Mercurial > hg > from-my-pen-to-your-ears-supplementary-material
view results/data/saves/Untitled.ipynb @ 1:eb3b846ae0ef tip
second commit
author | Emmanouil Theofanis Chourdakis <e.t.chourdakis@qmul.ac.uk> |
---|---|
date | Wed, 16 May 2018 18:13:41 +0100 |
parents | 4dad87badb0c |
children |
line wrap: on
line source
{ "cells": [ { "cell_type": "code", "execution_count": 1, "metadata": {}, "outputs": [], "source": [ "import glob\n", "import pandas as pd\n", "import matplotlib.pyplot as plt\n", "import seaborn as sns\n", "sns.set(style=\"ticks\", color_codes=True, font_scale=1.3)\n", "\n", "page1_df = pd.read_csv('ratings/page1-default-ratings.csv').set_index('file_keys')\n", "page2_df = pd.read_csv('ratings/page2-default-ratings.csv').set_index('file_keys')\n", "page3_df = pd.read_csv('ratings/page3-default-ratings.csv').set_index('file_keys')\n", "page4_df = pd.read_csv('ratings/page4-default-ratings.csv').set_index('file_keys')\n", "page5_df = pd.read_csv('ratings/page5-default-ratings.csv').set_index('file_keys')\n", "page6_df = pd.read_csv('ratings/page6-default-ratings.csv').set_index('file_keys')\n", "page7_df = pd.read_csv('ratings/page7-default-ratings.csv').set_index('file_keys')\n", "page8_df = pd.read_csv('ratings/page8-default-ratings.csv').set_index('file_keys')\n", "page9_df = pd.read_csv('ratings/page9-default-ratings.csv').set_index('file_keys')" ] }, { "cell_type": "code", "execution_count": 2, "metadata": {}, "outputs": [], "source": [ "renamedict = {k: k[1:] for k in page1_df.columns}\n", "page1 = page1_df.rename(columns=renamedict)\n", "page1['story'] = 'a'\n", "renamedict = {k: k[1:] for k in page2_df.columns}\n", "page2 = page2_df.rename(columns=renamedict)\n", "page2['story'] = 'b'\n", "renamedict = {k: k[1:] for k in page3_df.columns}\n", "page3 = page3_df.rename(columns=renamedict)\n", "page3['story'] = 'c'\n", "renamedict = {k: k[1:] for k in page4_df.columns}\n", "page4 = page4_df.rename(columns=renamedict)\n", "page4['story'] = 'a'\n", "renamedict = {k: k[1:] for k in page5_df.columns}\n", "page5 = page5_df.rename(columns=renamedict)\n", "page5['story'] = 'b'\n", "renamedict = {k: k[1:] for k in page6_df.columns}\n", "page6 = page6_df.rename(columns=renamedict)\n", "page6['story'] = 'c'\n", "renamedict = {k: k[1:] for k in page7_df.columns}\n", "page7 = page7_df.rename(columns=renamedict)\n", "page7['story'] = 'a'\n", "renamedict = {k: k[1:] for k in page8_df.columns}\n", "page8 = page8_df.rename(columns=renamedict)\n", "page8['story'] = 'b'\n", "renamedict = {k: k[1:] for k in page9_df.columns}\n", "page9 = page9_df.rename(columns=renamedict)\n", "page9['story'] = 'c'\n" ] }, { "cell_type": "code", "execution_count": 3, "metadata": {}, "outputs": [ { "data": { "text/html": [ "<div>\n", "<style scoped>\n", " .dataframe