</th>\n", " <td>0.00</td>\n", " <td>0.04</td>\n", " <td>0.95</td>\n", " <td>1.00</td>\n", " <td>0.80</td>\n", " <td>0.95</td>\n", " <td>0.00</td>\n", " <td>0.00</td>\n", " <td>1.00</td>\n", " <td>1.00</td>\n", " <td>...</td>\n", " <td>0.23</td>\n", " <td>0.71</td>\n", " <td>0.62</td>\n", " <td>0.79</td>\n", " <td>0.04</td>\n", " <td>0.22</td>\n", " <td>0.82</td>\n", " <td>0.86</td>\n", " <td>0.89</td>\n", " <td>0.49</td>\n", " </tr>\n", " <tr>\n", " <th>bOyRMU1QCcMqMpcjcHNBuVMF45oksQMD</th>\n", " <td>0.24</td>\n", " <td>0.24</td>\n", " <td>0.76</td>\n", " <td>0.75</td>\n", " <td>1.00</td>\n", " <td>0.76</td>\n", " <td>0.00</td>\n", " <td>0.24</td>\n", " <td>0.76</td>\n", " <td>0.76</td>\n", " <td>...</td>\n", " <td>0.76</td>\n", " <td>0.76</td>\n", " <td>1.00</td>\n", " <td>0.50</td>\n", " <td>0.00</td>\n", " <td>0.50</td>\n", " <td>0.50</td>\n", " <td>1.00</td>\n", " <td>0.76</td>\n", " <td>0.75</td>\n", " </tr>\n", " <tr>\n", " <th>U6mgdJX1DgAfYJ6DR7sKY0CL4YgcwZKq</th>\n", " <td>0.00</td>\n", " <td>0.00</td>\n", " <td>0.83</td>\n", " <td>0.97</td>\n", " <td>0.86</td>\n", " <td>0.90</td>\n", " <td>0.00</td>\n", " <td>0.00</td>\n", " <td>0.96</td>\n", " <td>0.91</td>\n", " <td>...</td>\n", " <td>0.72</td>\n", " <td>1.00</td>\n", " <td>0.16</td>\n", " <td>0.81</td>\n", " <td>0.14</td>\n", " <td>0.15</td>\n", " <td>0.70</td>\n", " <td>0.97</td>\n", " <td>0.44</td>\n", " <td>0.83</td>\n", " </tr>\n", " <tr>\n", " <th>9UODgpqx7pTDhiiLm7ds39wh59aYBrHK</th>\n", " <td>0.06</td>\n", " <td>0.20</td>\n", " <td>0.72</td>\n", " <td>0.77</td>\n", " <td>0.55</td>\n", " <td>0.91</td>\n", " <td>0.20</td>\n", " <td>0.29</td>\n", " <td>0.60</td>\n", " <td>0.96</td>\n", " <td>...</td>\n", " <td>0.66</td>\n", " <td>0.98</td>\n", " <td>0.32</td>\n", " <td>0.72</td>\n", " <td>0.00</td>\n", " <td>0.00</td>\n", " <td>0.91</td>\n", " <td>1.00</td>\n", " <td>0.39</td>\n", " <td>0.84</td>\n", " </tr>\n", " <tr>\n", " <th>VyX492RQzqQXRL84PByL9pLt8C5p4c50</th>\n", " <td>0.00</td>\n", " <td>0.00</td>\n", " <td>0.63</td>\n", " <td>0.87</td>\n", " <td>0.84</td>\n", " <td>1.00</td>\n", " <td>0.00</td>\n", " <td>0.00</td>\n", " <td>1.00</td>\n", " <td>1.00</td>\n", " <td>...</td>\n", " <td>0.48</td>\n", " <td>0.78</td>\n", " <td>0.52</td>\n", " <td>0.80</td>\n", " <td>0.48</td>\n", " <td>0.21</td>\n", " <td>0.98</td>\n", " <td>0.59</td>\n", " <td>0.86</td>\n", " <td>0.92</td>\n", " </tr>\n", " <tr>\n", " <th>bkHwhN78d7k2kIanOievgityZQD7gVOr</th>\n", " <td>0.08</td>\n", " <td>0.25</td>\n", " <td>0.93</td>\n", " <td>0.98</td>\n", " <td>0.78</td>\n", " <td>0.92</td>\n", " <td>NaN</td>\n", " <td>NaN</td>\n", " <td>NaN</td>\n", " <td>NaN</td>\n", " <td>...</td>\n", " <td>0.82</td>\n", " <td>0.66</td>\n", " <td>0.36</td>\n", " <td>0.97</td>\n", " <td>0.21</td>\n", " <td>0.27</td>\n", " <td>0.60</td>\n", " <td>0.84</td>\n", " <td>0.46</td>\n", " <td>0.94</td>\n", " </tr>\n", " <tr>\n", " <th>bKhIcFzfZ3YXPxNiw4E7kFyoTFAqeFTp</th>\n", " <td>0.00</td>\n", " <td>0.00</td>\n", " <td>1.00</td>\n", " <td>0.76</td>\n", " <td>1.00</td>\n", " <td>0.77</td>\n", " <td>0.00</td>\n", " <td>0.00</td>\n", " <td>1.00</td>\n", " <td>0.75</td>\n", " <td>...</td>\n", " <td>0.24</td>\n", " <td>0.49</td>\n", " <td>0.00</td>\n", " <td>0.22</td>\n", " <td>1.00</td>\n", " <td>1.00</td>\n", " <td>0.09</td>\n", " <td>0.49</td>\n", " <td>0.50</td>\n", " <td>0.00</td>\n", " </tr>\n", " <tr>\n", " <th>ufohn9b31ZNI2zLGNqmmRYOMtIwiw6o1</th>\n", " <td>0.09</td>\n", " <td>0.10</td>\n", " <td>0.92</td>\n", " <td>0.91</td>\n", " <td>0.09</td>\n", " <td>0.92</td>\n", " <td>0.13</td>\n", " <td>0.08</td>\n", " <td>0.86</td>\n", " <td>0.95</td>\n", " <td>...</td>\n", " <td>0.96</td>\n", " <td>0.44</td>\n", " <td>0.33</td>\n", " <td>0.69</td>\n", " <td>0.00</td>\n", " <td>0.00</td>\n", " <td>1.00</td>\n", " <td>0.79</td>\n", " <td>0.17</td>\n", " <td>1.00</td>\n", " </tr>\n", " <tr>\n", " <th>fZGbsBmuEtrB35G2IzQu0IxOCVoljWpz</th>\n", " <td>0.00</td>\n", " <td>0.00</td>\n", " <td>1.00</td>\n", " <td>1.00</td>\n", " <td>1.00</td>\n", " <td>0.97</td>\n", " <td>0.00</td>\n", " <td>0.00</td>\n", " <td>0.97</td>\n", " <td>0.99</td>\n", " <td>...</td>\n", " <td>0.78</td>\n", " <td>0.09</td>\n", " <td>0.66</td>\n", " <td>1.00</td>\n", " <td>0.22</td>\n", " <td>0.01</td>\n", " <td>0.99</td>\n", " <td>0.10</td>\n", " <td>0.35</td>\n", " <td>0.63</td>\n", " </tr>\n", " <tr>\n", " <th>YMVW8vVq8kZbGFRMWn9ElJBJ38bVV5GU</th>\n", " <td>0.00</td>\n", " <td>0.00</td>\n", " <td>0.95</td>\n", " <td>0.42</td>\n", " <td>0.92</td>\n", " <td>0.93</td>\n", " <td>NaN</td>\n", " <td>NaN</td>\n", " <td>NaN</td>\n", " <td>NaN</td>\n", " <td>...</td>\n", " <td>0.69</td>\n", " <td>0.84</td>\n", " <td>0.75</td>\n", " <td>0.75</td>\n", " <td>0.00</td>\n", " <td>0.00</td>\n", " <td>0.71</td>\n", " <td>0.95</td>\n", " <td>0.98</td>\n", " <td>0.87</td>\n", " </tr>\n", " <tr>\n", " <th>G2WO7k3tSjvBrlMG1Nqz4DsKBO8oaEcQ</th>\n", " <td>0.00</td>\n", " <td>0.14</td>\n", " <td>0.70</td>\n", " <td>0.54</td>\n", " <td>1.00</td>\n", " <td>1.00</td>\n", " <td>0.00</td>\n", " <td>0.00</td>\n", " <td>0.49</td>\n", " <td>1.00</td>\n", " <td>...</td>\n", " <td>0.20</td>\n", " <td>0.49</td>\n", " <td>0.33</td>\n", " <td>0.64</td>\n", " <td>0.00</td>\n", " <td>0.70</td>\n", " <td>0.33</td>\n", " <td>0.58</td>\n", " <td>0.57</td>\n", " <td>0.36</td>\n", " </tr>\n", " <tr>\n", " <th>OK2yLWD54tr3klqiS631VXjQlroZfmD3</th>\n", " <td>0.06</td>\n", " <td>0.03</td>\n", " <td>0.52</td>\n", " <td>1.00</td>\n", " <td>0.68</td>\n", " <td>0.89</td>\n", " <td>0.00</td>\n", " <td>0.03</td>\n", " <td>0.95</td>\n", " <td>1.00</td>\n", " <td>...</td>\n", " <td>0.66</td>\n", " <td>0.86</td>\n", " <td>0.50</td>\n", " <td>1.00</td>\n", " <td>0.00</td>\n", " <td>0.00</td>\n", " <td>0.88</td>\n", " <td>0.51</td>\n", " <td>0.38</td>\n", " <td>1.00</td>\n", " </tr>\n", " <tr>\n", " <th>t1Ybl1O1EAdpBEbxOLbaU4QlHtAcGCxa</th>\n", " <td>0.09</td>\n", " <td>0.11</td>\n", " <td>1.00</td>\n", " <td>0.99</td>\n", " <td>0.65</td>\n", " <td>0.54</td>\n", " <td>0.00</td>\n", " <td>0.15</td>\n", " <td>0.48</td>\n", " <td>0.76</td>\n", " <td>...</td>\n", " <td>1.00</td>\n", " <td>0.51</td>\n", " <td>0.24</td>\n", " <td>0.76</td>\n", " <td>0.23</td>\n", " <td>0.00</td>\n", " <td>0.50</td>\n", " <td>0.74</td>\n", " <td>0.25</td>\n", " <td>1.00</td>\n", " </tr>\n", " <tr>\n", " <th>JZaBaWCeuGjSAyoUrfwdASaIHXkHCZml</th>\n", " <td>0.00</td>\n", " <td>0.00</td>\n", " <td>0.71</td>\n", " <td>0.83</td>\n", " <td>0.84</td>\n", " <td>0.93</td>\n", " <td>NaN</td>\n", " <td>NaN</td>\n", " <td>NaN</td>\n", " <td>NaN</td>\n", " <td>...</td>\n", " <td>0.89</td>\n", " <td>0.39</td>\n", " <td>0.69</td>\n", " <td>1.00</td>\n", " <td>0.00</td>\n", " <td>0.00</td>\n", " <td>0.90</td>\n", " <td>0.41</td>\n", " <td>0.68</td>\n", " <td>1.00</td>\n", " </tr>\n", " <tr>\n", " <th>uoBPmOWdbNI4uowtBZRZK8BIEUVvUn1o</th>\n", " <td>0.23</td>\n", " <td>0.23</td>\n", " <td>0.62</td>\n", " <td>1.00</td>\n", " <td>0.79</td>\n", " <td>0.84</td>\n", " <td>0.09</td>\n", " <td>0.10</td>\n", " <td>0.77</td>\n", " <td>1.00</td>\n", " <td>...</td>\n", " <td>0.67</td>\n", " <td>1.00</td>\n", " <td>0.49</td>\n", " <td>0.91</td>\n", " <td>0.06</td>\n", " <td>0.00</td>\n", " <td>0.76</td>\n", " <td>0.90</td>\n", " <td>0.64</td>\n", " <td>1.00</td>\n", " </tr>\n", " <tr>\n", " <th>lIOWKvmCLdlUhGFYwE3lOfizSeqtxyNT</th>\n", " <td>0.11</td>\n", " <td>0.24</td>\n", " <td>0.69</td>\n", " <td>1.00</td>\n", " <td>0.66</td>\n", " <td>0.83</td>\n", " <td>0.12</td>\n", " <td>0.11</td>\n", " <td>0.77</td>\n", " <td>0.92</td>\n", " <td>...</td>\n", " <td>1.00</td>\n", " <td>0.12</td>\n", " <td>0.50</td>\n", " <td>0.75</td>\n", " <td>0.00</td>\n", " <td>0.00</td>\n", " <td>1.00</td>\n", " <td>0.24</td>\n", " <td>0.76</td>\n", " <td>0.51</td>\n", " </tr>\n", " </tbody>\n", "</table>\n", "<p>17 rows × 48 columns</p>\n", "</div>" ], "text/plain": [ " a0000 a0011 a1011 a1101 a1110 a1111 \\\n", "file_keys \n", "IXHrDvdwYoDCO7bvwRMB7jD46hoWAjDi 0.06 0.13 0.68 0.71 0.65 0.65 \n", "iWogwaa7GooHWHcp8C0ZjRrTMDgcae0t 0.00 0.04 0.95 1.00 0.80 0.95 \n", "bOyRMU1QCcMqMpcjcHNBuVMF45oksQMD 0.24 0.24 0.76 0.75 1.00 0.76 \n", "U6mgdJX1DgAfYJ6DR7sKY0CL4YgcwZKq 0.00 0.00 0.83 0.97 0.86 0.90 \n", "9UODgpqx7pTDhiiLm7ds39wh59aYBrHK 0.06 0.20 0.72 0.77 0.55 0.91 \n", "VyX492RQzqQXRL84PByL9pLt8C5p4c50 0.00 0.00 0.63 0.87 0.84 1.00 \n", "bkHwhN78d7k2kIanOievgityZQD7gVOr 0.08 0.25 0.93 0.98 0.78 0.92 \n", "bKhIcFzfZ3YXPxNiw4E7kFyoTFAqeFTp 0.00 0.00 1.00 0.76 1.00 0.77 \n", "ufohn9b31ZNI2zLGNqmmRYOMtIwiw6o1 0.09 0.10 0.92 0.91 0.09 0.92 \n", "fZGbsBmuEtrB35G2IzQu0IxOCVoljWpz 0.00 0.00 1.00 1.00 1.00 0.97 \n", "YMVW8vVq8kZbGFRMWn9ElJBJ38bVV5GU 0.00 0.00 0.95 0.42 0.92 0.93 \n", "G2WO7k3tSjvBrlMG1Nqz4DsKBO8oaEcQ 0.00 0.14 0.70 0.54 1.00 1.00 \n", "OK2yLWD54tr3klqiS631VXjQlroZfmD3 0.06 0.03 0.52 1.00 0.68 0.89 \n", "t1Ybl1O1EAdpBEbxOLbaU4QlHtAcGCxa 0.09 0.11 1.00 0.99 0.65 0.54 \n", "JZaBaWCeuGjSAyoUrfwdASaIHXkHCZml 0.00 0.00 0.71 0.83 0.84 0.93 \n", "uoBPmOWdbNI4uowtBZRZK8BIEUVvUn1o 0.23 0.23 0.62 1.00 0.79 0.84 \n", "lIOWKvmCLdlUhGFYwE3lOfizSeqtxyNT 0.11 0.24 0.69 1.00 0.66 0.83 \n", "\n", " b0000 b0011 b1011 b1101 ... a10113 \\\n", "file_keys ... \n", "IXHrDvdwYoDCO7bvwRMB7jD46hoWAjDi 0.01 0.02 0.70 0.68 ... 0.77 \n", "iWogwaa7GooHWHcp8C0ZjRrTMDgcae0t 0.00 0.00 1.00 1.00 ... 0.23 \n", "bOyRMU1QCcMqMpcjcHNBuVMF45oksQMD 0.00 0.24 0.76 0.76 ... 0.76 \n", "U6mgdJX1DgAfYJ6DR7sKY0CL4YgcwZKq 0.00 0.00 0.96 0.91 ... 0.72 \n", "9UODgpqx7pTDhiiLm7ds39wh59aYBrHK 0.20 0.29 0.60 0.96 ... 0.66 \n", "VyX492RQzqQXRL84PByL9pLt8C5p4c50 0.00 0.00 1.00 1.00 ... 0.48 \n", "bkHwhN78d7k2kIanOievgityZQD7gVOr NaN NaN NaN NaN ... 0.82 \n", "bKhIcFzfZ3YXPxNiw4E7kFyoTFAqeFTp 0.00 0.00 1.00 0.75 ... 0.24 \n", "ufohn9b31ZNI2zLGNqmmRYOMtIwiw6o1 0.13 0.08 0.86 0.95 ... 0.96 \n", "fZGbsBmuEtrB35G2IzQu0IxOCVoljWpz 0.00 0.00 0.97 0.99 ... 0.78 \n", "YMVW8vVq8kZbGFRMWn9ElJBJ38bVV5GU NaN NaN NaN NaN ... 0.69 \n", "G2WO7k3tSjvBrlMG1Nqz4DsKBO8oaEcQ 0.00 0.00 0.49 1.00 ... 0.20 \n", "OK2yLWD54tr3klqiS631VXjQlroZfmD3 0.00 0.03 0.95 1.00 ... 0.66 \n", "t1Ybl1O1EAdpBEbxOLbaU4QlHtAcGCxa 0.00 0.15 0.48 0.76 ... 1.00 \n", "JZaBaWCeuGjSAyoUrfwdASaIHXkHCZml NaN NaN NaN NaN ... 0.89 \n", "uoBPmOWdbNI4uowtBZRZK8BIEUVvUn1o 0.09 0.10 0.77 1.00 ... 0.67 \n", "lIOWKvmCLdlUhGFYwE3lOfizSeqtxyNT 0.12 0.11 0.77 0.92 ... 1.00 \n", "\n", " a11013 a11103 a11113 b00003 b00113 \\\n", "file_keys \n", "IXHrDvdwYoDCO7bvwRMB7jD46hoWAjDi 0.78 0.69 0.76 0.11 0.21 \n", "iWogwaa7GooHWHcp8C0ZjRrTMDgcae0t 0.71 0.62 0.79 0.04 0.22 \n", "bOyRMU1QCcMqMpcjcHNBuVMF45oksQMD 0.76 1.00 0.50 0.00 0.50 \n", "U6mgdJX1DgAfYJ6DR7sKY0CL4YgcwZKq 1.00 0.16 0.81 0.14 0.15 \n", "9UODgpqx7pTDhiiLm7ds39wh59aYBrHK 0.98 0.32 0.72 0.00 0.00 \n", "VyX492RQzqQXRL84PByL9pLt8C5p4c50 0.78 0.52 0.80 0.48 0.21 \n", "bkHwhN78d7k2kIanOievgityZQD7gVOr 0.66 0.36 0.97 0.21 0.27 \n", "bKhIcFzfZ3YXPxNiw4E7kFyoTFAqeFTp 0.49 0.00 0.22 1.00 1.00 \n", "ufohn9b31ZNI2zLGNqmmRYOMtIwiw6o1 0.44 0.33 0.69 0.00 0.00 \n", "fZGbsBmuEtrB35G2IzQu0IxOCVoljWpz 0.09 0.66 1.00 0.22 0.01 \n", "YMVW8vVq8kZbGFRMWn9ElJBJ38bVV5GU 0.84 0.75 0.75 0.00 0.00 \n", "G2WO7k3tSjvBrlMG1Nqz4DsKBO8oaEcQ 0.49 0.33 0.64 0.00 0.70 \n", "OK2yLWD54tr3klqiS631VXjQlroZfmD3 0.86 0.50 1.00 0.00 0.00 \n", "t1Ybl1O1EAdpBEbxOLbaU4QlHtAcGCxa 0.51 0.24 0.76 0.23 0.00 \n", "JZaBaWCeuGjSAyoUrfwdASaIHXkHCZml 0.39 0.69 1.00 0.00 0.00 \n", "uoBPmOWdbNI4uowtBZRZK8BIEUVvUn1o 1.00 0.49 0.91 0.06 0.00 \n", "lIOWKvmCLdlUhGFYwE3lOfizSeqtxyNT 0.12 0.50 0.75 0.00 0.00 \n", "\n", " b10113 b11013 b11103 b11113 \n", "file_keys \n", "IXHrDvdwYoDCO7bvwRMB7jD46hoWAjDi 0.66 0.95 0.56 0.85 \n", "iWogwaa7GooHWHcp8C0ZjRrTMDgcae0t 0.82 0.86 0.89 0.49 \n", "bOyRMU1QCcMqMpcjcHNBuVMF45oksQMD 0.50 1.00 0.76 0.75 \n", "U6mgdJX1DgAfYJ6DR7sKY0CL4YgcwZKq 0.70 0.97 0.44 0.83 \n", "9UODgpqx7pTDhiiLm7ds39wh59aYBrHK 0.91 1.00 0.39 0.84 \n", "VyX492RQzqQXRL84PByL9pLt8C5p4c50 0.98 0.59 0.86 0.92 \n", "bkHwhN78d7k2kIanOievgityZQD7gVOr 0.60 0.84 0.46 0.94 \n", "bKhIcFzfZ3YXPxNiw4E7kFyoTFAqeFTp 0.09 0.49 0.50 0.00 \n", "ufohn9b31ZNI2zLGNqmmRYOMtIwiw6o1 1.00 0.79 0.17 1.00 \n", "fZGbsBmuEtrB35G2IzQu0IxOCVoljWpz 0.99 0.10 0.35 0.63 \n", "YMVW8vVq8kZbGFRMWn9ElJBJ38bVV5GU 0.71 0.95 0.98 0.87 \n", "G2WO7k3tSjvBrlMG1Nqz4DsKBO8oaEcQ 0.33 0.58 0.57 0.36 \n", "OK2yLWD54tr3klqiS631VXjQlroZfmD3 0.88 0.51 0.38 1.00 \n", "t1Ybl1O1EAdpBEbxOLbaU4QlHtAcGCxa 0.50 0.74 0.25 1.00 \n", "JZaBaWCeuGjSAyoUrfwdASaIHXkHCZml 0.90 0.41 0.68 1.00 \n", "uoBPmOWdbNI4uowtBZRZK8BIEUVvUn1o 0.76 0.90 0.64 1.00 \n", "lIOWKvmCLdlUhGFYwE3lOfizSeqtxyNT 1.00 0.24 0.76 0.51 \n", "\n", "[17 rows x 48 columns]" ] }, "execution_count": 4, "metadata": {}, "output_type": "execute_result" } ], "source": [ "big_results = page1_df.join(page2_df).join(page3_df).join(page4_df).join(page5_df).join(page6_df).join(page7_df).join(page8_df)\n", "big_results" ] }, { "cell_type": "code", "execution_count": 5, "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXoAAAEiCAYAAAD3fRkKAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvNQv5yAAAG9NJREFUeJzt3UGMG9ed5/Hff7UynEPsXjm6ykp7Lgx6kE2bsydeetTyJTkEM+oYco5cdc8A7lvGLYOHYA5ELGFuOmSlWR7mRGSkWeRgH2bUmb7wlpa8AYLwEvfaZ4/k9gRIAjeCtwcWW0U2ySo2H1mvHr8fgBC7+Pj4ryL15+Orf1WZc04AgHj9l6IDAADMF4keACJHogeAyJHoASByJHoAiByJHgAiR6LH1Mxs3czumNmN5LZuZu+Z2aaZfVFAPCse+lg3s4dm9sTMNoceW02Wr88rvmT73TCz7fO8Rt7XwXIi0WMqSRJ83zm355x75Jx7lDz0tnNuX9JhAWH9YNYOnHNPJT2WdJisR/qxI0n7I5+Yz5n4zOyT1P37kvrb8s0ZEvbE18HyItFjWvcl3UovSJLkLIlwVjsFvnYeo+J7M3V/NfkykXNuxzl3PKfXwZIi0SM3M1uVdGlMIrqfareeTOPcTzdIlm0m0z4rybIbZvZJsvxhavmZtqn2/emi9eQXxkp/WarddrLsPTNbGfc6Gevbf61NSatDjw33v2lmXwyv+6j4kn+fpO6vpl7rydB6DKzvhO048XVSfW2m1knj4kZknHPcuOW6Sboh6UlGm8eS1pP7dyRtph57mPy7LunO8HPUG9mObZvcv5/cX03dfzIUQ/o5K6l2Z15n6HnbqbbDMd5PrdfE/ofXfdQ2k/R4zP07Q68zan3Hbcexr5O0fW9ofVay3jNucdz+a9YXAZDyVEMj2z4zW3EvRvpHyb/P0m2cc1vJ3UvqJci+S643/ZPV9m31kpJcb6pj3JTN25KepUbG1XGvM8Hbkn6Z+vt46LFR/Utj1v2cRq7vhO04yY6kh6m/P5G0Kam/j8Vn3AgMUzfILUk2z8dMe1RT7UbOMfcrdSQ9H3po+O9JbcdKppakXvJ76pzr3/rz1Ln7yjCu/7HrPhTfTLK2zRSvc6l/Z1LcKD8SPaa1I+kf0wuSxDIxiSZlg8/ciyod2ZhyxQltfybp+ojn91+7n+AeqjdVMfF1MvxM0l+k/k5/uU3b/3B808QwsL4Z23HS6wzErN66/fOU8aCkSPSYiuuVHv4kVfe9qd5c79PUjsX3kuR/XdJW8gtgX9IbQzXql5K/q0P14yPbJtMuT1Kv2x+F3k8/P4nxuL/TUjrdWTn8OqeS2K8nbTaT1+rvvF1Xb/T7/oT+J637QHypttvpuJLnrevFFM2o9R25bUZth/TrDMV8Q735/uOMuBEJc47z0QNAzBjRA0DkSPQAEDkSPQBEjkQPAJEL4oCpb3zjG+7q1atFhwEApfLkyZP/cM5dzmoXRKK/evWqDg+LOOkhAJSXmX2Wpx1TNwAQORI9AESORA8AkSPRA0DkMhO9vbiW5mZGu5XU+U/eO+eJpAAAnk2sukkl9zxn3XsoaSc5la3M7LGZbXH6UwAo1sQRvXNuPznrXdYpaFeUuu5l4ki9CxsAAArka46+qsEr8Cj5+/qItgCABfJ1wNSKzo76n2nClE9y3uxtSbpy5YqnMBbDzEYuz3vK52///b/pyz+cSJI+u/O9M4+/vvehJOnVr13Ur3781kJimldfIRq1ftOsW//9G/XeSb33L+9757MvaTnfO6m4989XTPPoK81n1c2l7CYvOOceOOeqzrnq5cuZR/AGpX/B3df3Phy4AG9eX/7hRJ9+8F19+sF3R17It/9Y/8tgmpiG4zqPWdcvdLNup/77N+5CzNO8dz77Sq+bj89BiHysX8jbfF7/93wl+mOdvUjxa/J3jU4AwDn5SvSHOjuiX1FyBXsAQHHOPUffv9K8c+4oufbkoZmlK2+qkvZ8BAlgsvR+n7Srtz86vT/NvDOylWmbZ9XRr6tXIlmVtGdm6865u8nDO+qN2neSv7ckbZvZkXo7YW9RQw8sRn/eeZJ0AlpmX6/c1p//0+2MNpI0eXuWaZtPTPTJVeifSro74rG9ob+PR7UDQpBn9CWFMwLD/Pyu+0FpErQvQZyPHpi3PKMvKb7/4IDESc0AIHqM6IEp+ZrjBRaFRD+FUfO8zPEun2Wc48VZZfrCJ9FPoUx72QHMV5m+8En0AIJXppr185j3bAGJHkDwYv81Pe/1I9HjFPsggDiR6HEq9lETsKxI9CUX+9wlgNmR6EuOUTiALCT6AuSpv+21kxZZg1umumAA+ZHoC5Cn/lZa/Ei8THXBwCyyPsevfu3igiJZDBI9gKUyPJi5evujXAOveZr3r2kSPQAUbN6/pkn0AILH/qPZkOgBBI/9R7PhfPQAEDkSPQBEjqkbADinspRpkuiBArGTsbxG7TMIoVRzFBI9UCB2MmIRmKMHgMgxogciwBQQJiHRAxFgCqg4Zjb4953ev865AqIZjUQPADMIKaGPQ6LHgLKUiwHIj0SPUyGe1Q/A7DITvZmtSNqWdCRpVdK+c+5pRtvjZNGRc27fU6wA4E16br0/ry6VYypmWnlG9A8l7TjnjiTJzB6b2ZZz7nhE223n3N3+H2Z2x8wOx7QFFibUq3qhODEm9HEmJvpkhL7aT/KJI0mbkh6NeMrbku6m/n6m3q+Akb8AgEUJ9apePrF/BeNkjeirejEN03cs6bpGJ/ojM3siaSv5+7Vx0zwA/CnT4fhYvKxEvyLp+dCy/ij9DOfclpk9lPSJenP518d1bGbb6s3n68qVK7kDxiAOlAGQJc8c/aW8nZnZuqTHku5Lum9mT5xzb45q65x7IOmBJFWr1eWZLPOMA2WKwTQJyiQr0R+rN6pPe01nR/kys1VJbzvn9pJFb5jZQzO7k1oGlB7TJCibrJOaHersiH5FvVH7sHVJvxxadktnvygAAAs0MdEnZZGHyWi9ryppX+qN4lOP7au3k1ZDbR96ihUAcA555ui3JG2bWf+AqVupuvgd9UbsO865YzO7b2bv6UWlznPn3KjqHADAgmQm+iSp3x3z2N7Q309FzTyAOWAH+PlxrhsAwWMH+GxI9FPwWbOep+SxqBHKMp0DBFgGJPop+KpZD310QkIH4kKiB4AAzHMfBIkeKBg7GTHva0GQ6IECcbEXLELWkbEAgJIj0QNA5Ej0ABA5Ej0ARI6dsVgaIR+kBswTiR5LIfSD1IB5YuoGAGbUbre1tramCxcuaG1tTe12u+iQBjCiB4AZtNttNRoNtVot1Wo1dTod1et1SdLNmzcLjq6HET0AzKDZbKrVamljY0MXL17UxsaGWq2Wms1m0aGdYkQ/JQ5XB5DW7XZVq9UGltVqNXW73YIiOotEPwUOVwcwrFKpqNPpaGNj43RZp9NRpVIpMKpBTN0A52Rmp7fP7nzv9D6WS6PRUL1e18HBgU5OTnRwcKB6va5Go1F0aKcY0QPnxHn7Ib3Y4bq7u6tut6tKpaJmsxnMjliJRA8AM7t582ZQiX0YUzc4I/SaYADTYUQfAZ+VQGWoCQZiNa/rNZPoS873of3pmmBJpzXBu7u7JHpgzua134dEjwFlqAmO0bxGcoDEHD2G9GuC00KrCY6Rc27kDfCBRI8BZagJBjAdpm4woAw1wQCmQ6LHGaHXBAOYDlM3ABC5zBG9ma1I2pZ0JGlV0r5z7umE9uuSNpP2l5xzDzzFCgA4hzxTNw8l7TjnjiTJzB6b2ZZz7ni4YZLk33fObSV/PzGzw0lfDACA+ZqY6JPR/Go/ySeO1BuxPxrxlH+UtJX6+9qoLwQA8zF89sx+TT6lmssta46+Kmk4UR9Luj7cMPlSWHfOHZnZupmtkuSBxaIeH6NkJfoVSc+Hlj2TdGlE26qkIzO7oWQ+38zuj+vYzLbN7NDMDj///PNpYgawpLgGwPnkqboZldRHWdGLnbXHzrl99ZL9jVGNnXMPnHNV51z18uXLOV8CwDLjF8v5ZCX6Y/USeNprOjvKl3qj+OOh6ZojjZjmAQAsTlaiP9TZEf2KpMcj2h7p7JeCdHaOHwCwQBMTfTI6PzSz1dTiqqR9STKz1f5jSdtHSYlluu3P/IYMAJhGnjr6LUnbZtY/YOpWanpmR71R/E7y9y1J75tZVdIbkvaooQeAYmUm+iSp3x3z2N6Itnuj2gIAisG5bgAgciR6AIgciR5ntNttra2t6cKFC1pbW1O73S46JAAz4Hz0kfB1jpN2u61Go6FWq6VaraZOp6N6vS5JnKMeKClG9JHwdcRgs9lUq9XSxsaGLl68qI2NDbVaLTWbzTlEDWARSPQY0O12VavVBpbVajV1u92CIgIwKxI9BlQqFXU6nYFlnU5HlUqloIgAzIpEjwGNRkP1el0HBwc6OTnRwcGB6vW6Go1G0aEBOCd2xmJAf4fr7u6uut2uKpWKms0mO2KBEiPRn0O6wqVf3SLFcxWfmzdvktiBiJDozyGWhA5gOTBHDwCRI9EDQORI9AAQORI9AESORA8AkSPRA0DkKK/E0hl1HAQls4gZiR5Lh6SOZcPUDQBEjkQPAJEj0QNA5Ej0ABA5Ej0ARI5EDwCRI9EDQORI9AAQORI9AEQu88hYM1uRtC3pSNKqpH3n3NMcz9uUtOKcezRzlBHjcHwA85bnFAgPJe04544kycwem9mWc+543BOSL4f7ku6Ma4MekjqAeZs4dZMk7NV+kk8cSdrM6PcHkvZnjA0A4EHWHH1V0vDI/VjS9XFPSKZsSPIAEIisRL8i6fnQsmeSLo1qnPwCWBn6BTCSmW2b2aGZHX7++ee5ggUATC9P1c3IpD7GZt6dr865B865qnOuevny5SleAgAwjaxEf6zeqD7tNZ0d5cvM1iVlVuMAABYrq+rmUGdH9CuSHo9oe0lSNVUuuCnpkpnJOfdgpigBAOc2MdE7546TefR05U1V0p4kmdlq0u7IOTewA9bMrkt6TJIHgGLlqaPfkrRtZv0Dpm6lauh31Bvh76SfYGbvqTeiXzWz5xw0BQDFsRAO2KlWq+7w8LDoMACgVMzsiXOumtWOc90AQORI9AAQORI9AESORA8AkSPRA0DkSPQAEDkSPQBEjkQPAJEj0QNA5Ej0ABA5Ej0ARI5EDwCRI9GjFNrtttbW1nThwgWtra2p3W4XHRJQGnlOUwwUqt1uq9FoqNVqqVarqdPpqF6vS5Ju3rxZcHRA+DhNMYK3trame/fuaWNj43TZwcGBdnd39etf/7rAyIBi5T1NMYkewbtw4YL++Mc/6uLFi6fLTk5O9PLLL+tPf/pTgZEBxeJ89IhGpVJRp9MZWNbpdFSpVAqKCCgXEj2C12g0VK/XdXBwoJOTEx0cHKher6vRaBQdGlAK7IxF8Po7XHd3d9XtdlWpVNRsNtkRC+TEHD0AlBRz9AAASSR6AIhe8ImeIyIBYDZB74z1eUSkmY1cHsI+CgCYp6BH9M1mU++88452d3f18ssva3d3V++8846azebUfTnnTm+v7314eh8AYhf0iP43v/mNfv/7358Z0X/66adFh4YF4xfZ4vnc5qP64r1bnKBH9C+99JLeffddbWxs6OLFi9rY2NC7776rl156qejQsGCjfo2RKObL5zbn13Sxgk70X331le7duzdwROS9e/f01VdfFR0aAJRG0FM33/rWt/T9739/4IjIH/7wh/r5z39edGgAUBqZid7MViRtSzqStCpp3zn3dEzbdUmbyZ9/Iem+c27/vME1Go2RVTfn2RkLAMsqz4j+oaQd59yRJJnZYzPbcs4dj2i76Zy7m7RbkfT/zOzauC+GLJzjpPza7baazebp+9doNHj/gAWbmOiTZL3aT/KJI/VG7Y+G2q5Lel/SXUlyzh2b2WHS9lyJXuolexJDOXFlKCAMWTtjq5KGR+7Hkq4PN0xG7VtDi1dHPB9LotlsqtVqDVRNtVotpt6ABcuaulmR9Hxo2TP1EvgZ6fl4M1uVdEnSP49qa2bb6s3968qVKznDnd63//7f9OUfTs4sv3r7o9P7r37ton7147fmFsOy6na7qtVqA8tqtZq63W5BEQHLKc8c/aVz9n1f0rUxc/lyzj2Q9EDqnab4nK+R6cs/nOjTD747sU066cOf/pWh0td65cpQwOJlTd0cqzeqT3tNZ0f5A8zsPUl7590JizhwZSggDFkj+kOdHdGvSHo87glmdkOpEkwzWyfhLyeqpoAwTEz0/coZM0tX3lQl7Umn8/BKlV5uSjpOJfnVpD2JfklRNQUUL88c/ZakbTPrHzB1KzXvvqPeCH8nSeqPpTMnMHrTX7gAgGllJvokqd8d89he6v6RpNGnuwMAFCbok5oBAGZHogeAyAV99koA5ZXnYEWJAxYXgUQPYC7yHKwoccDiIjB1AwCRI9EDQOSYugEwYNTcOvPq5Uaix9wMHTh3igtDh40TAcaHqRvMjXPu9Pb63oen9wEsFokeACJHogeAyAU/R88873JjxyAwu+ATfT+hX739Ua6DL5ZZu91Ws9k8Pfd7o9Eo/SmC2TEIzC74RD+rr1du68//6XZGG0kq95dIu91Wo9FQq9VSrVZTp9NRvV6XpNInewCziT7R/677wVKMCJvNplqt1un1WTc2NtRqtbS7u0uiB5ZcsImeudnpdLtd1Wq1gWW1Wk3dbregiLDs8vya7rWTyv6LOnTBJnrmZqdTqVTU6XROR/SS1Ol0VKlUCowKyyzPr2mJ/8eLQHllJBqNhur1ug4ODnRycqKDgwPV63U1Go2iQwNQsGBH9JhOfx5+d3f3tOqm2WwyPw+ARB+TmzdvBpHY81xwgv0rwOKQ6OEd+1eAsASb6Jel/h0A5i3YRL8s9e8AMG9U3QBA5Ej0ABA5Ej0ARI5EDwCRI9EDQOQyq27MbEXStqQjSauS9p1zT2dtC+RBmS0wuzzllQ8l7TjnjiTJzB6b2ZZz7njGtkAmymwXjy/X+ExM9MkIfbWfuBNHkjYlPTpvWwDh4ss1Pllz9FVJw6PxY0nXZ2wLAFiQrES/Iun50LJnki7N2BYAsCB55uinSdS525rZtno7bnXlypWRba7e/kif3fneyMde3/tQr37tYq7X8tUP8vE9x8v7t3g+/+9JGtnX63sfShLv3wKYc278g2abku47595ILbsjacU5t3PetsOq1ao7PDw85yoAwHIysyfOuWpWu6ypm0OdHaWvSHo8Y1sAwIJMTPRJWeShma2mFlcl7UuSma32H8tqCwAoRp45+i1J22bWPwjqVqoufke9UftOjrYAgAJkJvokUd8d89he3rYAgGJwrhsAiByJHgAiR6IHgMhNrKNfWBBmn0v6LKPZNyT9h6eX9NVXiDH57IuYFt8XMS2+rzLH9Lpz7nJWoyASfR5mdpjnwIBF9hViTD77IqbF90VMi+8r9pgkpm4AIHokegCIXJkS/YMA+woxJp99EdPi+yKmxfcVe0zlmaMHAJxPmUb0AIBzINEDQORI9AAQuTxnrwSmYmavqHdR+Ot6cY2C5+pdm2DfOfefRcUWkhC3U4gxhapM2yrIEb2ZvWJmf2VmPzWznyW3nybLXik6vlCEuJ3M7DuSHkl6S9KX6l2Q5jC5/5akX5jZf/f0Wj/y0Y/PvvL2s8jtlDeuEGNaZD/T9FW2z3lwI/pkA96RdCTpOPlXkl5TbwO+b2a3nHP/19Pr/cg59w+h9JO3r4C30zXn3FtZfUmaGJeZ/WWO17ouKTMmX335jEmetpPnuIKLKcTPQSK4z/kkwSV68WHL21dw2ylxlN0kV5u/kfRNSV9MaPNmjn589uUzJl/bSfIXV4gxhfg5kML8nI8VYqLnw1be/5SS9IaZXXXOfTrqQTO7KumNUY8N+YmkS865X4xrYGZ/lzMmX335jMnXdvIZV4gxhfg5kML8nI8VYqLnw1be/5RS74i+h2b2TfWmlJ6rt6NqJfn3UL1LTk7knPvYzK5lNMt1PWJfffmMSZ62k+e4gospxM9BIrjP+STBHRlrZq9KeqjeCHPsBsy7R9vMrmUksO845z5eVD+++gp1Ow3FV03iURLjoXPuy7x9LIMQt1OIMYWqLNsquETfV5YNWLQQt1OZys6mFfO6Saxf2ddvnCATfexvRszrN6Ia6Fny0GvqfRm9KclLNVAAlU5zW7e8Mfnsq6zrl7ef2NdvkuDm6AMuG/TSzyLXb9GJIhFc2VnslU4xr1+IJZE+46K8coKSvxkxJ0IpzLKz2CudYl6/EEsipTDXb6wQE33sb0bMiVAKs+ws9kqnmNcvxJJIn3FRXjnqwQjejJgToRRg2VnM5Yee+wpu/UIsifQZF+WVgZUNeuzH2/qFVvI51D64aiBfYl43ifWLUXCJvi/2NyPm9fNVVeSzOinmSiefQtzmvHezCzLR82ErL18lbD5L4WIu+fTZV4jbvKwlkT77orxyQX3FXvLpuS9fVVPeqq989RVqpVOI5ZUe+wquCs9nX5RXTsCHLcwPbcJXVZHP6qvYK51CLK8M8XMQ4janvHLGNj77CvHDFuKHVvJXVeSz+ir2SqcQyytD/ByEuM0prxz1IB827/347stXCZu3UjhffQVaEhlkeaXHvoIrifTZF+WVfsoPvfQVe8mn776S9l6qinxWJ8Vc6eRTiNuc9242wSX6Pj5s5UWlU3mFWPGG2QV7cXBJ1yTdkPSD5HZD0jWb8qLXPvtyzn3pnPuFc+5fktsvSPKDzNNFk331M0Xcpb1Qta++fG7zRb5/Zd7mi+onuDn6EMsrc8YdZf3tOfqi0onySm99BbqdgvxMTRJcohcftlx9hRhTgkqnxcbks68QK95C3E4++6K8csY2PvuK/QMSe3ll7JVOMZdXhridfPZFeeWoB/mwBR2TFHFZXYjleZ77Cq68MtDtFORnapLgqm5CLK9M+gqulDHEmFLtqXQqqRAr3jCb4BJ935gPyG/VG3nmTji++xrT9zc97dD10ldoMZnZ/1Tvl9Mnzrn/XXQ/scfkuy+UX5DlldLYUsbPJH2RfIgL6WtU35KOZ+3HZ1+hxGRm3zSz36r3E/2/SXrLzH6ZTJktvJ+hvn7gKaaZ+gm1LzP7TvK8V1LL/vqcMXnpK8SYfPblM6YznHPB3iS9Iul/SfpXSb9M3X5aVF/ENFVfPxqz/CdF9BN7TJ7X75qk74xY/lfniMlLXyHGFOr6Dd9C3Bmbdle9o+iO1DvCbl/SqqSnBfZFTPmNmxY7LKgfn32FGJPPvl51E/bZFNRXiDH57MtnTAOCnbpJPHG9qZaPJX3hnPvYOfcv6u1cLaovYsrv1XM8Z579+OwrxJh89vU/zOzr6QXJFMLE41Lm3FeIMfnsy2dMA0If0T83s287534l6c/M7OvOud+pN8L894L6IqYx7Oyh2n9mZm9r8FiFVfXKOefeT+wx+e5ryH1JH5vZF3pRrSb1phem5auvEGPy2ZfPmAYEW3UjnZ7C4KGkdUkm6Yl6B/UcOuf+toi+iGnic3+r3oc1yyfOuf8z735ij8l3X2P6/2slU3ezTiv46ivEmHz25TOm0z5DTvTDLCmT9LHyvvoipoG2E2vxp3hNL/3EHpPvvhCvUiV6AMD0Qt8ZCwCYEYkeACJHogeAyJHoASByJHoAiByJHgAi9/8BHHONpjKz+7oAAAAASUVORK5CYII=\n", "text/plain": [ "<matplotlib.figure.Figure at 0x7fc097d92ef0>" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "char_df = page1_df.join(page2_df).join(page3_df)\n", "\n", "immers_df = page4_df.join(page5_df).join(page6_df)\n", "renamedict = {k: k[:-1] for k in immers_df.columns}\n", "immers_df = immers_df.rename(columns=renamedict)\n", "\n", "prefer_df = page7_df.join(page8_df).join(page9_df)\n", "renamedict = {k: k[:-1] for k in prefer_df.columns}\n", "prefer_df = prefer_df.rename(columns=renamedict)\n", "\n", "plt.rc('text', usetex=True)\n", "plt.rc('font', family='serif')\n", "char_df.boxplot(grid=False, rot=90,fontsize=15)\n", "plt.title('Character Identification')\n", "plt.savefig('characterid.pdf', dpi=300)" ] }, { "cell_type": "code", "execution_count": 6, "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXoAAAEiCAYAAAD3fRkKAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvNQv5yAAAGg9JREFUeJzt3TFwHNd9x/HfPw41ViERIcWWoiA38MjjCDqnQsOQVGMXHpuwhiyNEEgKdI5ADQqPC4xFTjppxiETeEaNODbkjAupiAEFDTqBUNwYjXUxa4UUFI1HHrH4p7g98HDYu93Dvbt9++77mcEQ2Hv38L+95R/v3v53n7m7AADp+quqAwAAjBaJHgASR6IHgMSR6AEgcSR6AEgciR4AEkeiR+2Y2ayZbZjZfTO7XHU8QOxI9Kgdd9+TtClp1923qo6nm5l9UnUMQCcSPRDeK1UHAHQi0aP2zOyymX2WTenMmtkdM5vOtt8ys+lB2mVtF83sqpm9bmZT2fefZG03sm3T2fZZM7uVPW9W0v2Ofq5mz7nanmbqiuOymd0Z8y7DhCHRo/ay6Zvd7Ps9SQeSrmbbNyUtDdIuS9Yvuvt7ku5KupV935T0SNKKux9k7beyvj7q6LfZ0c+0u29lz583s6muOLYkHXCuAaNEokdKmtm/Dzu+f3SCdq9JethO1JIa2fYz7r7n7u3n/ErS/WxE3tRxS5L2On7+RFJnQu+MAxgZEj2SkY2y2w6GaDclaS9L6nvu3p5z7/6j0VRrPv6+pI2SYZ7pEQcwMiR64LgNSbPtH7KRfZ433P3A3e9KutM5x5/Xj6TvSPp10EiBEv666gCAQWWJ94qk6Wxu+1H2/euS3ssee9HMdtWaPmlkSXiqTDt332qfpM1+5aPs+4aZLWaJXWpN71xV61PBgbs329M97XYd/UxJuuPuBx1tjsXBKB+jYNyPHgDSxtQNACSORA8AiSPRA0DiSPQAkLgoqm6ee+45v3DhQtVhAECt3L9//3/d/VxRuygS/YULF7S7u1t1GABQK2b2oEw7pm4AIHEkegBIHIkeABJHogeAxBUm+o71OfveLztbiOH1jsUaet0ICgAwRn2rbjqSe/dd+fJsSFpq36vbzDbNbJ6bNAFAtfqO6LOVcbaUv3jDITObUmslnc7FF5o6usgCAKACoeboGzq+gMOBWrdfBQBUKNQFU1M6Pup/qD5TPma2KGlRks6fPx8ojPoxs2Pbqr51dF5MUvVxhRJqn6e+nzB+ozqmQlbdnClu8oS733X3hrs3zp0rvII3We4ud9fzK+8ffl+1vJhiiCuUUPu8c9/E9P6hvkb1fy/UiP5ArVF9p7MqmNsHEBafMpAn1Ih+V8dH9FOSNgP1D6AEPmUgz4kTfbYW5rR0uJr9btfiyA1JW0PGBwAYUlEd/axaJZINSStmNuvut7OHl9QatS9lP89LWjSzplonYW9QQw8A1eub6N19T9KepNs5j610/XyQ1w4AUC3udQMAiSPRA0DiSPQAkDgSPQAkjkQPAIkj0QNA4kj0AJC4UPe6AYBamaT7ApHocejbP/udPv/y8ZFtF25+cOTn00+f0u9/+uo4wwJGop3QL9z8QH9687sVRzNaJHoc+vzLx4UHfHfiBxA/5ugBIHEkegBIHIkeABJHogeAxHEyFhhQXnWSdPRENdVJiAmJHhgQ1UkIbdSlzSR6AKjYqAcPzNEDQOIY0QMJ4LwB+iHRAwngvAH6YeoGABLHiP4EJumudwDqjxH9Cbi73F3Pr7x/+D1JHkCsSPQAkDgSPQAkjkQPAIkj0QNA4kj0AJC4wvJKM5uStCipKWla0pa77xW0Pcg2Nd19K1CsAJCkZ2Zu6lvv3CxoI0knW9u2TB39hqQld29Kkpltmtm8ux/ktF1099vtH8zslpnt9mgLAJD0xf6b1d3ULBuhT7eTfKYp6XKPp7zW9fNDtT4FAMDQzCz3C/0VjegbejIN03Yg6Yqk93LaN83svqT57OezvaZ5JlmZG1BJ3IQK6NZ5YeKFmx8UjoLRUpTopyQ96trWc5Tu7vNmtiHpE7Xm8q/06tjMFtWaz9f58+dLB5yCMjegkrgJFcob9Rwv6q3MHP2Zsp2Z2aykTUl3JN0xs/vu/kpeW3e/K+muJDUaDe4fAAxh1HO8qLeiRH+g1qi+01kdH+XLzKYlvebuK9mmF81sw8xudWwDKsF0GSZZUaLf1fER/ZRao/Zus5I+6tp2Q9Ktk4UGhMN0GSZZ36qbrCxyNxuttzUkbUmtUXzHY1tqnaRVV9uNQLECAE6gzBz9vKRFM2tfMHWjoy5+Sa0R/pK7H5jZHTN7XU8qdR65e151DgBgTAoTfZbUb/d4bKXr5z1JlFMCCCrkmrh5faV+roYVpgBEL+SauJO4vi43NQOAxJHoASBxTN0AA+Iq1MHl3Y+GdZbHh0QPDIirUAfXTurcn6YaTN0AQOJI9ACQOBI9ACSORA8AiSPRA0DiSPQAkDjKKwFgCL3WrI3pOgESPYCJEvqCtzqsY0uiT0SIUUXKV3yWeW2tdlIdXx/Km8QL3kj0iQgxqkj5P0CZ1ybV9/UB/XAyFgASx4h+AJO4YAGA+puYRB9iDnsSFywAUH8TM3Xj7odfz6+8f/g9AKRuYhI9AEyqiZm6AVJXNG14+ulTY4okfpO2r0j0QALyzh3FevFO1br3ySTsJ6ZuACBxJHoASBxTNxXgcnwA40SirwCX4wODSfk+TONAogcQvZTvwzQOJHoAE6nzanm79WR7ihdSkugBTKQUE3ovhYnezKYkLUpqSpqWtOXue33az0q6nLU/4+53A8UKoEbybgIocSPAKpQZ0W9IWnL3piSZ2aaZzbv7QXfDLMm/4e7z2c/3zWy33x8GAGkqcxNAibn1cehbR5+N5qfbST7TVGvEnuffJK10/HyJJA8A1Sq6YKohqXvkfiDpSnfD7I/CrLs3zWzWzKbzRv0AgPEqSvRTkh51bXso6UxO24akppldVTafb2Z3enVsZotmtmtmu59++ukgMQMABlDmFgh5ST3PlJ6crD1w9y21kv3VvMbuftfdG+7eOHfuXMlfAQAYVFGiP1ArgXc6q+OjfKk1ij/omq5pKmeaB8BRZpb7BYRQlOh3dXxEPyVpM6dtU8f/KEjH5/gBdMlb/WyS6rwxWn0TfTY63zWz6Y7NDUlbkmRm0+3HsrbvZSWWnW1/FTZkAMAgytTRz0taNLP2BVM3OqZnltQaxS9lP9+Q9IaZNSS9KGmF8koAqFZhos+S+u0ej63ktF3JawsAqAYLjwBA4ripGQBEYJQLlpPoAaBio16wnERfkTI3chrmLzgAtJHoK5D3lzr0X3AAaONkLAAkjkQPAIkj0QNA4pijH8AzMzf1rXduFrSRJObagdSVWSoxlmUSSfQD+GL/zcITpiyLhkHkJQvWVM03yjrzkyizVGIs+YBED1SoTsmiSqOoVLt3757W1ta0v7+vmZkZra6u6tq1a8OEGS0SPSYG1y6g7d69e1pdXdX6+rrm5ua0s7OjhYUFSUoy2ZPoMRG4dmH8ypzTarWTxn1ea21tTevr67p48aIk6eLFi1pfX9fy8jKJHumLbR40VuynYmXOaUnVTE3t7+9rbm7uyLa5uTnt7++PPZZxINHj0Kjvt5EKPh3U38zMjHZ2dg5H9JK0s7OjmZmZCqMaHeroAdRG53q6D25978Rr666urmphYUHb29t6/Pixtre3tbCwoNXV1RFEXT1G9ABqI9Q6uu15+OXl5cOqm7W1tSTn5yUSPZCU7tGt3Wr9y0Ljx127di3ZxN6NRA8khISOPMzRA0Dikh/R1+l+FCeR+usDMLzkE33ql5in/voADI+pGwBIHIkeABJHogeAxCU/Rw9066w1p84ck4BEj4lDUsekYeoGABJXOKI3sylJi5KakqYlbbn7XonnXZY05e7vDR0lAODEykzdbEhacvemJJnZppnNu/tBrydkfxzuSLoVJkwAwEn1nbrJEvZ0O8lnmpIuF/T7I0lbQ8YGAAigaI6+Ial75H4g6UqvJ2RTNiR5AIhEUaKfkvSoa9tDSWfyGmefAKa6PgHkMrNFM9s1s91PP/20VLAAgMGVqbrJTeo9XC578tXd77p7w90b586dG+BXAAAGUXQy9kCtUX2nszo+ypeZzUoqrMYBAOTLu5hPGv7aj6JEv6vjI/opSZs5bc9IanQEelnSGTOTu98dKkoAmACjupivb6J394NsHr2z8qYhaUWSzGw6a9d09yMnYM3siqRNkjwAVKtMHf28pEUza18wdaOjhn5JrRH+UucTzOx1tUb002b2iIumAKA6hYk+S+q3ezy20mP77V7PqbuiRTxOP31qTJEAQDnc1GwA3Ss5Xbj5QeHqTgBQNW5qBgCJI9EDQOJI9ACQOBI9ACSOk7FAhZ6ZualvvXOzoI0kcdI/NnV670j0QIW+2H+zsHKrqKQX1ajTe0eixzGjut8GgGqQ6HEMCR1ICydjASBxJHoASBxTNzVXpzP/AKpBoq+5Op35B1ANpm4AIHEkegBIHIkeABIXfaK/d++eXnrpJX3ta1/TSy+9pHv37lUdEgbA+zd+7HN0i/pk7L1797S6uqr19XXNzc1pZ2dHCwsLkqRr165VHB2K8P6NH/sceaIe0a+trWl9fV0XL17UqVOndPHiRa2vr2ttba3q0FAC79/4sc+RJ+pEv7+/r7m5uSPb5ubmtL+/X1FEGATv3/ixz5En6kQ/MzOjnZ2dI9t2dnY0MzNTUUQYBO/f+LHPkSfqRL+6uqqFhQVtb2/r8ePH2t7e1sLCglZXV6sODSXw/o0f+xx5oj4Z2z55tLy8rP39fc3MzGhtbY2TSjXB+zd+7HPkiTrRS60Dl4O0vnj/xo99jm5RT90AqA71+OmIfkTfudpRJxbHAEaHevy0RD+id3e5u55fef/we5I8MFpra2u6fv26lpeX9fWvf13Ly8u6fv069fg1Ff2IPkasqYrU/eEPf9Cf//xn/fKXvzwc0f/4xz/WgwcPqg4NJxD9iD5GnZ8s+JSBFD311FNaXl4+coXt8vKynnrqqapDwwkUjujNbErSoqSmpGlJW+6+16PtrKTL2Y/fkXTH3bcCxZqkvE8H/NFA1b766iu9/fbbevnllw9H9G+//ba++uqrqkPDCZSZutmQtOTuTUkys00zm3f3g5y2l939dtZuStL/mNmlXn8YQFJHnL75zW/q+9///pF6/OvXr+u3v/1t1aHhBPpO3WTJerqd5DNNPRm1d7adlfRG++fsD8FuXlsAcVtdXdW7776rt956S3/5y1/01ltv6d133+UK25oqGtE3JHWP3A8kXZH0XudGd98zs/muttM5zwcQOa6wTUtRop+S9Khr20O1EvgxnfPxZjYt6YykX+e1NbNFteb+df78+ZLhok64BqLeQlxhW2Zh+tNPnxrqd6BYmTn6Myfs+46kSz3m8uXudyXdlaRGo8H//AR1JvQLNz/Qn978boXRYNzy3m+Og2oUlVceqDWq73RWx0f5R5jZ65JWOAkLANUrSvS7Oj6in5K02esJZnZVHSWY2UlaAEBF+ib6duVMNt/e1pC0JbXm4TsfM7PLkg46kvx01h4AUJEyc/TzkhbNrH3B1I2OefcltUb4S1lS35SOnYR7JVy4AIBBFSb6LKnf7vHYSsf3TUn5ZRYAgMpwrxsASByJHgASl/xtip+ZualvvXOzoI0kUdsLIE3JJ/ov9t8svECjzNV7AFBXTN2gFli/FDi55Ef0qD/WLwWGw4ge0VtbW9P6+vqR1Y7W19dZvxQoiUSP6O3v72tubu7Itrm5Oe3v71cUEVAvJHpEb2ZmRjs7O0e27ezsaGZmpqKIgHoh0SN6q6urWlhY0Pb2th4/fqzt7W0tLCyw2hFQEidjE1BUHlr3hR1Y7QgYTrSJ/ts/+50+//LxkW3dCe3006f0+5++Os6wojMpizuEWO0ImFTRJvrPv3zMhU4AolaXT9PRJnoAiFmdPk1zMhYAEkeiB4DEMXWD4PJOpEtH5zM5kQ6Mz0Qk+rqcMEkFJ9IHw/GJUUs+0dfphAkmT/dxyLGJUUg+0QM4GbP8JaDdfcyRYFicjMXE4d725bi73F3Pr7x/+D1Jvp4Y0aMWQo0uQ97bvjsmu3WymIBRizbRs9YrOrWT57Bz2J33tpd0eG/75eXlgRN9qgmd24+kJ9pEz1qvkMInHe5tX4yqqfREm+gBKXzSad/bvj2il7i3PdJHok9ETPPFMU+7te9t3z1HX/WyhJ3vX/u9k9KdHsJ4kegTEVNCiHnaLdZ728f0/iE9JHpMHO5t31/Mn8hwMoWJ3symJC1KakqalrTl7nvDtgUQp5g/keFkyozoNyQtuXtTksxs08zm3f1gyLYAgDHom+izEfp0O3FnmpIuS3rvpG2BsphGAIZXNKJvSOoejR9IuqLjyXuQtkhcqDsyMo1QDe6omZaiRD8l6VHXtodqzb8P0xYJ446h9cYdNdNTZo7+zAD9lW5rZotqnbjV+fPnc9tcuPmBHtz6Xu5jz6+8P9CoIqY680kRap+HPA5QXsja/ry+Uvm/V4fcUpToD9QaqXc6q+Mj90Hbyt3vSrorSY1G49geORxBvBlmZ8W00ydFiH0e+jhAeSH/z6T8/68Or63oNsW7Oj5Kn5K0OWRbAMCY9E30WVnkrpl1zrM3JG1JkplNtx8ragsAqEaZOfp5SYtm1r4I6kZHXfySWqP2pRJtAQAVKEz0WaK+3eOxlbJtAQDVYClBAEgciR4AEkeiB4DEWQw1oGb2qaQHBc2ek/S/gX5lqL5ijClkX8Q0/r6Iafx91Tmm5939XFGjKBJ9GWa26+6NmPqKMaaQfRHT+PsipvH3lXpMElM3AJA8Ej0AJK5Oif5uhH3FGFPIvohp/H0R0/j7Sj2m+szRAwBOpk4jegDACZDoASBxJHoASFyZu1cCAzGzZ9VaFP6KnqxR8EittQm23P3/qootJjHupxhjilWd9lWUI3oze9bMfmBmvzCzX2Vfv8i2PVt1fLGIcT+Z2ctqLQb/qqTP1VqQZjf7/lVJH5rZ3wb6XT8J0U/Ivsr2M879VDauGGMaZz+D9FW34zy6EX22A29Jaqq1PGEze+isWjvwDTO74e7/Hej3/cTd/yWWfsr2FfF+uuTurxb1JalvXGb29yV+1xVJhTGF6itkTAq0nwLHFV1MMR4HmeiO836iS/TiYCvbV3T7KdMsblKqzT9KekHSZ33avFKin5B9hYwp1H6SwsUVY0wxHgdSnMd5TzEmeg62+v6nlKQXzeyCu/8p70EzuyDpxRL9/FzSGXf/sFcDM/vnkjGF6itkTKH2U8i4YowpxuNAivM47ynGRM/BVt//lFLrir4NM3tBrSmlR2qdqJrK/t1Va8nJvtz9YzO7VNCs1HrEofoKGZMC7afAcUUXU4zHQSa647yf6K6MNbPTkjbUGmH23IFlz2ib2aWCBPayu388rn5C9RXrfuqKr5HFoyzGXXf/vGwfkyDG/RRjTLGqy76KLtG31WUHVi3G/VSnsrNBpfzaJF5f3V9fL1Em+tTfjJRfX0410MPsobNq/TF6RVKQaqAIKp1G9trKxhSyr7q+vrL9pP76+olujj7issEg/Yzz9Y07UWSiKztLvdIp5dcXY0lkyLgor+yj5m9GyolQirPsLPVKp5RfX4wlkVKcr6+nGBN96m9GyolQirPsLPVKp5RfX4wlkSHjorwy78EE3oyUE6EUYdlZyuWHgfuK7vXFWBIZMi7KKyMrGwzYT7DXF1vJZ1f76KqBQkn5tUm8vhRFl+jbUn8zUn59oaqKQlYnpVzpFFKM+5z3bnhRJnoOtvoKVcIWshQu5ZLPkH3FuM/rWhIZsi/KK8fUV+oln4H7ClU1Faz6KlRfsVY6xVheGbCv6KrwQvZFeWUfHGxxHrSZUFVFIauvUq90irG8MsbjIMZ9TnnlkG1C9hXjwRbjQSuFqyoKWX2VeqVTjOWVMR4HMe5zyivzHuRgC95P6L5ClbAFK4UL1VekJZFRllcG7Cu6ksiQfVFeGab8MEhfqZd8hu4rax+kqihkdVLKlU4hxbjPee+GE12ib+Ngqy8qneorxoo3DC/axcElXZJ0VdKPsq+rki7ZgIteh+zL3T939w/d/TfZ14ck+aMs0KLJofoZIO7aLlQdqq+Q+3yc71+d9/m4+olujj7G8sqScSdZf3uCvqh0orwyWF+R7qcoj6l+okv04mAr1VeMMWWodBpvTCH7irHiLcb9FLIvyiuHbBOyr9QPkNTLK1OvdEq5vDLG/RSyL8or8x7kYIs6JinhsroYy/MC9xVdeWWk+ynKY6qf6KpuYiyvzPqKrpQxxpg62lPpVFMxVrxhONEl+rYeB8gf1Rp5lk44ofvq0fcLgU7oBukrtpjM7B/U+uT0ibv/e9X9pB5T6L5Qf1GWV0o9SxkfSPosO4gr6Suvb0kHw/YTsq9YYjKzF8zsj2p9RP8bSa+a2UfZlNnY++nq60eBYhqqn1j7MrOXs+c927HthyeMKUhfMcYUsq+QMR3j7tF+SXpW0r9K+k9JH3V8/aKqvohpoL5+0mP7z6voJ/WYAr++S5Jeztn+gxPEFKSvGGOK9fV1f8V4MrbTbbWuomuqdYXdlqRpSXsV9kVM5fWaFtutqJ+QfcUYU8i+TnufczYV9RVjTCH7ChnTEdFO3WTue2uq5WNJn7n7x+7+G7VOrlbVFzGVd/oEzxllPyH7ijGmkH39nZk907khm0Loe13KiPuKMaaQfYWM6YjYR/SPzOzb7v57Sd8ws2fc/Qu1Rpj/VVFfxNSDHb9U+xtm9pqOXqswrVY558j7ST2m0H11uSPpYzP7TE+q1aTW9MKgQvUVY0wh+woZ0xHRVt1Ih7cw2JA0K8kk3Vfrop5dd/+nKvoipr7P/aNaB2uRT9z9P0bdT+oxhe6rR/8/VDZ1N+y0Qqi+YowpZF8hYzrsM+ZE382yMskQLz5UX8R0pG3fWvwBfmeQflKPKXRfSFetEj0AYHCxn4wFAAyJRA8AiSPRA0DiSPQAkDgSPQAkjkQPAIn7f6Ac2HKuNmoaAAAAAElFTkSuQmCC\n", "text/plain": [ "<matplotlib.figure.Figure at 0x7fc097de89e8>" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "immers_df.boxplot(grid=False, rot=90,fontsize=15)\n", "plt.title('Immersion')\n", "plt.savefig('immersion.pdf', dpi=300)" ] }, { "cell_type": "code", "execution_count": 7, "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXoAAAEiCAYAAAD3fRkKAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvNQv5yAAAHLdJREFUeJzt3U9sXNeV5/HfiUaJvLDNkaOtLNG9KYtGxhIzi4AbtigDQXrVLcagNwOkRuTMgruMKacWQS8KsYTZ2UBa6maAbFTISD0rG8G0FHFTyCaUPEED4SZmR+u0ZXqCwI4I48yiXtHFYv15xbpV79at7wcgJFZdHp169XR4677z3jN3FwAgXV8rOgEAwGhR6AEgcRR6AEgchR4AEkehB4DEUegBIHH/oegEgOMws1lJtySdlvST7M9XJP3C3R8PGOuipHlJV9x9OXSuQNGMPnpMKjNblXTJ3ddaHvtU0nl33xsgzl1J1yRpkJ8DJgVLN5hkT7s8NjtgnBl336PII1UUeqTmtKRdM7tqZh+b2ZKZ3TWzGanxKSB77m0zm8mWbU5nj892GZM31pKZfWpmF7O/32pNLBt7NXv+YqcY491UmBYUeky62ayoXjWzG5IuZ7Pze5J21Zjhb7j7XlZcX8meuy3pRrae/9Tdb7v7bpcxeWM9kLQtSdnf98xsSTo4DnAlG78naa1TjLFsMUwdDsZi0u1mRVWS7rU9d7rtwOybkj5pzqbVOADbrtuYQWLtZn9+0jb+viS5+64ahf5GjnyAoVHokbL2NfwZSfdbCvalDj/TbUzuWAOs9efJBxgaSzeYJnclNWfPaplJDzpmkHFNv5B0pW38oDGAY6HQYyJlB07flDTfXAdve34pe261+Vjrunnb2vls82BolzHHiTWrRmFfzuI+lvQoO5awJGmvUwxgFOijB4DEMaMHgMRR6AEgcRR6AEgchR4AEhdFH/03v/lNP3fuXNFpAMBEefTo0b+7+5l+46Io9OfOndP29nbRaQDARDGzJ3nGsXQDAImj0ANA4ij0AJA4Cj0AJK5voc9uknC337U4shsvvN1yEwUu0AQAEehZ6LPiflr5bs12V9I9d7/n7jcl3Qhxx5xaraa5uTmdOHFCc3NzqtVqw4bEGIV6/9gPgCG4e98vNW6YsNTj+RlJH7c9dkvS1TzxL1265J3cuXPHz58/7w8fPvRnz575w4cP/fz5837nzp2O4xGXUO8f+wHQmaRtz1PDcw3qX+iXJD1qe+yGpFt54ncr9BcuXPCHDx8eeuzhw4d+4cKFYbcPxiDU+8d+AHSWt9Dnukyxmd3XV/fE7PT8VUlr7t56Y4W3JX3b3Ze7/MyqpFVJOnv27KUnT472/Z84cUJffPGFTp48efDY/v6+Tp06pS+//LJv3qNiZh0fz7Mt88QKFafoWKHev9D7QYzbfFjf+vt/0Wef7+vJjb/p+PzLGx/oxedO6rc/fmPMmYUV435eZE5m9sjd+96CMmTXzelBBnvjZszz7j5/5kznM3hLpZLq9fqhx+r1ukql0vGzDKD5W/LljQ/aP9kEiTVMnJCxhn19od6/0PtBjNt8WJ99vq8/vPu9rjO6P7z7PX32+X4huYUU434eY07tQhX6PTXW6Vu9pKP32RxIpVJRuVzW1taW9vf3tbW1pXK5rEqlMkxYjEmo94/9ABhOqGvdbOvojH5G2V3vj2tlZUWStL6+rp2dHZVKJVWr1YPHEbdQ7x/7ATCcYxf67J6Ycvddd98zs20zm3X33WzIvKSNYRNcWVnhP/QEC/X+pb4fxLTej/T0LPTZSU9Lyoq2mV30Ro+8JK2pMWtfy75flrRqZrtq9N1fc/e90aQNpKVZ0M9d/1B/ePd7BWeDcWseTG917vqHh74f5mB6z0LvjTvXP5Z0s8NzG23f73UaBwDorXkwvZf2wj8IrnUDAImj0ANA4ij0AJA4Cj0AJI5CDwCJo9ADQOJCnRkLRK1Tn7IUtlcZiBWFHlMhT5+yNFyvMhArCj0woDyfDvhkgJhQ6IEBjfosRiA0DsYCQOIo9ACQOJZuAEyVUV8pMkYUegBTZRqPsbB0AwCJY0aPA9P4kRaYBhR6HJjGj7TANGDpBgASR6EHgMSxdAMk4PnSdb328+t9xkgSNx6fRhR6IAF/2nk3+PGVWq2marWqnZ0dlUolVSoVraysDJMmCjJVSze1Wk1zc3M6ceKE5ubmVKvVik4JiFKtVlOlUtF7772nL774Qu+9954qlQr/ZybU1BR6dlwgv2q1qs3NTS0uLurkyZNaXFzU5uamqtVq0anhGKam0LPjAvnt7OxoYWHh0GMLCwva2dkpKCMMY2oKPTsukF+pVFK9Xj/0WL1eV6lUKigjDGNqCj07LpBfpVJRuVzW1taW9vf3tbW1pXK5rEqlUnRqOIap6bpp7ribm5taWFhQvV5XuVxm6QbooNlds76+ftB1U61W6bqZUFNT6NlxgcGsrKxE8/+D2zcOp2+hN7MZSauSdiXNSnrg7o/7jN3LHtp19weBch1aTDsugPy4DtNw8szo70pac/ddSTKz+2a27O57HcauuvvN5jdmdsPMtruMBQCMQc9Cn83QZ5tFPrMraUnSvQ4/8qakmy3ff6LGp4COnwCmVZ6PoRIfRYFpMepLWPSb0c/rq2WYpj1JV9S50O+a2SNJy9n3L3Vb5plmeT6GSnwUBabFKC5h0apfoZ+R9LTtseYs/Qh3Xzazu5I+VmMt/0q3wGa2qsZ6vs6ePZs74SJxYw4AkyjPGv3pvMHM7KKk+5JuSbplZo/c/VKnse5+W9JtSZqfn/e8/0aROCAEYBL1O2FqT41ZfauXdHSWLzOblfSmu9929wfu/ooaSzk3wqQKADiOfoV+W0dn9DNqzNrbXZT0m7bHrunoLwoAE4CrvaajZ6HP2iK3s9l607ykB1JjFt/y3AM1DtKqbezdQLkCGBOu9pqWPGv0y5JWzax5wtS1lr74NTVm7Gvuvmdmt8zsbX3VqfPU3Tt15wCIWOvVXiUdXO11fX2dkw4nUN9CnxX1m12e22j7/rEi7Zk3s46Pu0/EcWBgrLjaa1qm5uqV7n7w9fLGBwd/B3AUV3tNy9Rc1Az9pXyD6TyvrTFO6vf6Ut5OTbFd7TXkNp+G968dhR4HRn12XpHyvDYp3+tLeTs1xXa115DbfBrev3YUegAdcbXXdEzNGj0ATCsKPQAkjkIPAImj0ANA4jgYCxSIS19jHCj0QIG49DXGgUKPiVCr1VStVg96uiuVCq1/KFSeW4LG8mmMQo/oNa+k2H6WpiSKPQozSZ/GKPQ4pN+O+eJzJ8eUyVe4kiIwHAo9DrTPTs5d/zDXZQNGjSspAsOhvRLR40qKk4+7VRWLGf0ApvGqdzGI7UqKsYpx2U3iGEteo3z/KPQDmMar3sUgtispxqjTfhnL0hvHWPob9bIphR4TgSspTi6OsRSPNXoAI8UxluJR6AGMVPMYy9bWlvb397W1taVyuaxKpVJ0alODpRsAI8UxluJR6AsQ8v6lwCTgGEuxKPQFCHn/UgDohzV6AEgchR7AyHFmbLFYuplwk3SpVEwnzowtHoV+wk3SpVIxnTgztngs3QAYKc6MLR6FHsBIcWZs8foWejObMbO3zexq9ufFPuMvtoxfDZcqgEnEmbHFy7NGf1fSmrvvSpKZ3TezZXffax+Y/RJ4x92Xs+8fmdm2uz8OmjWAicGZscXrWejNbEbSbLPIZ3YlLUm61+FH/lHScsv3lzv9QgAwXTgztlj9lm7mJbUX6j1JV9oHZr8ULrr7brZ8M0uRB4Di9Sv0M5Ketj32iaTTHcbOS9o1s6tqzPpnzexWt8Bmtmpm22a2/cc//nGQnAEAA8jTddOpqHcyI2lW0gN333P3B2oU+6udBrv7bXefd/f5M2fO5PwnAACD6lfo99Qo4K1e0tFZvtSYxe+1LdfsqsMyDwBgfPp13Wzr6Ix+RtL9DmN3dfSXgnR0jR8ABhbrzc8nQc9C7+572Tp6a+fNvKQNSTKz2Wzcbjb2npldbGmnnJd0bVTJF4GdDRi/mG9+Pgny9NEvS1o1s1011uCvtSzPrKkxi1/Lvr8m6R0zm5f0iqSNlHroR32ndoxWnmv+8IsaKepb6LOifrPLcxsdxm50GgsUiRkhphnXugGAxHGZYqBAee4fzL2DMSwKPVCgPPcP5n4CGBZLNwCQOAo9ACSOpRsAU2fazoeh0AOYKtN4PgxLNwCQOAo9ACSOQg8AiaPQA0DiKPQAkDgKPQAkjvZKTAQz6/i4u485k4Zp68MeVqf3r6j3LpRJuk4RhR4jVavVVK1WtbOzo1KppEqlopWVlYHjNItCDD3PXPJ4cDG9f6FM0nWKKPQTLuZZRa1WU6VS0ebmphYWFlSv11UulyXpWMUewPFQ6CdczLOKarWqzc1NLS4uSpIWFxe1ubmp9fV1Cj0wRhT6Y2hdb7QbXz0+6WuOoe3s7GhhYeHQYwsLC9rZ2SkoI2A60XVzDO7e8QuHlUol1ev1Q4/V63WVSqWCMgKmE4UeI1OpVFQul7W1taX9/X1tbW2pXC6rUqkUnRowVVi6wcg01+HX19cPum6q1Srr88CYUegxUisrKxR2oGAs3QBA4ij0AJA4Cj0AJI41ehzBeQJAWij0OIKCDqSFpRsASFzfGb2ZzUhalbQraVbSA3d/nOPnliTNuPu9obMEABxbnqWbu5LW3H1Xkszsvpktu/tetx/IfjncknSj25hpl+dCY1zTHEAIPQt9VrBnm0U+sytpSVKvmfr3JT0YPr00cT1zAOPUb41+XlL7zH1P0pVuP5At2VDkASAS/ZZuZiQ9bXvsEzXW6o/IPgHMuPtut1u/tYxdVWPtX2fPns2V7HF86+//RZ99vn/k8dalkxefO6nf/viNkeUAAEXKs0Z/eoB4S3kPvrr7bUm3JWl+fn5k/Xyffb4f7Y05AGAc+i3d7Kkxq2/1ko7O8mVmFyX17cYBAIxXvxn9to7O6Gck3e8w9rSk+ZYlmyVJp82sOXsH0EG/T5R0X2FYPQu9u++Z2baZtXbezEvakCQzm83G7br7oQOwZnZF0n2KPNBd+7Ii3VcYhTxr9MuSVs2secLUtZYe+jU1ZvhrrT9gZm+rMaOfNbOnnDQFAMXpW+izon6zy3MbXR6/2e1nAADjxbVuACBxXL0SSEj7+SvNy0xzRdLpRqEHEkJBRyfRF/puZ9iyQwNAPtGv0bu73F0vb3xw8HeKPADkF32hBwAMh0IPAImj0ANA4ij0AJA4Cj0AJI5CDwCJi76PHgCmRet5Q82zmqXhzxui0AMYiTy38ZS4lWerUZ0jRKEHMBJ5buMpcSvPcWCNHgASR6EHgMRR6AEgcazRJ4CbSwPohUI/4Tod7OIG0wBasXQDAImj0ANA4ij0AJA41uiPoVarqVqtamdnR6VSSZVKRSsrK0WnBWDMJqURgkI/oFqtpkqlos3NTS0sLKher6tcLksSxR6YIpPUCMHSzYCq1areeustra+v69SpU1pfX9dbb72larVadGoA0BEz+gH97ne/05///Gf97Gc/O5jR/+AHP9CTJ0+KTg0IqvVKiq3yXnjr+dJ1vfbz6znGSVJ8s+CUUOgH9PWvf13r6+taXFyUJC0uLmp9fV0/+tGPCs4sHI5BQPqqoB93OeJPO+9yUbNIUOgH9OzZM73//vt6/fXXD2b077//vp49e1Z0akGEPAYx7IwQaNe+TzWv2c4+1Rtr9AN69dVXO67Rv/rqq0WnFkS1WtXm5qYWFxd18uRJLS4uanNz81jHINz94OvljQ8O/g4cV+s+1fqF3vrO6M1sRtKqpF1Js5IeuPvjLmMvSlrKvv22pFvu/iBQrlGoVCodZ7ypHIzd2dnRwsLCoccWFha0s7NTUEYAhpVn6eaupDV335UkM7tvZsvuvtdh7JK738zGzUj6NzO73O0XwyRaWVnRr3/9a333u9/VX/7yF33jG9/QtWvXklnDLpVKqtfrB8cgJKler6tUKhWST6e7FHGHImAwPQt9Vqxnm0U+s6vGrP1e29iLkt6RdFOS3H3PzLazsYUV+jxH/gc56l+r1fThhx/ql7/85aEZ/Xe+850kin2lUlG5XI7mE0ueuxRxMA/ord+Mfl5S+8x9T9IVtRV6d39sZsttY2c7/PxY5TnyP0ihaF3DlnSwhr2+vp5EoW++hvX19YOum2q1msRrA6ZVv0I/I+lp22OfqFHAj2hdjzezWUmnJf2vTmPNbFWNtX+dPXs2Z7rFm4Y17JWVFQo7kJA8XTenjxn7lqTLXdby5e633X3e3efPnDlzzH9i/Jpr2K2KXMMGgH76Ffo9NWb1rV7S0Vn+IWb2tqSNlA7CNjXXsLe2trS/v6+trS2Vy2VVKpWiUwOAjvot3Wzr6Ix+RtL9bj9gZlfV0oJpZhePU/Bj7bZgDRvApOlZ6JudM2bW2nkzL2lDOliHV0vr5ZKkvZYiP5uNH7jQx9xtwRo2gEmSp49+WdKqmTVPmLrWsu6+psYMfy0r6velI6cpXwqXLiZBp09j0uFfzPS+A+PTt9BnRf1ml+c2Wv6+K6nzxU0wVWL+NAZMI651AwCJo9ADQOIo9ACQOK5HD+CQWFubcXwUegCHcDA9PRR6ACOT5xfCi8+dHEMm041CD2AkOn0qOO79ZzEcCj2AqdR6Ymfz3rNSmvefpdADmEopFvRuaK8EgMRR6AEgcVOxdNPvyD9H/QGkLPlCz5F/ANMu+UIPjErb5bgPOjem6SAfJgOFHjgmCjomBYUeU6dT/zRFGymj0GPqUNQxbSj0BWN2CWDUKPQFo6gDGDUKPYBDni9d12s/v95njCTRojwpKPQADvnTzrtcjz4xXAIBABJHoQeAxFHoASBxFHoASByFHgASR6EHgMRR6AEgcX376M1sRtKqpF1Js5IeuPvjYccCAMYjzwlTdyWtufuuJJnZfTNbdve9IccCAMag59JNNkOfbRbuzK6kpWHGAhidWq2mubk5nThxQnNzc6rVakWnhJxG9d71m9HPS2qfje9JuiLp3hBjgVy47spgarWaKpWKNjc3tbCwoHq9rnK5LElaWVkpODv0Msr3rl+hn5H0tO2xT9RYfx9mLJAL110ZTLVa1ebmphYXFyVJi4uL2tzc1Pr6OoU+cqN876zXZXLN7Kqkd9z9Ustjb0v6trsvH3ds9tyqGgdudfbs2UtPnjw59PxrP38t1wv41//yr7nGtd/fsymVywTH9PpCvnfNIv7kxt90fP7ljQ/04nMn9dsfv5E/wQiFev9OnDihL774QidPnjx4bH9/X6dOndKXX36ZK8Yotnmn18f/vcOO896Z2SN3n+8Xu9+Mfk+NmXqrl3R05j7oWLn7bUm3JWl+fv7IFslbwPNKZafqJqbXF/K9O5jNvxvP6xuFUO9fqVRSvV4/mBVKUr1eV6lUyh1jFNs8pv0ztJjeu2769dFvSzrd9tiMpPtDjgUwApVKReVyWVtbW9rf39fW1pbK5bIqlUrRqaGPkb537t7zS41CPdvy/SNJM9nfZ9ue6zq219elS5ccQBh37tzxCxcu+Ne+9jW/cOGC37lzp+iUkNOg752kbe9TX9299xq91PskKDO7kRXytX5je5mfn/ft7e1Bfj8BwNQLtUYvb5zsdLPLcxt5xwIAisG1bgAgcRR6AEgchR4AEtf3YOxYkjD7o6QnfYZ9U9K/B/onQ8WKMaeQschp/LHIafyxJjmnl939TL9BURT6PMxsO8/R5XHGijGnkLHIafyxyGn8sVLPSWLpBgCSR6EHgMRNUqG/HWGsGHMKGYucxh+LnMYfK/WcJmeNHgBwPJM0owcAHAOFHgASR6EHgMT1vagZMCgze0GNm8Jf0Vf3KHiqxmWsH7j7/ysqt5jEuJ1izClWk7StopzRm9kLZva3ZvZTM/tF9vXT7LEXis4vFjFuJzN7XY2bwb8h6TM1bkiznf39DUm/MrP/FOjf+mGIOCFj5Y0zzu2UN68YcxpnnEFiTdp+Ht2MPtuAN9S4pv1e9qfUuC3hG5LeMbNr7v5/A/17P3T3/xlLnLyxIt5Ol929581Esx23Z15m9tc5/q0rkvrmFCpWyJwUaDsFziu6nGLcDzLR7ee9RFfoxc6WN1Z02ymz239IrjH/TdJ5SZ/2GHOpx3OjiBUyp1DbSQqXV4w5xbgfSHHu513FWOjZ2Sb3P6UkvWJm59z9D52eNLNzkl7JEecnkk67+6+6DTCz/5Ezp1CxQuYUajuFzCvGnGLcD6Q49/OuYiz07GyT+59SapzRd9fMzquxpPRUjQNVM9mf25KW+wVx94/M7HKfYQ/yJBQqVsicFGg7Bc4rupxi3A8y0e3nvUR3ZqyZvSjprhozzK4bMO8RbTO73KeAve7uH40rTqhYsW6ntvzms3yU5bjt7p/ljTENYtxOMeYUq0nZVtEV+qZJ2YBFi3E7TVLb2aBSfm0Sr2/SX183URb61N+MlF9fh26gT7KnXlLjl9ElSUG6gSLodBrZa8ubU8hYk/r68sZJ/fX1Et0afcRtg0HijPP1jbtQZKJrO0u90ynl1xdjS2TIvGiv7GHC34yUC6EUZ9tZ6p1OKb++GFsipThfX1cxFvrU34yUC6EUZ9tZ6p1OKb++GFsiQ+ZFe2WnJxN4M1IuhFKEbWcptx8GjhXd64uxJTJkXrRXRtY2GDBOsNcXW8tn2/jouoFCSfm1Sby+FEVX6JtSfzNSfn2huopCdiel3OkUUozbnPdueFEWena2yRWqhS1kK1zKLZ8hY8W4zSe1JTJkLNorxxQr9ZbPwLFCdU0F674KFSvWTqcY2ysDxoquCy9kLNore2Bni3OnzYTqKgrZfZV6p1OM7ZUx7gcxbnPaK4ccEzJWjDtbjDutFK6rKGT3VeqdTjG2V8a4H8S4zWmv7PQkO1vwOKFjhWphC9YKFypWpC2RUbZXBowVXUtkyFi0V4ZpPwwSK/WWz9CxsvFBuopCdiel3OkUUozbnPduONEV+iZ2tslFp9PkirHjDcOL9ubgki5Luirp+9nXVUmXbcCbXoeM5e6fufuv3P2fs69fUeQPs0A3TQ4VZ4C8J/ZG1aFihdzm43z/JnmbjytOdGv0MbZX5sw7yf7bY8Si04n2ymCxIt1OUe5TvURX6MXOlitWjDll6HQab04hY8XY8RbjdgoZi/bKIceEjJX6DpJ6e2XqnU4pt1fGuJ1CxqK9stOT7GxR5yQl3FYXY3te4FjRtVdGup2i3Kd6ia7rJsb2yixWdK2MMebUMp5OpwkVY8cbhhNdoW/qsoP8Xo2ZZ+6CEzpWl9jnAx3QDRIrtpzM7L+q8cnpY3f/p6LjpJ5T6FiYfFG2V0pdWxmfSPo024kLidUptqS9YeOEjBVLTmZ23sx+r8ZH9P8o6Q0z+022ZDb2OG2xvh8op6HixBrLzF7Pfu6Flsf+7pg5BYkVY04hY4XM6Qh3j/ZL0guS/kHS/5H0m5avnxYVi5wGivXDLo//pIg4qecU+PVdlvR6h8f/9hg5BYkVY06xvr72rxgPxra6qcZZdLtqnGH3QNKspMcFxiKn/Loti20XFCdkrBhzChnrRe9xzKagWDHmFDJWyJwOiXbpJvPIG0stH0n61N0/cvd/VuPgalGxyCm/F4/xM6OMEzJWjDmFjPWfzez51geyJYSe56WMOFaMOYWMFTKnQ2Kf0T81s2+5+28l/ZWZPe/uf1JjhvmwoFjk1IUdPVX7r8zsTR0+V2FWjXbOkcdJPafQsdrckvSRmX2qr7rVpMbywqBCxYoxp5CxQuZ0SLRdN9LBJQzuSrooySQ9UuOknm13/+9FxCKnnj/7ezV21n4+dvf/Peo4qecUOlaX+H+nbOlu2GWFULFizClkrJA5HcSMudC3s6xNMsSLDxWLnA6N7dmLP8C/GSRO6jmFjoV0TVShBwAMLvaDsQCAIVHoASBxFHoASByFHgASR6EHgMRR6AEgcf8fakV2Hsid1B4AAAAASUVORK5CYII=\n", "text/plain": [ "<matplotlib.figure.Figure at 0x7fc097de82b0>" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "prefer_df.boxplot(grid=False, rot=90,fontsize=15)\n", "plt.title('Preference')\n", "plt.savefig('preference.pdf', dpi=300)" ] }, { "cell_type": "code", "execution_count": 8, "metadata": {}, "outputs": [], "source": [ "import seaborn as sns" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [] }, { "cell_type": "code", "execution_count": 9, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "<matplotlib.axes._subplots.AxesSubplot