tbody tr th:only-of-type {\n", " vertical-align: middle;\n", " }\n", "\n", " .dataframe tbody tr th {\n", " vertical-align: top;\n", " }\n", "\n", " .dataframe thead th {\n", " text-align: right;\n", " }\n", "</style>\n", "<table border=\"1\" class=\"dataframe\">\n", " <thead>\n", " <tr style=\"text-align: right;\">\n", " <th></th>\n", " <th>0000</th>\n", " <th>0011</th>\n", " <th>1011</th>\n", " <th>1101</th>\n", " <th>1110</th>\n", " <th>1111</th>\n", " <th>story</th>\n", " </tr>\n", " <tr>\n", " <th>file_keys</th>\n", " <th></th>\n", " <th></th>\n", " <th></th>\n", " <th></th>\n", " <th></th>\n", " <th></th>\n", " <th></th>\n", " </tr>\n", " </thead>\n", " <tbody>\n", " <tr>\n", " <th>IXHrDvdwYoDCO7bvwRMB7jD46hoWAjDi</th>\n", " <td>0.06</td>\n", " <td>0.13</td>\n", " <td>0.68</td>\n", " <td>0.71</td>\n", " <td>0.65</td>\n", " <td>0.65</td>\n", " <td>a</td>\n", " </tr>\n", " <tr>\n", " <th>iWogwaa7GooHWHcp8C0ZjRrTMDgcae0t</th>\n", " <td>0.00</td>\n", " <td>0.04</td>\n", " <td>0.95</td>\n", " <td>1.00</td>\n", " <td>0.80</td>\n", " <td>0.95</td>\n", " <td>a</td>\n", " </tr>\n", " <tr>\n", " <th>bOyRMU1QCcMqMpcjcHNBuVMF45oksQMD</th>\n", " <td>0.24</td>\n", " <td>0.24</td>\n", " <td>0.76</td>\n", " <td>0.75</td>\n", " <td>1.00</td>\n", " <td>0.76</td>\n", " <td>a</td>\n", " </tr>\n", " <tr>\n", " <th>U6mgdJX1DgAfYJ6DR7sKY0CL4YgcwZKq</th>\n", " <td>0.00</td>\n", " <td>0.00</td>\n", " <td>0.83</td>\n", " <td>0.97</td>\n", " <td>0.86</td>\n", " <td>0.90</td>\n", " <td>a</td>\n", " </tr>\n", " <tr>\n", " <th>9UODgpqx7pTDhiiLm7ds39wh59aYBrHK</th>\n", " <td>0.06</td>\n", " <td>0.20</td>\n", " <td>0.72</td>\n", " <td>0.77</td>\n", " <td>0.55</td>\n", " <td>0.91</td>\n", " <td>a</td>\n", " </tr>\n", " <tr>\n", " <th>VyX492RQzqQXRL84PByL9pLt8C5p4c50</th>\n", " <td>0.00</td>\n", " <td>0.00</td>\n", " <td>0.63</td>\n", " <td>0.87</td>\n", " <td>0.84</td>\n", " <td>1.00</td>\n", " <td>a</td>\n", " </tr>\n", " <tr>\n", " <th>bkHwhN78d7k2kIanOievgityZQD7gVOr</th>\n", " <td>0.08</td>\n", " <td>0.25</td>\n", " <td>0.93</td>\n", " <td>0.98</td>\n", " <td>0.78</td>\n", " <td>0.92</td>\n", " <td>a</td>\n", " </tr>\n", " <tr>\n", " <th>bKhIcFzfZ3YXPxNiw4E7kFyoTFAqeFTp</th>\n", " <td>0.00</td>\n", " <td>0.00</td>\n", " <td>1.00</td>\n", " <td>0.76</td>\n", " <td>1.00</td>\n", " <td>0.77</td>\n", " <td>a</td>\n", " </tr>\n", " <tr>\n", " <th>ufohn9b31ZNI2zLGNqmmRYOMtIwiw6o1</th>\n", " <td>0.09</td>\n", " <td>0.10</td>\n", " <td>0.92</td>\n", " <td>0.91</td>\n", " <td>0.09</td>\n", " <td>0.92</td>\n", " <td>a</td>\n", " </tr>\n", " <tr>\n", " <th>fZGbsBmuEtrB35G2IzQu0IxOCVoljWpz</th>\n", " <td>0.00</td>\n", " <td>0.00</td>\n", " <td>1.00</td>\n", " <td>1.00</td>\n", " <td>1.00</td>\n", " <td>0.97</td>\n", " <td>a</td>\n", " </tr>\n", " <tr>\n", " <