at 0x7fc0b4983898>" ] }, "execution_count": 9, "metadata": {}, "output_type": "execute_result" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXwAAAD7CAYAAABpJS8eAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvNQv5yAAAIABJREFUeJztnXtwHdd93z8nAqkHSIuhFNGyrQEFNY4hkmZEWpnGQ7vEAIzkQG09KawashtrjAntiYV4Oh0JmCJ1yqlRA4qTmZZyO2ILjWRnDMVWG9sla4mvC8cc165IqQ5rwXYsiOz4FTuCSZE0JRLU6R/n7MXiYu8DF7v37t79fmbu3N09j/2dc3Z/57fnaay1CCGEaH1+pdkCCCGEaAxS+EIIkROk8IUQIidI4QshRE6QwhdCiJwghS+EEDlBCl8IIXKCFL4QQuQEKXwhhMgJUvhCCJET2hp5sxtvvNFu3LgRgAsXLtDe3h7pT25yk1s+3NIiR9rdTpw48ffW2l+L9LwcrLUN+23fvt0GFAoFWw65yU1u+XBLixxpdwOO2xh0sJp0hBAiJ0jhCyFETpDCF0KInCCFL4QQOaGqwjfG9BpjDlVw7/d+HopXtMVMTU2xefNmenp62Lx5M1NTU0neTqSEJMpdz5LIK1WHZVprDxtjhqPcjDH9IT+dxphea+3huIWcmppidHSUyclJrly5wlVXXcXg4CAAAwMDcd9OpIQkyl3PksgzK23SuROY9cezwLYVxhfJ2NgYk5OTdHd309bWRnd3N5OTk4yNjSVxO5ESkih3PUsizxhbw562xphD1tpdEdcfBR611j5njOkFdllrh0v87AZ2A2zYsGH7k08+CcD58+dZs2ZN5P1K3Xp6enjmmWdoa2srus3Pz3PXXXdx5MiRsuEqxVmLW3d3d/G4UCisONzHjlzghU/eUzy//Y/385me9qrhVuJWj5zNkCXKLYlyryXOuNNeWu5JPEsrzevS+0XFVy5cWJbSZ7ra/eJ+Z6uloZZ8jkpDo3REObfu7u4T1tp3LIloudQyWB84VOb6BNDrj3uBiUrx1DvxatOmTfbo0aOL3I4ePWo3bdpUMVwcbh3D+2MLF1wLwlXys1xZ4pSzWbI0otxrjTPOtIfLvVzYlTxL9cQZ5zO/ElnS8s52DO+v+F42SkeUcyMlE6+eBdb5406gbOfuShgdHWVwcJBCocD8/DyFQoHBwUFGR0eTuJ1ICUmUu56l+jHGLLI+Rfao2mnrO2bfYYzpt9Y+5a8dstbustY+ZYx5yDfnYBPosIWFzrShoSFmZmbo6upibGxMnWwtThLlrmepfqy1bBw50GwxxAqoZZTOU8BTJdd2hY4fTkCuJQwMDDAwMMD09DQ7d+5sxC1FCkii3NP2LBljise2hj61uO5Xeq+tew5y9uLl4vG3/+R3EpdFNBZNvBKiyVhr6Rje3xBlH75fKWcvXubUeB+P391eVPx5YW3XCEOnh9jyxBbWdo3UHG7rnoMAbBw5UDxOM1L4Qojcc25mnL0dezn5oZOcmxmvOdzZi5d5/O52To33ZaKSbOh6+EKknXCzxsaRA1x/7So1bYiWQRa+ECHCzRpZsdqEqBVZ+EIkzNquEbY8MeKPAfqaKo/IL1L4FQh3yOjTXtTLuZlxTo33MT09zf1PX6g5nEbNpB/X2Qs8kY3KXE06Fchah4xoLfI8aiYr1NvZ2yyk8IUQLUNWhkk2S04pfCFEy5CVr/Jmyak2fLEEDU0UYoFGz4ROEln4YgkamijEAo2eCZ0ksvAzjqxxIdJJGr8MZOFnHFnjQqSTNH4ZyMJvIOEJOGket1uvnHn+2shz2kV2kIXfQM7NjHPyQydTP263Xjnz/LWR57SL7CALXwghwM2Cftp9nSVNs2boSuELIXLPqfE+No4c4NR4YxTvuZlxHr+7nZ07dzZ0FzEpfCGaiNbLiZesrW3TaKTwxbJQ52S8BG3/y11YTUTTLMs5LpJ+v9RpK5aFOieFSI6k3y8pfCGEyAlq0hFCiBXQyNE9K0UKX4gMol200kGjR/esFCn8OknjOhkiP9S7i5bIN7luw5+ammLz5s309PSwefNmpqamag6bxnUyhBCiErm18KemphgdHWVycpIrV65w1VVXMTg4CMDAwECTpROi8dTbTKTmpeyQWwt/bGyMyclJuru7aWtro7u7m8nJScbGxpotmhBNIbyG0nLWeao3nGg8ubXwZ2Zm2LFjx6JrO3bsYGZmpkkSlUeTnUSz0YzgaIK+PDORjb683Fr4XV1dHDt2bNG1Y8eO0dXV1SSJyqPJTqLZhJ9BPX8LWGspFAqZUPaQYwt/dHSUwcHBYht+oVBgcHCwaU06abPii9PSMzK+WAhRndwq/KBjdmhoiJmZGbq6uhgbG2tah214TZVmrwMSjCnO0vhiIUR1cqvwwSn9gYGBopKNg7RZ6kKI6mStLb5eqrbhG2P6jTG9xpiHqrjvjl+87KH29mzjhhhuYej0EFue2MLarpFmiyQaQKW2+K17DgLOgAuOs0pFhW+M6Qew1h4Gzhhjekvce4FZ7z5rjNmWmKRCNICsbEOZFBtHDnD/0xdatt+mu7t70Sz5Wjh78XLLGHDVLPw7gVl/PAuUKvTjwBe9ou+01j4Xs3xCiAZxaryv2GfTqs2QeZ8dX60Nf13J+Q3hE2vtGWPMo8AXgaeiIvBNPbsBNmzYwPT0NADnz58vHpeSVrcoP+WulQsXt1t4lmOwy8/0dHvN6SuXhiTSV02WtLhVS0Ola+XCBZ3w7auWhg3CgYnNrbu7u3hcKBSWyFouDZXc6pUFyud1Wt7ZlcRZ7/tV7zu0Iqy1ZX/ABNDrj3uBiRL3fmBbyG9/pfi2b99uAwqFgi1HWtw6hvcX3TqG90e6l7sWFa7RbgGV0h7lv5JbkrKkwa2WNCw3X2oNV+per1ul+9XrtlJZypVDGt7ZlcZZz/tVLs5yzxFw3FbQrbX+qln4z7Jg5XcCh0rcO621gWX/KeDelVU/QogArVEj4qZiG75X5p1BZ611nbMYYwLFv88Ys9u732ut3ZeotDGzktUyhUgarVEj4qbqOHxr7cMR13b5/zNAppR8gFbLFELkjdyupaPVMoWonfD8BM1NyC65nWmbpdUyhWg2Wdphq9wes+EJVHmdAZ9bhd/V1cWePXv40pe+VFxL573vfW8qV8sUrYs6ZuOl0h6zwQSqZq9V1Uxyq/C7u7uZmJhgYmKC22+/nRdeeIHh4WE++tGPFv2s7Rph6DTF8e1xvIxZWYWynrVFouYEtJICq7ROUr1pb7TlrHXt801u2/ALhQLDw8M89thj9PX18dhjjzE8PLxoksq5mfFYp9iHZzKeGu9L9ctm61jnu9WXJai0TlJW0q517fNNbi38mZkZnn/+eT75yU8y7VfLvHz5Mp/61KeaLZoQogrBTOLlGCRpo1xfQ5LkVuEHO16Fp6CndccrIaIImgfT3DSYFB3D+zO9V0O5voakm0Vzq/DTtuOVEMshvElNmpsGW4Ek+vLKEe7TSaJzObcKP207Xgkh0sm5mfGWGd2TW4UPyex4JYQQaSXXCj9NtPqQRiFE85HCj5k4xmNn+dMxK/MMhMgjuR2HnxRZGY+dBFmZZ1BtldRgm79gcpUQrYIs/Ayg5p74qLZKanj0S5aH/QkRhSz8DJDnr4a40SqpIi6yuJ+GLPwWJ1gTB+KZlZj1rw2tkiriIKv7acjCb3GstXQM749tCnrWvzaCGdZhNMNaLJesfilK4VdBnXetRTDDulAoMD8/X5xhPTo62mzRRIbI6peimnQqUGltbZFNNMNaxEFW1+LKhcKPux1bZJtmzLCuZ38BkV6yuhZXLhS+tVaWumgq1lot4dFCZPVLMRcKX4g4yPoIJVE/UWvXZ3EtLnXaiiVkcXxxI8j6CCVRH1mYPV4rsvAToNHrydRzv3L7s2Z1fLEQWaJZfTqy8GOm0evJ1Hu/cvuzZnV8sRBZop49o+NAFr5YRFbHF+cRjfwRy0UWfh1s3XOw2IyyceQAW/ccbLJE8aGZqNmhWVaiyC5S+HVQrjmkFdBMVNGquL1ph9jyxBbWdo00W5ymoCYdsYisji8WohqttDdtvUjhiyVkcXyxSJ5ASUaNBKvkJtKDmnSEEFUJjwYrHQlWyS3PBH17aernq6rwjTH9xpheY8xDZdy3eT/98YsnhBDZ5OzFy6nr56uo8AMlbq09DJwxxvRGePuItfYpoNMY05mAjEKIBmGM4fTEPc0WQyRENQv/TmDWH88C28KOxpjdwAljTKe19mFr7WxpBEKI7BAM9RStSbVO23Ul5zeUnN/m/79gjHkUGLbWngl78JXCboANGzYwPT0NwPnz54vHpSThBsQabnp6elG4cn7iirPR94Py+bISWRpd7nE/L5XSHl7ion3V8vMTzBL3Sm4rTUOccVZzKxdnPeXzsSMXAJff7avgMz3ti9xPT9yDmSCy4qrneQ9Y6TMW5/tVN9basj9gAuj1x73ARIT7bn+8G3ioUnzbt2+3AYVCwZYjCbeO4f2xhQuuBeEq+YkjzkbfLyAqX1YqS6PLPc7nJYm0h+MsDVvJrVKclWRJIs5a3MrFWU/5dAzvX/Zzu5Jw5fwncb9yzxhw3FbQrbX+qjXpPMuCld8JHIpwD1gHnEEIIUQqqajw7UJnbK8/PwxgjDkUcl8Xct+XrLhCCCHqperEK2vtwxHXdkW4H45RLiGEEDGjiVdCCJETtLRCimj0xilCiHwhhZ8Sgqnp2mxdCJEUUvhCNJlGLjwW3ohdm7CnkyS/9NWGL5agTcwbR6MXHgtvxK5N2NNH0lukysJvAeLc6k6bmAvRusjCbwFsjFvdaRNzIVoXKXyxCG1iLkTrIoUvFqFNzIVoXdSGLxYRbGIetOEHm5irScehuRIiy0jhi0VoE/PyaK6EyDpS+BWIc/RLltAm5tlm656DxS31tu45qH1mRRG14VcgztEvQjSKsxcvc2q8j8fvbk/NXqoiHcjCFyLFNHIWrmh9pPDrIDw9nSc0RV0kQ7jPQM0y8XD/0xdy3eEuhV8H52bGOTXeV2zjLo7cyBBJVVpZ6fcI5ITlyZmV9ImlnBrvq6vDvZXKXG34OSW8psrJD52MbV2VrPR7WGvpGN6/bDmzkj4RH61U5rm38Ou19BpNPeO/w6M1No64cGoaECK/5ELhb91zEIhWetba1I+rrnf8dzBaI+6mJ00+EiKb5ELhn714mcfvbm9Ye3srtfmV0ozJR43+Cmvl8lsJxXIYV55kFbXhJ0ArtfmlgXrb21dyP5XfUoJ8EdklFxa+EGlGXxSiUcjCF6LJ6ItCNAopfCGEyAlS+EIIkROk8IUQIieo01aIFiO8bIbWeRJhpPCFaDHCaz3d//SFZosjUoSadIQQIidI4QshRE6QwhdCiJygNvwGo1mVQuSDtV0jDJ0mVZskVVX4xph+4AywzVr7cAV/E9ba4TiFa0WstQ3bHFw7cwnRPM7NjDd00cZaqKjwvbLHWnvYGNNpjOm11h6O8NcLdCYko6iTVtiZS4hS0mg5Z4Vqbfh3ArP+eBbYVurBGNMZ8iOEEIlybmY89p3a8kK1Jp11Jec3RPjp9F8AkREYY3YDuwE2bNjA9PQ0AOfPny8el5K0W5Sf5cY5PT1dMc565awkS9xyriQN9ciyErck7tfKcQZlC2aJeyW3RsuZxPucpuc2CTlXhLW27A+YAHr9cS8wUeLeGzr+YqW4rLVs377dBhQKBVuOuN06hvcX3TqG90e6LyfOwH+lOOtNQyVZ4pRzpWlYriwrdUvifq0aZ7hsS8NWcmu0nPXeq9r7nJbnNk45geO2in6t5VfNwn+WBSu/EzhU4j7n2+/XAZ3GmG3W2ufiqIiEEMkQ9OVoe8p0kuRIvopt+Nbap3CKvNefH/YCHfLnz/lr61na/COESBmnxvuKW1NqQ/t0YhPcH6HqsEwbMRTTWrur5HwfsC9GuYQQQsSMZtoKIUROkMIXQoicoKUV6qQ4ienpA+r8EkJkAin8Ogg6vTaOHCgeC5FnivNwxrU+VJqRwhdCrBjr14gS6SZTCj88mzeJIUtCCNHKZKrT1lpLx/B+KXshhKiDTCl8IYQQ9SOFL4QQOSFTbfgiXuodWqpdu6JRvoi0Iws/p4TXVDk13resdVWSXOsjyyhfRNqRwhdCiJwghS+EEDkh9wp/656DgGvPDo6FEK3J6Yl7KLc7Xx7IvcI/e/Eyj9/dzqnxPs5evNxsccQymJqaYvPmzfT09LB582ampqaaLZJIOXnvY9EoHZFJpqamGB0dZXJykitXrnDVVVcxODgIwMDAQJOlEyKd5N7CF9lkbGyMyclJuru7aWtro7u7m8nJScbGxpotmhCpRQpfZJKZmRl27Nix6NqOHTuYmZlpkkRCpB8pfJFJurq6OHbs2KJrx44do6urq0kStTbqL2kN1IYvUsFyV0IdHR1lcHCw2IZfKBQYHBxUk04CqL+kdZDCF6nAWrusDWUCRTM0NMTMzAxdXV2MjY1JASVAuL9kenqanTt3Mjk5ydDQkPI7Y6RS4Xd3dwNaj0RUZmBggIGBgaISEsmg/pLWIZVt+FrzXoj0oP6S1iGVCl8IkR6C/pJCocD8/Hyxv2R0dLTZooll0nCF3+q9/a2ePpE/BgYGGBsbY2hoiLvuuouhoSH1l2SUhrbhz83NJdbbn4b9bjWaQbQq6i9pDRpq4f/kJz/hvvvuW2Qp3HfffbEMpUvDfrdjY2OJpU8sD31pCbGUhlr4r776Kp///OeXWMCnTp2qKXx4Zcvrr121rE07GsELL7zAhQsXeOyxx4rp+/CHP8zp06ebLVrLEvVlpy+tdBGU0XKNMY3Wi5+GWvjGGB544IFF65888MADrF69uqbwaV/ZcvXq1QwNDS1K39DQUM3pyzrNsKqjvuy0zk66CMpouTT7i70VaaiFb61l79693HHHHcXZkXv37uXSpUuNFCMWovYvvXTpEo888sii9D3yyCOZTN9ySZNVrXHj2UFWfGNpqIV/zTXX8IEPfGBRG/cHPvABbr/99kTvu7ZrhKHTQ2x5Ygtru0ZiiTNq/9Lbb789sg0/6fSlgTRZ1Ro3nh1kxTeWqha+MaYfOANss9Y+XOK2Duj1p3daa4crxXXzzTdHtuEnrRTOzYzz+N3t7Ny5k40jBxK7z+joaKSVW2v6or4askKarOpq6+xs3XOw2CSY1v4gIZKgooXvlT3W2sPAGWNMb4mXe4H11tqnvP/dleJbv359S4/nHRgYoK+vj/e85z3s2rWL97znPfT19dWcvqivhqxQzapuZPt+tXI4e/Eyp8b7Ut0fJEQSVLPw7wT+0h/PAtuAw4GjtXZfyG8n8Gi1G6ZtPK9r7gGegLVdALUt3hXF1NQUBw4c4Ktf/eoiC/+d73xny1Rq5ahkVa+kfb8eazzP5SDSxf1PX4Cn3XObBqq14a8rOb8hypMxphOYs9bOxiJVAzk3M87ejr2c/NBJzs2MryiuNLVjB2wcOcD9T18oKsukqDQbcyX5Uo81nsZyEPHSiGd6pQQrv54a70tNk6Gp1HxgjJkADllrD/vmnF1R7fTGmIdK2/dDbruB3QAbNmzY/uSTTwJw/vx51qxZE3nf+5++wON3t0def2SHZc2aNUv8fOzIBS54XdC+Cj7T015TuEpu1eQsdevp6eGZZ56hra2t6DY/P89dd93FkSNH6oqzlnxZSbh640wiX6JkCa4F4Sr5qfV+tcQZV9rjcFtuGYXT98AxU/ZdSrrca7lfvc9mo+Vv9Dtb6tbd3X3CWvuOSM/LwVpb9gf0A/3+eDfQG+UndLzEPfzbvn27DSgUCrYcHcP7y14PwpX6ScKtmpylbps2bbJHjx5d5Hb06FG7adOmuuMslTXucPXGmUS+RMkSXKtURqXXqt2vljjjSnscbssto3D6Kr1L9cgSdxrqfTYbLX+j39lSN+C4raBba/1VbNKxrjO2M+ista7zFmPMIf/fC0wYY04YY06suPbJOFpVMJpG54vKQYhoqg7LtBFNNdbaXf7/MHBbAnJlEu3CFE2j80XlIEQ0qdzxKsukbRRSWmh0vqgchFiKFL4QOaO44Nx49uZ7iJUhhS9EzrDWMj093WwxRBPQFodCCJETpPCFEKkjvPdFcCxWjhS+ECJ1pH3vi6yiNnzRdLR6pRCNQRa+aDpavVKIxiCFL4RIjK17Dhb3oFBbfPNRk45oGFEbjrfS/dJEoGSbvZpk8PU2PT3tlgoWTSV1Fr5651sXG7HheCvdLy2cGu8rLs2rvhARJnUKX73zQgiRDKlT+EIIIZKhaW343d3dQDraVtO2DZkQQiRB0yz8tLStpnEbsuXQyM3B00Z4BEiz+3zyXA71ov66xtMyo3SqbUbeilb8SjYHbwXCI0B27txZVP6NJslyCEYamYl0fA3HSdBf18yyyxst04ZfaTPyrFvx5dBm3ekgyXKw1lIoFFpO2Yvm0BQLP/wpp2n0tRFl6c3MzLBjx45F/nbs2MHMzEzD5cszKof4qfbFLuqjKRa+hl4unyhLr6uri2PHji3yd+zYMbq6uhotXq5ROcRPpS92UT8t06STR7RZdzpQOYis0DKdtnlEm3WXp5ErcK6kHKamphgbGyuGGx0dVfmJxJDCzzhZ2ay70UsgN3oETz3lkPdRVqLxqElHNIRWWAI57rH2GmUlGk1TLPxKPfDqnRdpJAlrXKN7RKNpioVfqQdevfP5Y23XCFue2MLQ6SG2PLGFtV0jzRZpCUlY4xrdIxqN2vBbnCzM1Dw3M56KGbOVSMIaD0b3BF8NwegeNem0Bml896TwWxxrbeo7dJPAfTX4L4UYmgcDazxY9A9Wbo3nfZRVqzffpvHdk8IXqaZexR33V0NS1nhSo6zSaF2Wcm5mXGvpNBgpfJFq0tLckzVrPI3WpWg+UvgiFRQVeYpXNM3KnAchyiGFL5pOsJrpxpEDxeNaiLudXohWJ5UKvxXXrhfxk5bmHlGecKWsCrn5VB2Hb4zpN8b0GmMeqsd9ubTq2vVCtCqVZiCfmxnn5IdOsrdjr+bVpICKFr4xph/AWnvYGNNpjOm11h6u1V2INKKmoPjQekDZopqFfycw649ngW3LdBcidYStTs3oXhkrnYF8/9MXiovpieQxlcboGmMeBR611j5njOkFdllrh2t19352A7sBNmzYsP3JJ5/k/qcvcHriHgBu/+P9fKanfdF9g8kthUJh0fWh00OLzvd27F0SJirOsFtpnJXcAM6fP8+aNWuWXG8Ft0amvbTsoHz5hWUJPyuwuGyTcKs3fXl16+np4ZlnnqGtra3oNj8/z1133cWRI0fqftfrDdeodDfarbu7+4S19h2RnpeDtbbsD5gAev1xLzCxHPfS3/bt221AoVCw5ZCb3OSWDbdNmzbZo0ePLnI7evSo3bRpU01xNlv+rLgBx20F3Vrrr1qTzrPAOn/cCRxaprsQooXRbl/ZomKnrbX2KWPMQ765Bus7ZI0xh6y1u8q5CyHyQdZmIOedquPwrbUPR1zbVcldCJEfNAM5O2jHKyGEyAlS+EIIkROk8IUQIidI4QshRE6QwhdCiJxQcaZt7Dcz5ufAaX96I/D3ZbzKTW5yy4dbWuRIu1uHtfbXyvitnThmb9Xzo8LMMbnJTW75cEuLHFlyW8lPTTpCCJETpPCFECInNFPh75Ob3OSWe7e0yJElt7ppaKetEEKI5pH4nrZ+V6wzwDZr7cP+fAtwM/CDkmvvBF4CfoDbUCXq2hng3wD7cUsy/xfgHwL3AC8CWGv7fJy7gH7cKp7P+d+ET/e/wm3Y8hwwDBwERoDbfLxbgD/y9/zLkJy7gN8Dzltrb/ULxy0nziEnor3B508v8ChwGHiftXa9v8+twMeBGWvtLu9vGPiGT+uXgRcqxPmffBGsCsn5Z8BfAH9grX1rqGz+pc/DsJwf9/kZpL1cnBP+2lyJnBP+/30+TnxZ3GBDazEFC+8RsZeCECJeEm3SCW+BCJwxxuzBKZaTwHHgjaFr7TgFcx54F3BvxLUtwN3Aa8DzwPU4JftW4BVgDlhtjPksTmFuAH4J/DoLlVtbWKZAVmvtn/rDe4H1XsbLwLUh2W/1YX4O3GCM6fTx1BSntfZPgLPA1aFsugNYa639iJf9P4TCvuJlCeK+ycs159P0zjJxzgGrcENg32CM6cQvY+3jnffpCeL9svcfTvulUNp7y8QJ8BbvFubt/n7rgf/q0/4U8JvAu4wxBwCMMduAf+/z4KPGmA8aY/YZY75njHnQGHPC75e8zxjzDWPMHmPMIX/+Cb+f8jeMMWeNMd8K9lX2/r7v/T7p/X/bGPNyaA/mfcaYr/l7nPB+13n3aWPMJWPM94MEheI8YIx5yccRjvNBY8zf+OulcX7WGHPeGPNTY8whH18Q/lFjzA+NMRP+Ht/254e8n6/54z0+ziDdn/UyvhySsdfL+H1jzEv+2oPGmDP+//vezzf8/wEv/7qSOE+E8jIqzkVpDOXPCZ+vQbq/4uP8ccjfp70s3/LxfMkY8wUvy4GQn8+WlOmEMeZFY8zn/HEg18sRZRQut1rCPWiMeSWQsUK4F0vyJircJ4wx53x+Vgp3zoT2Ai8NF/JXlDOU9+H7BWVXDFeJWBW+F2a3WbDa+oHf9OezwLtx40tnccr6HcA/9dduBP4PsAa4Bbe+/o3Aq95flw/zu8A8Tjn9N5wS3Ai8DvwQp+R7gSPA93AK/zLwv3HW9xuAVcbtxHW9v7ben6+y1u6z1u7Dbd94FXAFeJuX84i3Qi8Br1trg+0da40T4DrAhvLpRmDWGLMOuIhTlkG8bcBbQvl5E05prgeeAH4aFae19jncF1EbcNHLeSdw0cfV7tMz68/fViXt90bFaSOWw/bXgspnDveVM2uM+TRgcJX3nDHmQeA+4K+BvwMu4L76Nvr0vOT93uHL9haWGgAjuLHK5wEL/JZxFdl5Xw4v4irGU7iKeHVIxuMhGYMK617cs/MI7plZ45/pfh/nKlzleIMvo++H4vxT3HMRFecxn76LwJv99XX4ChVXsff7fPi+P1/v5fwZ0RX973sZq1X0L4Xkm/f5Vq6i/4rP64oOFX+2AAAI+ElEQVQVvQ9bTKPPn0C+4z6uLwDXeDnngLf7ZwDcu9kO/D7uC/6sl2W1MWYaZ8B9xedFUKbX4wy9rwMdOP0QzOkJy3AaZ9AE5VYxXChvLpfEVRoueAbmgrwpDef5Ka6p/Cl/viRcqEwOh64tCmeM2R0yGMOylr5zgTFZDFcaJkxsCt8/XJ1eYQz78zcB/x33aQ/wq8Ba3EN/M/BjXDPCWv8DpzzX+PM34hTij31cb8G9KM/jmlbwftfhlNPVwMu4FxJ//ZqQmDf482u8nO/HPQDX+vOw31twSuQq4H96OQOuK0l+TXH6PHkdV7D7fL4EG8i8w6fhV0N+r8ZVWEF+XuPzc2OQnjJxBryBhQdynY+vE6ckb8OVQ6dP3+oKad8VcgvHCU45rAduClVM1+LK7SYWKsAeXIW82qfp/bjK+zn//yNgJ66M23Evyjngn7HwtbAFV2n8Bu6lCSairPXnW/EVs7/H91io7G/z9741ZIDcFsiOe2n24ZTPrPf7KvAhL8sRXIX3dyxU9p0lcb4B9wLexMKXWVCJXuvTYbzfO3HNYIEBcQ3wTR9nG3Cz99fp47uVpRX9alxF31+lom/zcV3t82edP38zSyv6Ntxz+GbKVPT+3h0+329iYW/rDpxOudnnxePe7xVcpbED9x7jy30H7hlr9+HW+zLEx/c3uGfx3b4sXvFy3Y5rAu0ArvIKOry/9kXcM3dnDeGiiAoHrvwC/VVu/+51uAqnH1d2UeHu9HkSpHObz//X/LVOL2dVSozJquFiU/je4tvnLVX8g/G/cAUW8CruBbyIUySrcAm/7H+B0r+EU2JngG97f6/jLJT/x8JDg792NfAlH2cbTlmt9+Ffw71M7wrJ8ItATtwL/qPQecDNOEvgR7gH8oqPE5wiCj8wtcbZD/xf4LWQ2xncS3cY9/Bfh1M+szjF/Cuh/DxTkp/l4gyYw315BG31r/uHI7DeL/rz9pJwpWkvFye4cpvDWaLBJ6XFKdmfAX+Aq2jfBEx6/z/w/7eG8utqnPXajivTs97fZlylDs5Seh74bZxCafdxX8QpkHmcdQjumekIyX3Zy3UkJGdY9l/319bhXswrwC9wxkZPKJ63ho7nSuI858OE4wu4grPyf+j9hsvqOhaaHOd8PK95f3M+7JFQnEFFfwW45K278Od8aUU/H2pufCvwij//Oou/EG7xcf7Uu/2TqDh92V/0cr7R36PHX/sBrpJ/g/fb6a//Ci5ff+Yrka044+Zqn18/8Pe/msXP3BtwBs6P/P3uxumCbT7eK8A/L8lPcM/FHTWEiyIqXCeuTM7hDJMbSgP5fJn1cX8YV3ZR4aJkDeLoxBkCsyyDWsPFaeFvC9qjgnPcS369v9QJPIN74O8APop7sF72136Is7h+jPsUD9qRf8/7u4hTAq/hXuQ5XPPH3wLfwll/n8C99HPAA/7e1wLfZWELxss4hYZ3e4nFiiEouM/gKqAu3AP3MvCA/2S6FvfyBhVATXFat1nMWhY/0L+Bs5LAWa/fw1lg23DW7i9C+Xl1SX6+GhWnb8sLmg4uezmfBdb6MrrGp+cOf74Rp7jKpX2uTJzg8jtgLqSIwpXjHT5P3sziZ84A/wJfGeGU3gXvdsbn5byXLTAM1uKei3bcs7ABV74Bl3AW2WXcSxtU9q+xYAjM4RTVa6Fwl73sZ4B/jHvWAs6zYOU9z0Jlf6YkznBeBP0/AW3ATJBPPtyqUB6Bs77PhMLMsWAMrff/b/Ru/SUyBnkfhFtVImM4f0zo3IbC3Yz7Mgq4WCbOXbj3EZwVfgb4R6FrP2PBOu7HNb3C4q/Iv/D3WgX8A3/tO7hyDqz9gOtYyKNv4/RIUQZr7fu8DOEw4N6rauGiiAp3Ewvl++/KhNvFwlfGtO+Xiwp3hvK6t9+HWy41hYuzDT94WTpxib4PZyVsw71Y23wH48+A38Eprl/gPkE24Gry4KX6H7i2wJtxtd/1uJflbcAJnCK8jFP4t/h7vA/3MvzSh7e4B+WNuAfq67ia9RZcU8AEzoL+XdyD+WXcA/0N7zbhw23AKYzDPs4d/voNuJesv9Y4jTEvAr+FU9z/0efTz3HNIdM+nU/4PBzBPcBv9ff9t9794ziltxv4YJk41+Os53ezuFO1A9fk0IGrVO/x+fN+nBIrl/bjUXH6tN/g8+S3cUo4qJj+CNdMdTPOSt8I/Gsv+z04JfBj3Iv1Ku7F+M+4iv91XAX1Nha+NH7JglHwCq6iP40bqbQO90x9x/vtxynY21io7C/gXrx1uOf0OhYqF3BW8Czu6+egD38jzkj4iY/zzaG41vu4wnGuZWFf53m8YvH5FLTvB1+eh4FbQgbE3/r8Dtr257y/VT69wb2uY6Gib2Oh0jgDfIToij74eriWhUoQn5bXrbWzoYq+zYfrxH1NR8X5Yui+bf4ev/DXOnEV0THgXV7Ot+Mqze8Cb/LGw724r5bgKyGoWE74a+t8uO/gKpWbcc/Id3wem0AG/2Ub3l/7Wu/nZA3hoogK93MWvoY2Eb1/94s+f1azMI4+KtyzLFS64b3AV/v8Co9eq0rImKwebqVrM+iX7x9uSGknTtH3hq6N477i/jzk9wCunfqvAv/+2oO4F70XV5GdBj6FU+YP+mvfBKZwTTdPAX+Oe8GCZruTwCd9HH+FqyBewA3f3Y2z1F739wniPIhT3q/hlPMeH+fLuEr2kvcbjvO4998fEedfA3/o/V3CKbk9uC/U13HW66v+Wr8/nvb/B4GHQvH/0vs7iFOgJ1gwZl70P+t/n/Uy/qFPx2s45dzvf5d9Pgdp/CbwQVyT6+u4DtZwnK/5PK4U56VQvvUDn/Pnx0PpDpqwXsEp8X5/jymfd71elh/5vPta6Dk5gFOEu/21l3z+BXmxB1cBvg58xfv5nJfnVZzFW2u4T/t0XywJ93pEuNeAgxXCfddf+0UN4b4QSt8X/LWfsvAufNrL8OnQO9Tv4w7u1+vz9EQQrtL7qolXQgiRE7SWjhBC5AQpfCGEyAlS+EIIkROk8IUQIidI4QshRE6QwhdCiJwghS+EEDlBCl8IIXLC/wcDgNHRoAhRsAAAAABJRU5ErkJggg==\n", "text/plain": [ "<matplotlib.figure.Figure at 0x7fc0b4983048>" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "# columns = \\\n", "# ['a0000', 'b0000', 'c0000',\n", "# 'a0011', 'b0011', 'c0011',\n", "# 'a1011', 'b1011', 'c1011', \n", "# 'a1110', 'b1110', 'c1110', \n", "# 'a1111', 'b1111', 'c1111', \n", "# ]\n", " \n", "# br = big_results[columns]\n", "columns = sorted(big_results.columns)\n", "br = big_results[columns]\n", "br.boxplot()\n" ] }, { "cell_type": "code", "execution_count": 10, "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZEAAAEbCAYAAAAbCrnpAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvNQv5yAAAGDFJREFUeJzt3U9oG+nBx/Gfd/Nn0yDJxxwypSHQFivO6e0Wj5uTA6vohRdel135vdVpTejByh5qyKXu4m4hYBcaO9BuRTb08NJq8zaFF+qI4rw9LB635T3FVnIyPowOOUrj7jrOeqv3oFdTO7Et+9GMRn++Hwgo+jPzeJDmN8+feZ6+arVaFQAABt6IugAAgM5FiAAAjBEiAABjhAgAwBghAgAwRogAAIwRIgAAY4QIAMAYIQIAMEaIAACMESIAAGOECADAGCECADBGiAAAjBEiAABjhAgAwBghAgAwRogAAIwRIkCXWV9f1/r6etTFQI84EXUBAARraWlJknTx4sWIS4JeQE0E6CLr6+va2NjQxsYGtRG0BCECdJF6LeTVx0BYQguRb33rWxodHdXs7Kz/XKFQkOM4yuVyYe0WANBCoYXInTt39PDhQ01NTUmqBYgk2bateDwux3HC2nXkCoWCstmspqen5bquPM9TNptVNpuV4zianp5WsViU53kaHx+PurjoIlevXt33MRCW0DrWPc+T67qyLEuStLq6qnQ6LUmyLEvFYlG2bR9rmzs7O3r+/LnOnTunEyfad0zA4uKibty4oWQyKUnK5XIaGxuTbduanp7WzMyMstms+vv7NTMzE3Fp0U0uXryoCxcu+I+BsIV2Jq5UKkokEv5Jc3Nzc8/r5XL50M8vLCzo7t27+772+PFjnT9/PrCyBu3GjRv68Y9/rEQiofv372t1dVWu62p5edkP1XQ6rcXFRf//QFCogaCVQguRTCYjSYrFYioUCorFYqpUKkf+/OTkpCYnJ/c8VyqVNDIyEmg5w5BMJvXw4UPlcjk5jqPBwUElk8k9Na/FxUUNDg7KcZxj18iAw1ADQSuFEiL5fF6JREKpVEr9/f2SpMHBQXmeJ0lyXVfDw8Nh7Lot5HI5ua6rcrmsTCYj27aVzWb9MN3c3NTU1JQsy1I2m9WlS5cUj8ejLjYAHFtftVqtBr1Rz/O0trYmSSoWi5qYmJBUO7kmk0m5ruvXVI6jXhNp9+YsIEqffvqpJOnKlSsRlwS9IJSaSDwe95todjfV1MMEQHgeP34siRAJSv2mTZoJ98fNhkAX+fTTT/XixQu9ePHCr5GgOUtLS9y4eQhCBOgi9VrIq49hhmlkGiNEAOAATCPTGCECdJHdQ+A7YTg8Ol/73vbdAvN3Fl67CbIZsVhM2ZuTh77nG9/4hu7fv79nwMH09LTK5bLm5+f3/UyxWNTi4qI/hQxwkCtXrtCxHqCrV6/6c/1xE+f+ejpENjc3lXr73wLbXuFv/93wPclkUr/73e/2hEiju/eB46AGEhymkWmsp0MkKv39/fI8T/F4XPl83p8CRardiJnL5VQulzU8PPza/TTZbFaS9n0NkKiBBI0ayOHoE4lAKpXSo0ePJEnLy8t7aiWWZWlmZkbz8/OvTZmfy+WUTqc1Pz+vYrHY0jIDverixYvUQg5BTSQCtm1rfHxc165d23cCxmKx6N/xv5vrunJdV6urq4rFYq0oKgAcihCJyMDAgObm5l67iz+fz8vzPGUyGeXz+T2vJZNJf04yAGgHNGdFZGxsTOVy+bWaiGVZevTokT766KPXPpPJZPxFrep9IwDCtb6+zo2GhwhlAsawBD0BYxRDfAF0lvoF3Y0bNyIuSXvq6eYsTvgADlOf9qT+mA7219GcBQAHYNqTxggRAIAxQgRAKLqhQ3r3jYbcdLi/nu4TARCeevNPJ/cjMO1JY4QIgMB1U4c0NZDD9XSI3Fm4E/gQ35uTNw983fM8jYyMaGhoyH9uampq37vWj4NZftFuXu2Q7uQQ6eSyt0JPh8jm5qaGMv8S2PZW8v/b8D2WZR045TsAdJqeDpF2sXtm3kuXLmlubk4DAwNaWVlRJpNRsVj01xvZPcvv17/+dV27du3AbTHLL6LCOhy9gxBpMdd1NT09LUl+M1Y6nVYqldL09LQuXbokqdbMNTs7K8/zNDMzo/Hxcf8zMzMzkqS3335bJ0+e1He+8x1J/5zlt74tICp0SPcOQqTFdoeAVFvV8NWZeevh0t/f7z+OxWL+GiTFYlF//vOftbOzo42NDX3ta1+TxCy/aC/UQHoDIRKxV2fmbbROSH2W3y+//FInT56UJP31r3/VmTNnmOUXbYUaSG/gZsOIHXdm3vosv3/729+a3hYANKunZ/Ft9RDfIK2vr/sdlxMTE1z1AYhETzdnteqEHwY6LgG0g54OkWbU5wSK8gROxyWAqBEihtphXiBqIACiRse6gfq8QBsbGx0/SykANIMQMcBCNQBQQ4gAAIwRIgZYqAYAakLvWJ+dnfWnKC8UCv60HRMTE2HvOjQMrwW6x+Liop48eXLg61tbW5KkM2fOHPiey5cvK51OB162ThBqTcRxHLmuK6kWIJJk27bi8bgcxwlz16G7evUqtRCgB7x8+VIvX76MuhhtK7SaiOu6exZbWl1d9ZPasiwVi0XZth3W7kNHDeR4uNpDu0qn04d+r27fvi1JunXrVquK1FFCDZHdIfHq9CLlcvnQzy8sLOju3buhlA3tp36ld1iIAGg/oYSI4ziv1TJisZgqlcqRtzE5OanJyck9z9XnzkLn4WoP6E6hhEgikZDjOPI8T6VSScViUYODg/I8T1KtljI8PBzGroGuF0TToETzIIIRSsd6MpmUbduqVCp+cKRSKbmu63eod3J/CNDO6AhGK4U6xDeTyexZ57uTh/UC7YKmQbQTbjYEABgjRAAAxggRAIAxQgQAYIwQAQAYI0QAAMYIEQCAMUIEAGCMEAEAGCNEAADGCBEAgDFCBABgLPQ11gF0J1arhERNpKOtr69rfX096mIA+2JK+t5ATaSDLS0tSWK9d0SDKemD06hWJ7VvzY6aSIdaX1/XxsaGNjY2qI0APaBda3bURDpUvRZSf0xtBOhcjWp1UvvW7KiJAACMURM5QLuPPLl69apyuZz/GACiQIgYqrdNHhYiYbp48aIuXLjgPwaAKBAiB+iEkSfUQABEjRDpYNRAAESNjnUAgDFCBABgjBABABgjRAAAxggRAIAxQgQAYIwQAQAYI0QAAMYIEQCAMUIEAGBs3xC5fv267t27p2fPnu15/tmzZyqVSi0pGACg/e07d1Ymk5FlWVpeXtbs7Kz6+vo0MDAg27a1tramd999t9XlBAC0oX1D5J133pEkDQwM6Ac/+IEk6enTp3IcR8lk8kgbdhxHkrS8vKypqSlJUqFQUDweV7FY1MTERNOF73X1ZXGZiBFAVI7cnFWviViW1XCjxWJRy8vLsm1bT58+leu6KhQKkiTbthWPx/2QgbmlpaU9y+QCQKvtGyKZTEZDQ0NaXl7W9evX9f3vf18///nPValUtLKy0nCjyWRSU1NT8jxPlmXJsiytrq76AWRZlorFYrB/SY9ZX1/XxsaGNjY2/BoJALRaaM1ZkrS2tqZYLCZJ2tzc3PNauVw+9LMLCwu6e/fukffVa3bXQJaWlmjSAhCJIy9KNTAwoIGBgWNt3LZtFQoFFQoFxWIxVSqVI392cnJSk5OTe54rlUoaGRk5VhkAAOE58D6R999/X5L0ySef6N69eyqVSiqVSkdqzpqdnVU+n5ckPzwGBwfleZ4kyXVdDQ8PB1H+nrV7aVyWyQUQlQNrIr/4xS8kSYlEQpcuXdKvf/1rlUolWZaloaGhQzc6NjYm13XlOI42NzeVyWQkSblczu9Qt207qL+hJ128eFEXLlzwHwNAFBo2Zw0MDOjvf/+7ZmZmjrzReme6tDcsGNYbLGogAKLWMESOMqQX0aAGAiBqx5o76+nTp5qbm9Of/vSnsMoDAOggxwqRSqWiGzduqFqt6sGDB2GVCQDQIY40xPf69euyLMsfojs8PKzV1dVQCwYAaH9HCpGPP/5YUu2GQcdxlM/n/RsSAQC968g3G0q1ez4IDwBA3b4hcv36dfX19b32fLVaVV9fn+7duxd6wSAtLi7qyZMnB76+tbUlSTpz5syh27l8+bLS6XSgZQMA6YAQuXPnTqvLAQMvX76U1DhEACAs+4ZIfdLEupWVFX8CxVgs1vCOdQQjnU4fWoO4ffu2JOnWrVutKhLQcX75y18ea96+V9U/W/+9mUokEvrhD3/Y1DbaUcM+kffff1/ValWlUklDQ0N69uwZIQKgY1QqFVUqFZ05/RWjz7/5Ru00+fLFF8Zl2Nr+3Piz7e5IHet37tzRJ598omvXrmlubi7sMqHDNHulJwVztdetV3po3pnTX9G/2v8e2f7/6Pwhsn2HrWGIVKtVSdLQ0JBmZ2f1l7/8JfRCobM0e6UnNX+1181XekA7axgiH374oaTaHFrDw8MaGxsLvVDoPFzpdRdqlziqhiGytrbm94G88847evDgwbEXpwLQWWq1y7JOnz1tvI03TtRmVXqxs2X0+e3Pto33jdZpGCL5fH5PR3qhUNC7774baqEARO/02dO68h/RDaL59LeNF8BD9A4MEdd19ZOf/ERra2v67ne/6/eNMDU8ABzPi+0tbW1/3lTTXrs2Dx4YIpZl6eOPP9bc3Jx+9KMfBbpTAOgl1WpV6qsaN+1J7ds82LA5K5PJaHR01J8G5Wc/+5m++c1vhlIYAOhW3do82DBEPvjgA/3mN79RLBaT53kaHx/X73//+1AKA6A97rCuVCo6ffaU8efRO450n0h9GpR4PO73jQAIRzvcYc3vHEfVMETOnz+ve/fuybZtLS8v69KlS60oF9DTor7v5r/+5z8j2zc6S8PlcWdmZhSLxfSrX/1KfX19mpmZaUW5AAAdoGFNZGVlRe+9957ee+89SdKDBw+4TwQAIOkINZF8Pr/n/4VCIbTCAAA6y7FvNvzqV7/assIBQQpipUhWiQT26tmbDdthGCWTy7UXVooEjq9hn0g3BogU/TBKpi5vPVaKBIJ3pEWpulWUwyiZuhxAN2jYsQ4AwEEIEQCAMUIEAGCMEAEAGOvpjnUA3W9ra0svt19GOpilqqq+2N6JbP9hCiVEPM+T4ziSpNXVVU1NTUmq3e0ej8dVLBY1MTERxq4BAC0USog8evRIUm1Bq9XVVeXzeSUSCUmSbdtyXVeO48i27TB2DwC+M2fO6M2+E5HPinzydHc2/ITSJ5LJZJTJZCTVpk+xbVurq6v++uyWZalYLIaxawBAC4Uaja7rqr+/X5ZlaXNzc89r5XL50M8uLCzo7t27YRYPANCkUEOkUCj464/EYrFjzVU1OTmpycnJPc+VSiWNjIwEWkYAgLnQhvgWCgW/89xxHA0ODsrzPEm1Gsrw8HBYuwYAtEgoIeI4jubm5jQ6OqrR0VFJUiqV8jvUJdGpDgBdIJTmLNu2tbS09NrzDOsFgO7SnWPOOsTm5mZT65EEsaaJxLomAMwRIhH6xz/+oUqlrNNnTxt9/o0TtdbIFztbxmXY/mzb+LPoXlVV9eKzbX3625XIyvDis21VT0W2exwRIRKx02dP68p/DEW2/yhPEthfO0zTIUmqRrt7dAZCBMC+3jz5ZuQXOG+dYKnidkeIAG2GaTrQSfiWAEDIurmPiRBB09qhDX/rxef6kl5YoOV6NkSiPvFtvfhcVXougZ7Qpz6dPnuqK/uYejZEEJx2aMP/o/MHnXrrZGT7B3pVz4ZI1Ce+Pzp/0Nb255HsGwCC0rMhgu7DDABA6xEi6BrMAAC0HiGCrsIMAEBrESLoGtVq947FB9oVIQKg621tf248nP/lFy8lSadOml8dVFXVdpMXOF9s70iS8UwC259t660EQ3yBA/X1de9YfJhLJBJNfb4+ivLUW2eNt7H9xZuS1NR3Y/uz2sCPt86abeOtxJmmj8V+CBEAXa3ZkXL10Xq3bt0KojgdX45XhbbGOgCg+xEiAABjNGcBbYiO4PA6ghGsng6RKH+oW9ufMyQV+6IjuCasjmAEq2dDJOof6qm3EqpUKszki9fQEYxO0rMh0g4/1Nu3b+vFzhZDUgF0LDrWAQDGCBEAgDFCBABgrGf7RBCsZka6ScGMdgPQeoRIxJoZi9/sOPz6/psdix/EMMwgRrttbm42XQ4Ax0OIRKjZk2+z4/ClYMbiB7GKX5Cj3QC0DiESoXYYZgwAzSBE0FW6oXkQ6CSECLpGtzQPAp2EEEHXoHkQaD3uEwEAGAstRBzH0fj4+J7nCoWCHMdRLpcLa7cAgBYKLURs297z/0Kh4D8fj8flOE5YuwYAtEjLmrNWV1dlWZYkybIsFYvFVu0aABCSlnWsv3o3cblcPvT9CwsLunv3bphFAoC2sLi4qCdPnhz6nkqlNnqwPgBkP5cvX1Y6nQ60bI20LERisZh/EI5icnJSk5OTe57b2dnR8+fPde7cuaCLBwBt7dSp9lyCtGUhMjg4KM/zJEmu62p4ePjY2zhx4oTOnz8fdNEAIFLpdLrlNYighNYnUigUtLa25neop1Ipua7rd6i/2vEOAOg8odVEUqmUUqnUnucmJibC2h0AIALcsd7GGnW2HaWjTYqms+1VQfwt7fB3ANiLEOlg7drRZqKb/haglxAibayTO9te1U1/C4B/IkSADtNNzZzofITIAWjDR6eiaRCtRIgY4oeKqNA0GCwuGJtDiByAHyoAiQvGRggRAD2NC8bmsCgVAMAYIQIAMEaIAACM0SeCnsEoHCB4hAjw/xiFAxwfIYKewSgcIHj0iQAAjBEiAABjhAgAwBghAgAwRogAAIwRIgAAY4QIAMAYIQIAMNZXrVarURcCQOc56jQyiUTiwPcwjUzn4451AKFgGpneQE0EAGCMPhEAgDFCBABgjBABABgjRAAAxggRAIAxQgQAYIwQAQAYI0QAAMYIEQCAMUIEAGCMEAEAGCNEAADGCBEAgDFCBABgjBABABgjRAAAxggRAIAxlseN0M7Ojp4/fx51MQC0yLlz53TiRHeddrvrr+kwz58/18jISNTFANAijx8/1vnz56MuRqAIkQidO3dOUu2LheaNjIxwLAPE8QzWyMiI/5vvJoRIhOrV2m67MokSxzJYHM9gdVtTlkTHOgCgCYQIAMAYIQIAMPbmBx988EHUheh13/72t6MuQtfgWAaL4xmsbjyefdVqtRp1IQAAnYnmLACAMUIEAGCMEAEAGCNEAADGCBEAgDFCBABgrPsmcmkT+Xxey8vLkqSVlRUNDQ1JksbGxpRIJLS4uKipqakoi9jRPM/TyMiIf1wlaWpqSpZlSZKKxSLH+Iimp6fluq4kKZPJKJVKHfhe13X9Y4zXHedYdgvuE2mBq1evamlpyf8/J7jmeZ6n733ve3r48GHURelohUJBrutqYmJCUu24xuPxA9+fzWY1Pz/fquJ1lOMey25Bc1ZEVlZWND09rdHRUUm1YJmenpYk5XI5OY4j13U1PT2tbDbrX93gYLuP1+PHjzU7Oxt1kdpePB73v2v1/0t7j2U+n5dU+17Wv7ee50VW5nZ10LHc77ddLBY1Pj6u2dlZ/xzQqWjOikgikdDMzIxmZ2flOI4SicS+73McRw8fPuyJK5rjqp/oJMmyLKVSKf94EbpHY9u2PM/TzZs35Xme7ty5o2QyKcuyNDMzI6lWk85kMpqYmJDjOP7z2OugY3mYqakp/xxg23aLShosQiQi9Xbl/v7+Q99n2zYBcoDdJzqpFiocr+NLpVJKpVJyXVc3b970mwiLxaLW1tYiLl1nOehY7ueo54B2R3NWG9p9FR2LxSIsSefheB3P7u/a7tpwPp+X4zi6du0aoXxEBx3Lg97TLaiJtIlkMqm1tTXNzs6qXC5HXRz0CM/zND4+rlgsplKppJ/+9KeSalfJc3Nz+34Xs9nsnpFwqDnoWHb7b5vRWQAAYzRnAQCMESIAAGOECADAGCEChKje2Qp0K0IEAGCMEAEAGCNEgBCMj49rdHRUH330kf+c53nKZrP+P6l2z0WxWNzzOtBJCBEgYPl8XgMDA3r48KHGxsb85+PxuObn5/1ZcB3H0djYmD/BYT6fVzqdjqTMgClCBAhYsVjU8PCwpNenv3BdV/l8XqVSSZ7nybZtf34qx3F6Yv0JdBdCBAhYMpn0m6h2z5VUKBSUy+V07dq1PYtpDQ0NqVAoMI0IOhIhAgQsk8nIcRyNj49rcXHRnxTSsiw5jqO5uTk9ffrUn9hwbGxMc3Nz1ELQkZg7C2gD4+Pjun//ftTFAI6NmggQMc/zNDAwEHUxACNMBQ9EKJ/Pa3l5WR9++GHURQGM0JwFADBGcxYAwBghAgAwRogAAIwRIgAAY4QIAMAYIQIAMPZ/3PiwclUSVMMAAAAASUVORK5CYII=\n", "text/plain": [ "<matplotlib.figure.Figure at 0x7fc0b4890ba8>" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "import seaborn as sns\n", "sns.set(style=\"ticks\")\n", "\n", "# Load the example tips dataset\n", "tips = sns.load_dataset(\"tips\")\n", "\n", "# Draw a nested boxplot to show bills by day and sex\n", "sns.boxplot(x=\"day\", y=\"total_bill\", hue=\"sex\", data=tips, palette=\"PRGn\")\n", "sns.despine(offset=10, trim=True)" ] }, { "cell_type": "code", "execution_count": 13, "metadata": {}, "outputs": [], "source": [ "renamedict = {k: k[1:] for k in page1_df.columns}\n", "page1 = page1_df.rename(columns=renamedict)\n", "page1['story'] = 'a'\n", "renamedict = {k: k[1:] for k in page2_df.columns}\n", "page2 = page2_df.rename(columns=renamedict)\n", "page2['story'] = 'b'\n", "renamedict = {k: k[1:] for k in page3_df.columns}\n", "page3 = page3_df.rename(columns=renamedict)\n", "page3['story'] = 'c'" ] }, { "cell_type": "code", "execution_count": 19, "metadata": {}, "outputs": [], "source": [ "chara = page1.append(page2).append(page3)" ] }, { "cell_type": "code", "execution_count": 22, "metadata": {}, "outputs": [ { "ename": "ValueError", "evalue": "Cannot use `hue` without `x` or `y`", "output_type": "error", "traceback": [ "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", "\u001b[0;31mValueError\u001b[0m Traceback (most recent call last)", "\u001b[0;32m<ipython-input-22-8b50c36471b3>\u001b[0m in \u001b[0;36m<module>\u001b[0;34m()\u001b[0m\n\u001b[0;32m----> 1\u001b[0;31m \u001b[0msns\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mboxplot\u001b[0m\u001b[0;34m(\u001b[0m \u001b[0mhue\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;34m\"story\"\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mdata\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mchara\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mpalette\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;34m\"PRGn\"\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m", "\u001b[0;32m~/Projects/Public/PhD/stage3/openrgf/venvs/openrgf-venv/lib/python3.6/site-packages/seaborn/categorical.py\u001b[0m in \u001b[0;36mboxplot\u001b[0;34m(x, y, hue, data, order, hue_order, orient, color, palette, saturation, width, dodge, fliersize, linewidth, whis, notch, ax, **kwargs)\u001b[0m\n\u001b[1;32m 2209\u001b[0m plotter = _BoxPlotter(x, y, hue, data, order, hue_order,\n\u001b[1;32m 2210\u001b[0m \u001b[0morient\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mcolor\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mpalette\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0msaturation\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m-> 2211\u001b[0;31m width, dodge, fliersize, linewidth)\n\u001b[0m\u001b[1;32m 2212\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 2213\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0max\u001b[0m \u001b[0;32mis\u001b[0m \u001b[0;32mNone\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", "\u001b[0;32m~/Projects/Public/PhD/stage3/openrgf/venvs/openrgf-venv/lib/python3.6/site-packages/seaborn/categorical.py\u001b[0m in \u001b[0;36m__init__\u001b[0;34m(self, x, y, hue, data, order, hue_order, orient, color, palette, saturation, width, dodge, fliersize, linewidth)\u001b[0m\n\u001b[1;32m 439\u001b[0m width, dodge, fliersize, linewidth):\n\u001b[1;32m 440\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 441\u001b[0;31m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mestablish_variables\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mx\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0my\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mhue\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mdata\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0morient\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0morder\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mhue_order\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 442\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mestablish_colors\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mcolor\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mpalette\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0msaturation\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 443\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n", "\u001b[0;32m~/Projects/Public/PhD/stage3/openrgf/venvs/openrgf-venv/lib/python3.6/site-packages/seaborn/categorical.py\u001b[0m in \u001b[0;36mestablish_variables\u001b[0;34m(self, x, y, hue, data, orient, order, hue_order, units)\u001b[0m\n\u001b[1;32m 42\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0mhue\u001b[0m \u001b[0;32mis\u001b[0m \u001b[0;32mnot\u001b[0m \u001b[0;32mNone\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 43\u001b[0m \u001b[0merror\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0;34m\"Cannot use `hue` without `x` or `y`\"\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m---> 44\u001b[0;31m \u001b[0;32mraise\u001b[0m \u001b[0mValueError\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0merror\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 45\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 46\u001b[0m \u001b[0;31m# No hue grouping with wide inputs\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", "\u001b[0;31mValueError\u001b[0m: Cannot use `hue` without `x` or `y`" ] } ], "source": [ "sns.boxplot( hue=\"story\", data=chara, palette=\"PRGn\")" ] }, { "cell_type": "code", "execution_count": 18, "metadata": {}, "outputs": [ { "data": { "text/html": [ "<div>\n", "<style scoped>\n", " .dataframe tbody tr th:only-of-type {\n", " vertical-align: middle;\n", " }\n", "\n", " .dataframe tbody tr th {\n", " vertical-align: top;\n", " }\n", "\n", " .dataframe thead th {\n", " text-align: right;\n", " }\n", "</style>\n", "<table border=\"1\" class=\"dataframe\">\n", " <thead>\n", " <tr style=\"text-align: right;\">\n", " <th></th>\n", " <th>total_bill</th>\n", " <th>tip</th>\n", " <th>sex</th>\n", " <th>smoker</th>\n", " <th>day</th>\n", " <th>time</th>\n", " <th>size</th>\n", " </tr>\n", " </thead>\n", " <tbody>\n", " <tr>\n", " <th>0</th>\n", " <td>16.99</td>\n", " <td>1.01</td>\n", " <td>Female</td>\n", " <td>No</td>\n", " <td>Sun</td>\n", " <td>Dinner</td>\n", " <td>2</td>\n", " </tr>\n", " <tr>\n", " <th>1</th>\n", " <td>10.34</td>\n", " <td>1.66</td>\n", " <td>Male</td>\n", " <td>No</td>\n", " <td>Sun</td>\n", " <td>Dinner</td>\n", " <td>3</td>\n", " </tr>\n", " <tr>\n", " <th>2</th>\n", " <td>21.01</td>\n", " <td>3.50</td>\n", " <td>Male</td>\n", " <td>No</td>\n", " <td>Sun</td>\n", " <td>Dinner</td>\n", " <td>3</td>\n", " </tr>\n", " <tr>\n", " <th>3</th>\n", " <td>23.68</td>\n", " <td>3.31</td>\n", " <td>Male</td>\n", " <td>No</td>\n", " <td>Sun</td>\n", " <td>Dinner</td>\n", " <td>2</td>\n", " </tr>\n", " <tr>\n", " <th>4</th>\n", " <td>24.59</td>\n", " <td>3.61</td>\n", " <td>Female</td>\n", " <td>No</td>\n", " <td>Sun</td>\n", " <td>Dinner</td>\n", " <td>4</td>\n", " </tr>\n", " <tr>\n", " <th>5</th>\n", " <td>25.29</td>\n", " <td>4.71</td>\n", " <td>Male</td>\n", " <td>No</td>\n", " <td>Sun</td>\n", " <td>Dinner</td>\n", " <td>4</td>\n", " </tr>\n", " <tr>\n", " <th>6</th>\n", " <td>8.77</td>\n", " <td>2.00</td>\n", " <td>Male</td>\n", " <td>No</td>\n", " <td>Sun</td>\n", " <td>Dinner</td>\n", " <td>2</td>\n", " </tr>\n", " <tr>\n", " <th>7</th>\n", " <td>26.88</td>\n", " <td>3.12</td>\n", " <td>Male</td>\n", " <td>No</td>\n", " <td>Sun</td>\n", " <td>Dinner</td>\n", " <td>4</td>\n", " </tr>\n", " <tr>\n", " <th>8</th>\n", " <td>15.04</td>\n", " <td>1.96</td>\n", " <td>Male</td>\n", " <td>No</td>\n", " <td>Sun</td>\n", " <td>Dinner</td>\n", " <td>2</td>\n", " </tr>\n", " <tr>\n", " <th>9</th>\n", " <td>14.78</td>\n", " <td>3.23</td>\n", " <td>Male</td>\n", " <td>No</td>\n", " <td>Sun</td>\n", " <td>Dinner</td>\n", " <td>2</td>\n", " </tr>\n", " <tr>\n", " <th>10</th>\n", " <td>10.27</td>\n", " <td>1.71</td>\n", " <td>Male</td>\n", " <td>No</td>\n", " <td>Sun</td>\n", " <td>Dinner</td>\n", " <td>2</td>\n", " </tr>\n", " <tr>\n", " <th>11</th>\n", " <td>35.26</td>\n", " <td>5.00</td>\n", " <td>Female</td>\n", " <td>No</td>\n", " <td>Sun</td>\n", " <td>Dinner</td>\n", " <td>4</td>\n", " </tr>\n", " <tr>\n", " <th>12</th>\n", " <td>15.42</td>\n", " <td>1.57</td>\n", " <td>Male</td>\n", " <td>No</td>\n", " <td>Sun</td>\n", " <td>Dinner</td>\n", " <td>2</td>\n", " </tr>\n", " <tr>\n", " <th>13</th>\n", " <td>18.43</td>\n", " <td>3.00</td>\n", " <td>Male</td>\n", " <td>No</td>\n", " <td>Sun</td>\n", " <td>Dinner</td>\n", " <td>4</td>\n", " </tr>\n", " <tr>\n", " <th>14</th>\n", " <td>14.83</td>\n", " <td>3.02</td>\n", " <td>Female</td>\n", " <td>No</td>\n", " <td>Sun</td>\n", " <td>Dinner</td>\n", " <td>2</td>\n", " </tr>\n", " <tr>\n", " <th>15</th>\n", " <td>21.58</td>\n", " <td>3.92</td>\n", " <td>Male</td>\n", " <td>No</td>\n", " <td>Sun</td>\n", " <td>Dinner</td>\n", " <td>2</td>\n", " </tr>\n", " <tr>\n", " <th>16</th>\n", " <td>10.33</td>\n", " <td>1.67</td>\n", " <td>Female</td>\n", " <td>No</td>\n", " <td>Sun</td>\n", " <td>Dinner</td>\n", " <td>3</td>\n", " </tr>\n", " <tr>\n", " <th>17</th>\n", " <td>16.29</td>\n", " <td>3.71</td>\n", " <td>Male</td>\n", " <td>No</td>\n", " <td>Sun</td>\n", " <td>Dinner</td>\n", " <td>3</td>\n", " </tr>\n", " <tr>\n", " <th>18</th>\n", " <td>16.97</td>\n", " <td>3.50</td>\n", " <td>Female</td>\n", " <td>No</td>\n", " <td>Sun</td>\n", " <td>Dinner</td>\n", " <td>3</td>\n", " </tr>\n", " <tr>\n", " <th>19</th>\n", " <td>20.65</td>\n", " <td>3.35</td>\n", " <td>Male</td>\n", " <td>No</td>\n", " <td>Sat</td>\n", " <td>Dinner</td>\n", " <td>3</td>\n", " </tr>\n", " <tr>\n", " <th>20</th>\n", " <td>17.92</td>\n", " <td>4.08</td>\n", " <td>Male</td>\n", " <td>No</td>\n", " <td>Sat</td>\n", " <td>Dinner</td>\n", " <td>2</td>\n", " </tr>\n", " <tr>\n", " <th>21</th>\n", " <td>20.29</td>\n", " <td>2.75</td>\n", " <td>Female</td>\n", " <td>No</td>\n", " <td>Sat</td>\n", " <td>Dinner</td>\n", " <td>2</td>\n", " </tr>\n", " <tr>\n", " <th>22</th>\n", " <td>15.77</td>\n", " <td>2.23</td>\n", " <td>Female</td>\n", " <td>No</td>\n", " <td>Sat</td>\n", " <td>Dinner</td>\n", " <td>2</td>\n", " </tr>\n", " <tr>\n", " <th>23</th>\n", " <td>39.42</td>\n", " <td>7.58</td>\n", " <td>Male</td>\n", " <td>No</td>\n", " <td>Sat</td>\n", " <td>Dinner</td>\n", " <td>4</td>\n", " </tr>\n", " <tr>\n", " <th>24</th>\n", " <td>19.82</td>\n", " <td>3.18</td>\n", " <td>Male</td>\n", " <td>No</td>\n", " <td>Sat</td>\n", " <td>Dinner</td>\n", " <td>2</td>\n", " </tr>\n", " <tr>\n", " <th>25</th>\n", " <td>17.81</td>\n", " <td>2.34</td>\n", " <td>Male</td>\n", " <td>No</td>\n", " <td>Sat</td>\n", " <td>Dinner</td>\n", " <td>4</td>\n", " </tr>\n", " <tr>\n", " <th>26</th>\n", " <td>13.37</td>\n", " <td>2.00</td>\n", " <td>Male</td>\n", " <td>No</td>\n", " <td>Sat</td>\n", " <td>Dinner</td>\n", " <td>2</td>\n", " </tr>\n", " <tr>\n", " <th>27</th>\n", " <td>12.69</td>\n", " <td>2.00</td>\n", " <td>Male</td>\n", " <td>No</td>\n", " <td>Sat</td>\n", " <td>Dinner</td>\n", " <td>2</td>\n", " </tr>\n", " <tr>\n", " <th>28</th>\n", " <td>21.70</td>\n", " <td>4.30</td>\n", " <td>Male</td>\n", " <td>No</td>\n", " <td>Sat</td>\n", " <td>Dinner</td>\n", " <td>2</td>\n", " </tr>\n", " <tr>\n", " <th>29</th>\n", " <td>19.65</td>\n", " <td>3.00</td>\n", " <td>Female</td>\n", " <td>No</td>\n", " <td>Sat</td>\n", " <td>Dinner</td>\n", " <td>2</td>\n", " </tr>\n", " <tr>\n", " <th>...</th>\n", " <td>...</td>\n", " <td>...</td>\n", " <td>...</td>\n", " <td>...</td>\n", " <td>...</td>\n", " <td>...</td>\n", " <td>...</td>\n", " </tr>\n", " <tr>\n", " <th>214</th>\n", " <td>28.17</td>\n", " <td>6.50</td>\n", " <td>Female</td>\n", " <td>Yes</td>\n", " <td>Sat</td>\n", " <td>Dinner</td>\n", " <td>3</td>\n", " </tr>\n", " <tr>\n", " <th>215</th>\n", " <td>12.90</td>\n", " <td>1.10</td>\n", " <td>Female</td>\n", " <td>Yes</td>\n", " <td>Sat</td>\n", " <td>Dinner</td>\n", " <td>2</td>\n", " </tr>\n", " <tr>\n", " <th>216</th>\n", " <td>28.15</td>\n", " <td>3.00</td>\n", " <td>Male</td>\n", " <td>Yes</td>\n", " <td>Sat</td>\n", " <td>Dinner</td>\n", " <td>5</td>\n", " </tr>\n", " <tr>\n", " <th>217</th>\n", " <td>11.59</td>\n", " <td>1.50</td>\n", " <td>Male</td>\n", " <td>Yes</td>\n", " <td>Sat</td>\n", " <td>Dinner</td>\n", " <td>2</td>\n", " </tr>\n", " <tr>\n", " <th>218</th>\n", " <td>7.74</td>\n", " <td>1.44</td>\n", " <td>Male</td>\n", " <td>Yes</td>\n", " <td>Sat</td>\n", " <td>Dinner</td>\n", " <td>2</td>\n", " </tr>\n", " <tr>\n", " <th>219</th>\n", " <td>30.14</td>\n", " <td>3.09</td>\n", " <td>Female</td>\n", " <td>Yes</td>\n", " <td>Sat</td>\n", " <td>Dinner</td>\n", " <td>4</td>\n", " </tr>\n", " <tr>\n", " <th>220</th>\n", " <td>12.16</td>\n", " <td>2.20</td>\n", " <td>Male</td>\n", " <td>Yes</td>\n", " <td>Fri</td>\n", " <td>Lunch</td>\n", " <td>2</td>\n", " </tr>\n", " <tr>\n", " <th>221</th>\n", " <td>13.42</td>\n", " <td>3.48</td>\n", " <td>Female</td>\n", " <td>Yes</td>\n", " <td>Fri</td>\n", " <td>Lunch</td>\n", " <td>2</td>\n", " </tr>\n", " <tr>\n", " <th>222</th>\n", " <td>8.58</td>\n", " <td>1.92</td>\n", " <td>Male</td>\n", " <td>Yes</td>\n", " <td>Fri</td>\n", " <td>Lunch</td>\n", " <td>1</td>\n", " </tr>\n", " <tr>\n", " <th>223</th>\n", " <td>15.98</td>\n", " <td>3.00</td>\n", " <td>Female</td>\n", " <td>No</td>\n", " <td>Fri</td>\n", " <td>Lunch</td>\n", " <td>3</td>\n", " </tr>\n", " <tr>\n", " <th>224</th>\n", " <td>13.42</td>\n", " <td>1.58</td>\n", " <td>Male</td>\n", " <td>Yes</td>\n", " <td>Fri</td>\n", " <td>Lunch</td>\n", " <td>2</td>\n", " </tr>\n", " <tr>\n", " <th>225</th>\n", " <td>16.27</td>\n", " <td>2.50</td>\n", " <td>Female</td>\n", " <td>Yes</td>\n", " <td>Fri</td>\n", " <td>Lunch</td>\n", " <td>2</td>\n", " </tr>\n", " <tr>\n", " <th>226</th>\n", " <td>10.09</td>\n", " <td>2.00</td>\n", " <td>Female</td>\n", " <td>Yes</td>\n", " <td>Fri</td>\n", " <td>Lunch</td>\n", " <td>2</td>\n", " </tr>\n", " <tr>\n", " <th>227</th>\n", " <td>20.45</td>\n", " <td>3.00</td>\n", " <td>Male</td>\n", " <td>No</td>\n", " <td>Sat</td>\n", " <td>Dinner</td>\n", " <td>4</td>\n", " </tr>\n", " <tr>\n", " <th>228</th>\n", " <td>13.28</td>\n", " <td>2.72</td>\n", " <td>Male</td>\n", " <td>No</td>\n", " <td>Sat</td>\n", " <td>Dinner</td>\n", " <td>2</td>\n", " </tr>\n", " <tr>\n", " <th>229</th>\n", " <td>22.12</td>\n", " <td>2.88</td>\n", " <td>Female</td>\n", " <td>Yes</td>\n", " <td>Sat</td>\n", " <td>Dinner</td>\n", " <td>2</td>\n", " </tr>\n", " <tr>\n", " <th>230</th>\n", " <td>24.01</td>\n", " <td>2.00</td>\n", " <td>Male</td>\n", " <td>Yes</td>\n", " <td>Sat</td>\n", " <td>Dinner</td>\n", " <td>4</td>\n", " </tr>\n", " <tr>\n", " <th>231</th>\n", " <td>15.69</td>\n", " <td>3.00</td>\n", " <td>Male</td>\n", " <td>Yes</td>\n", " <td>Sat</td>\n", " <td>Dinner</td>\n", " <td>3</td>\n", " </tr>\n", " <tr>\n", " <th>232</th>\n", " <td>11.61</td>\n", " <td>3.39</td>\n", " <td>Male</td>\n", " <td>No</td>\n", " <td>Sat</td>\n", " <td>Dinner</td>\n", " <td>2</td>\n", " </tr>\n", " <tr>\n", " <th>233</th>\n", " <td>10.77</td>\n", " <td>1.47</td>\n", " <td>Male</td>\n", " <td>No</td>\n", " <td>Sat</td>\n", " <td>Dinner</td>\n", " <td>2</td>\n", " </tr>\n", " <tr>\n", " <th>234</th>\n", " <td>15.53</td>\n", " <td>3.00</td>\n", " <td>Male</td>\n", " <td>Yes</td>\n", " <td>Sat</td>\n", " <td>Dinner</td>\n", " <td>2</td>\n", " </tr>\n", " <tr>\n", " <th>235</th>\n", " <td>10.07</td>\n", " <td>1.25</td>\n", " <td>Male</td>\n", " <td>No</td>\n", " <td>Sat</td>\n", " <td>Dinner</td>\n", " <td>2</td>\n", " </tr>\n", " <tr>\n", " <th>236</th>\n", " <td>12.60</td>\n", " <td>1.00</td>\n", " <td>Male</td>\n", " <td>Yes</td>\n", " <td>Sat</td>\n", " <td>Dinner</td>\n", " <td>2</td>\n", " </tr>\n", " <tr>\n", " <th>237</th>\n", " <td>32.83</td>\n", " <td>1.17</td>\n", " <td>Male</td>\n", " <td>Yes</td>\n", " <td>Sat</td>\n", " <td>Dinner</td>\n", " <td>2</td>\n", " </tr>\n", " <tr>\n", " <th>238</th>\n", " <td>35.83</td>\n", " <td>4.67</td>\n", " <td>Female</td>\n", " <td>No</td>\n", " <td>Sat</td>\n", " <td>Dinner</td>\n", " <td>3</td>\n", " </tr>\n", " <tr>\n", " <th>239</th>\n", " <td>29.03</td>\n", " <td>5.92</td>\n", " <td>Male</td>\n", " <td>No</td>\n", " <td>Sat</td>\n", " <td>Dinner</td>\n", " <td>3</td>\n", " </tr>\n", " <tr>\n", " <th>240</th>\n", " <td>27.18</td>\n", " <td>2.00</td>\n", " <td>Female</td>\n", " <td>Yes</td>\n", " <td>Sat</td>\n", " <td>Dinner</td>\n", " <td>2</td>\n", " </tr>\n", " <tr>\n", " <th>241</th>\n", " <td>22.67</td>\n", " <td>2.00</td>\n", " <td>Male</td>\n", " <td>Yes</td>\n", " <td>Sat</td>\n", " <td>Dinner</td>\n", " <td>2</td>\n", " </tr>\n", " <tr>\n", " <th>242</th>\n", " <td>17.82</td>\n", " <td>1.75</td>\n", " <td>Male</td>\n", " <td>No</td>\n", " <td>Sat</td>\n", " <td>Dinner</td>\n", " <td>2</td>\n", " </tr>\n", " <tr>\n", " <th>243</th>\n", " <td>18.78</td>\n", " <td>3.00</td>\n", " <td>Female</td>\n", " <td>No</td>\n", " <td>Thur</td>\n", " <td>Dinner</td>\n", " <td>2</td>\n", " </tr>\n", " </tbody>\n", "</table>\n", "<p>244 rows × 7 columns</p>\n", "</div>" ], "text/plain": [ " total_bill tip sex smoker day time size\n", "0 16.99 1.01 Female No Sun Dinner 2\n", "1 10.34 1.66 Male No Sun Dinner 3\n", "2 21.01 3.50 Male No Sun Dinner 3\n", "3 23.68 3.31 Male No Sun Dinner 2\n", "4 24.59 3.61 Female No Sun Dinner 4\n", "5 25.29 4.71 Male No Sun Dinner 4\n", "6 8.77 2.00 Male No Sun Dinner 2\n", "7 26.88 3.12 Male No Sun Dinner 4\n", "8 15.04 1.96 Male No Sun Dinner 2\n", "9 14.78 3.23 Male No Sun Dinner 2\n", "10 10.27 1.71 Male No Sun Dinner 2\n", "11 35.26 5.00 Female No Sun Dinner 4\n", "12 15.42 1.57 Male No Sun Dinner 2\n", "13 18.43 3.00 Male No Sun Dinner 4\n", "14 14.83 3.02 Female No Sun Dinner 2\n", "15 21.58 3.92 Male No Sun Dinner 2\n", "16 10.33 1.67 Female No Sun Dinner 3\n", "17 16.29 3.71 Male No Sun Dinner 3\n", "18 16.97 3.50 Female No Sun Dinner 3\n", "19 20.65 3.35 Male No Sat Dinner 3\n", "20 17.92 4.08 Male No Sat Dinner 2\n", "21 20.29 2.75 Female No Sat Dinner 2\n", "22 15.77 2.23 Female No Sat Dinner 2\n", "23 39.42 7.58 Male No Sat Dinner 4\n", "24 19.82 3.18 Male No Sat Dinner 2\n", "25 17.81 2.34 Male No Sat Dinner 4\n", "26 13.37 2.00 Male No Sat Dinner 2\n", "27 12.69 2.00 Male No Sat Dinner 2\n", "28 21.70 4.30 Male No Sat Dinner 2\n", "29 19.65 3.00 Female No Sat Dinner 2\n", ".. ... ... ... ... ... ... ...\n", "214 28.17 6.50 Female Yes Sat Dinner 3\n", "215 12.90 1.10 Female Yes Sat Dinner 2\n", "216 28.15 3.00 Male Yes Sat Dinner 5\n", "217 11.59 1.50 Male Yes Sat Dinner 2\n", "218 7.74 1.44 Male Yes Sat Dinner 2\n", "219 30.14 3.09 Female Yes Sat Dinner 4\n", "220 12.16 2.20 Male Yes Fri Lunch 2\n", "221 13.42 3.48 Female Yes Fri Lunch 2\n", "222 8.58 1.92 Male Yes Fri Lunch 1\n", "223 15.98 3.00 Female No Fri Lunch 3\n", "224 13.42 1.58 Male Yes Fri Lunch 2\n", "225 16.27 2.50 Female Yes Fri Lunch 2\n", "226 10.09 2.00 Female Yes Fri Lunch 2\n", "227 20.45 3.00 Male No Sat Dinner 4\n", "228 13.28 2.72 Male No Sat Dinner 2\n", "229 22.12 2.88 Female Yes Sat Dinner 2\n", "230 24.01 2.00 Male Yes Sat Dinner 4\n", "231 15.69 3.00 Male Yes Sat Dinner 3\n", "232 11.61 3.39 Male No Sat Dinner 2\n", "233 10.77 1.47 Male No Sat Dinner 2\n", "234 15.53 3.00 Male Yes Sat Dinner 2\n", "235 10.07 1.25 Male No Sat Dinner 2\n", "236 12.60 1.00 Male Yes Sat Dinner 2\n", "237 32.83 1.17 Male Yes Sat Dinner 2\n", "238 35.83 4.67 Female No Sat Dinner 3\n", "239 29.03 5.92 Male No Sat Dinner 3\n", "240 27.18 2.00 Female Yes Sat Dinner 2\n", "241 22.67 2.00 Male Yes Sat Dinner 2\n", "242 17.82 1.75 Male No Sat Dinner 2\n", "243 18.78 3.00 Female No Thur Dinner 2\n", "\n", "[244 rows x 7 columns]" ] }, "execution_count": 18, "metadata": {}, "output_type": "execute_result" } ], "source": [ "tips" ] } ], "metadata": { "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.6.4" } }, "nbformat": 4, "nbformat_minor": 2 }