th>YMVW8vVq8kZbGFRMWn9ElJBJ38bVV5GU</th>\n", " <td>0.00</td>\n", " <td>0.00</td>\n", " <td>0.95</td>\n", " <td>0.42</td>\n", " <td>0.92</td>\n", " <td>0.93</td>\n", " <td>a</td>\n", " </tr>\n", " <tr>\n", " <th>G2WO7k3tSjvBrlMG1Nqz4DsKBO8oaEcQ</th>\n", " <td>0.00</td>\n", " <td>0.14</td>\n", " <td>0.70</td>\n", " <td>0.54</td>\n", " <td>1.00</td>\n", " <td>1.00</td>\n", " <td>a</td>\n", " </tr>\n", " <tr>\n", " <th>OK2yLWD54tr3klqiS631VXjQlroZfmD3</th>\n", " <td>0.06</td>\n", " <td>0.03</td>\n", " <td>0.52</td>\n", " <td>1.00</td>\n", " <td>0.68</td>\n", " <td>0.89</td>\n", " <td>a</td>\n", " </tr>\n", " <tr>\n", " <th>t1Ybl1O1EAdpBEbxOLbaU4QlHtAcGCxa</th>\n", " <td>0.09</td>\n", " <td>0.11</td>\n", " <td>1.00</td>\n", " <td>0.99</td>\n", " <td>0.65</td>\n", " <td>0.54</td>\n", " <td>a</td>\n", " </tr>\n", " <tr>\n", " <th>JZaBaWCeuGjSAyoUrfwdASaIHXkHCZml</th>\n", " <td>0.00</td>\n", " <td>0.00</td>\n", " <td>0.71</td>\n", " <td>0.83</td>\n", " <td>0.84</td>\n", " <td>0.93</td>\n", " <td>a</td>\n", " </tr>\n", " <tr>\n", " <th>uoBPmOWdbNI4uowtBZRZK8BIEUVvUn1o</th>\n", " <td>0.23</td>\n", " <td>0.23</td>\n", " <td>0.62</td>\n", " <td>1.00</td>\n", " <td>0.79</td>\n", " <td>0.84</td>\n", " <td>a</td>\n", " </tr>\n", " <tr>\n", " <th>lIOWKvmCLdlUhGFYwE3lOfizSeqtxyNT</th>\n", " <td>0.11</td>\n", " <td>0.24</td>\n", " <td>0.69</td>\n", " <td>1.00</td>\n", " <td>0.66</td>\n", " <td>0.83</td>\n", " <td>a</td>\n", " </tr>\n", " <tr>\n", " <th>IXHrDvdwYoDCO7bvwRMB7jD46hoWAjDi</th>\n", " <td>0.01</td>\n", " <td>0.02</td>\n", " <td>0.70</td>\n", " <td>0.68</td>\n", " <td>0.79</td>\n", " <td>0.75</td>\n", " <td>b</td>\n", " </tr>\n", " <tr>\n", " <th>iWogwaa7GooHWHcp8C0ZjRrTMDgcae0t</th>\n", " <td>0.00</td>\n", " <td>0.00</td>\n", " <td>1.00</td>\n", " <td>1.00</td>\n", " <td>1.00</td>\n", " <td>1.00</td>\n", " <td>b</td>\n", " </tr>\n", " <tr>\n", " <th>bOyRMU1QCcMqMpcjcHNBuVMF45oksQMD</th>\n", " <td>0.00</td>\n", " <td>0.24</td>\n", " <td>0.76</td>\n", " <td>0.76</td>\n", " <td>0.76</td>\n", " <td>1.00</td>\n", " <td>b</td>\n", " </tr>\n", " <tr>\n", " <th>U6mgdJX1DgAfYJ6DR7sKY0CL4YgcwZKq</th>\n", " <td>0.00</td>\n", " <td>0.00</td>\n", " <td>0.96</td>\n", " <td>0.91</td>\n", " <td>0.92</td>\n", " <td>0.92</td>\n", " <td>b</td>\n", " </tr>\n", " <tr>\n", " <th>9UODgpqx7pTDhiiLm7ds39wh59aYBrHK</th>\n", " <td>0.20</td>\n", " <td>0.29</td>\n", " <td>0.60</td>\n", " <td>0.96</td>\n", " <td>0.70</td>\n", " <td>0.81</td>\n", " <td>b</td>\n", " </tr>\n", " <tr>\n", " <th>VyX492RQzqQXRL84PByL9pLt8C5p4c50</th>\n", " <td>0.00</td>\n", " <td>0.00</td>\n", " <td>1.00</td>\n", " <td>1.00</td>\n", " <td>1.00</td>\n", " <td>0.81</td>\n", " <td>b</td>\n", " </tr>\n", " <tr>\n", " <th>bKhIcFzfZ3YXPxNiw4E7kFyoTFAqeFTp</th>\n", " <td>0.00</td>\n", " <td>0.00</td>\n", " <td>1.00</td>\n", " <td>0.75</td>\n", " <td>1.00</td>\n", " <td>1.00</td>\n", " <td>b</td>\n", " </tr>\n", " <tr>\n", " <th>ufohn9b31ZNI2zLGNqmmRYOMtIwiw6o1</th>\n", " <td>0.13</td>\n", " <td>0.08</td>\n", " <td>0.86</td>\n", " <td>0.95</td>\n", " <td>0.74</td>\n", " <td>0.76</td>\n", " <td>b</td>\n", " </tr>\n", " <tr>\n", " <th>fZGbsBmuEtrB35G2IzQu0IxOCVoljWpz</th>\n", " <td>0.00</td>\n", " <td>0.00</td>\n", " <td>0.97</td>\n", " <td>0.99</td>\n", " <td>1.00</td>\n", " <td>0.61</td>\n", " <td>b</td>\n", " </tr>\n", " <tr>\n", " <th>G2WO7k3tSjvBrlMG1Nqz4DsKBO8oaEcQ</th>\n", " <td>0.00</td>\n", " <td>0.00</td>\n", " <td>0.49</td>\n", " <td>1.00</td>\n", " <td>0.65</td>\n", " <td>0.82</td>\n", " <td>b</td>\n", " </tr>\n", " <tr>\n", " <th>OK2yLWD54tr3klqiS631VXjQlroZfmD3</th>\n", " <td>0.00</td>\n", " <td>0.03</td>\n", " <td>0.95</td>\n", " <td>1.00</td>\n", " <td>0.83</td>\n", " <td>0.83</td>\n", " <td>b</td>\n", " </tr>\n", " <tr>\n", " <th>t1Ybl1O1EAdpBEbxOLbaU4QlHtAcGCxa</th>\n", " <td>0.00</td>\n", " <td>0.15</td>\n", " <td>0.48</td>\n", " <td>0.76</td>\n", " <td>0.74</td>\n", " <td>0.87</td>\n", " <td>b</td>\n", " </tr>\n", " <tr>\n", " <th>D0Fq5YbSHwHaHK9V5pIWlIg5T6Ji3fQH</th>\n", " <td>0.00</td>\n", " <td>0.00</td>\n", " <td>0.98</td>\n", " <td>0.74</td>\n", " <td>0.92</td>\n", " <td>0.91</td>\n", " <td>b</td>\n", " </tr>\n", " <tr>\n", " <th>uoBPmOWdbNI4uowtBZRZK8BIEUVvUn1o</th>\n", " <td>0.09</td>\n", " <td>0.10</td>\n", " <td>0.77</td>\n", " <td>1.00</td>\n", " <td>0.90</td>\n", " <td>1.00</td>\n", " <td>b</td>\n", " </tr>\n", " <tr>\n", " <th>lIOWKvmCLdlUhGFYwE3lOfizSeqtxyNT</th>\n", " <td>0.12</td>\n", " <td>0.11</td>\n", " <td>0.77</td>\n", " <td>0.92</td>\n", " <td>1.00</td>\n", " <td>0.90</td>\n", " <td>b</td>\n", " </tr>\n", " <tr>\n", " <th>IXHrDvdwYoDCO7bvwRMB7jD46hoWAjDi</th>\n", " <td>0.02</td>\n", " <td>0.01</td>\n", " <td>0.87</td>\n", " <td>0.98</td>\n", " <td>0.87</td>\n", " <td>0.93</td>\n", " <td>c</td>\n", " </tr>\n", " <tr>\n", " <th>iWogwaa7GooHWHcp8C0ZjRrTMDgcae0t</th>\n", " <td>0.00</td>\n", " <td>0.00</td>\n", " <td>0.97</td>\n", " <td>1.00</td>\n", " <td>1.00</td>\n", " <td>1.00</td>\n", " <td>c</td>\n", " </tr>\n", " <tr>\n", " <th>bOyRMU1QCcMqMpcjcHNBuVMF45oksQMD</th>\n", " <td>0.00</td>\n", " <td>0.24</td>\n", " <td>1.00</td>\n", " <td>1.00</td>\n", " <td>1.00</td>\n", " <td>1.00</td>\n", " <td>c</td>\n", " </tr>\n", " <tr>\n", " <th>U6mgdJX1DgAfYJ6DR7sKY0CL4YgcwZKq</th>\n", " <td>0.00</td>\n", " <td>0.00</td>\n", " <td>0.72</td>\n", " <td>0.85</td>\n", " <td>0.88</td>\n", " <td>0.66</td>\n", " <td>c</td>\n", " </tr>\n", " <tr>\n", " <th>VyX492RQzqQXRL84PByL9pLt8C5p4c50</th>\n", " <td>0.02</td>\n", " <td>0.00</td>\n", " <td>0.93</td>\n", " <td>0.82</td>\n", " <td>0.97</td>\n", " <td>0.83</td>\n", " <td>c</td>\n", " </tr>\n", " <tr>\n", " <th>bkHwhN78d7k2kIanOievgityZQD7gVOr</th>\n", " <td>0.18</td>\n", " <td>0.23</td>\n", " <td>0.89</td>\n", " <td>0.92</td>\n", " <td>0.95</td>\n", " <td>0.90</td>\n", " <td>c</td>\n", " </tr>\n", " <tr>\n", " <th>ufohn9b31ZNI2zLGNqmmRYOMtIwiw6o1</th>\n", " <td>0.07</td>\n", " <td>0.11</td>\n", " <td>0.77</td>\n", " <td>0.93</td>\n", " <td>0.87</td>\n", " <td>0.93</td>\n", " <td>c</td>\n", " </tr>\n", " <tr>\n", " <th>fZGbsBmuEtrB35G2IzQu0IxOCVoljWpz</th>\n", " <td>0.01</td>\n", " <td>0.00</td>\n", " <td>1.00</td>\n", " <td>1.00</td>\n", " <td>0.97</td>\n", " <td>0.75</td>\n", " <td>c</td>\n", " </tr>\n", " <tr>\n", " <th>G2WO7k3tSjvBrlMG1Nqz4DsKBO8oaEcQ</th>\n", " <td>0.20</td>\n", " <td>0.20</td>\n", " <td>0.60</td>\n", " <td>1.00</td>\n", " <td>1.00</td>\n", " <td>0.75</td>\n", " <td>c</td>\n", " </tr>\n", " <tr>\n", " <th>OK2yLWD54tr3klqiS631VXjQlroZfmD3</th>\n", " <td>0.00</td>\n", " <td>0.07</td>\n", " <td>0.91</td>\n", " <td>0.97</td>\n", " <td>0.84</td>\n", " <td>0.73</td>\n", " <td>c</td>\n", " </tr>\n", " <tr>\n", " <th>D0Fq5YbSHwHaHK9V5pIWlIg5T6Ji3fQH</th>\n", " <td>0.10</td>\n", " <td>0.29</td>\n", " <td>0.51</td>\n", " <td>0.95</td>\n", " <td>0.52</td>\n", " <td>0.87</td>\n", " <td>c</td>\n", " </tr>\n", " <tr>\n", " <th>KBKzd0PezF8bsGoEZTkVkpmj1o8OECIo</th>\n", " <td>0.12</td>\n", " <td>0.66</td>\n", " <td>0.28</td>\n", " <td>0.05</td>\n", " <td>0.54</td>\n", " <td>0.44</td>\n", " <td>c</td>\n", " </tr>\n", " <tr>\n", " <th>uoBPmOWdbNI4uowtBZRZK8BIEUVvUn1o</th>\n", " <td>0.12</td>\n", " <td>0.14</td>\n", " <td>0.77</td>\n", " <td>1.00</td>\n", " <td>0.95</td>\n", " <td>0.97</td>\n", " <td>c</td>\n", " </tr>\n", " <tr>\n", " <th>lIOWKvmCLdlUhGFYwE3lOfizSeqtxyNT</th>\n", " <td>0.24</td>\n", " <td>0.12</td>\n", " <td>0.89</td>\n", " <td>0.82</td>\n", " <td>0.69</td>\n", " <td>0.90</td>\n", " <td>c</td>\n", " </tr>\n", " </tbody>\n", "</table>\n", "</div>" ], "text/plain": [ " 0000 0011 1011 1101 1110 1111 story\n", "file_keys \n", "IXHrDvdwYoDCO7bvwRMB7jD46hoWAjDi 0.06 0.13 0.68 0.71 0.65 0.65 a\n", "iWogwaa7GooHWHcp8C0ZjRrTMDgcae0t 0.00 0.04 0.95 1.00 0.80 0.95 a\n", "bOyRMU1QCcMqMpcjcHNBuVMF45oksQMD 0.24 0.24 0.76 0.75 1.00 0.76 a\n", "U6mgdJX1DgAfYJ6DR7sKY0CL4YgcwZKq 0.00 0.00 0.83 0.97 0.86 0.90 a\n", "9UODgpqx7pTDhiiLm7ds39wh59aYBrHK 0.06 0.20 0.72 0.77 0.55 0.91 a\n", "VyX492RQzqQXRL84PByL9pLt8C5p4c50 0.00 0.00 0.63 0.87 0.84 1.00 a\n", "bkHwhN78d7k2kIanOievgityZQD7gVOr 0.08 0.25 0.93 0.98 0.78 0.92 a\n", "bKhIcFzfZ3YXPxNiw4E7kFyoTFAqeFTp 0.00 0.00 1.00 0.76 1.00 0.77 a\n", "ufohn9b31ZNI2zLGNqmmRYOMtIwiw6o1 0.09 0.10 0.92 0.91 0.09 0.92 a\n", "fZGbsBmuEtrB35G2IzQu0IxOCVoljWpz 0.00 0.00 1.00 1.00 1.00 0.97 a\n", "YMVW8vVq8kZbGFRMWn9ElJBJ38bVV5GU 0.00 0.00 0.95 0.42 0.92 0.93 a\n", "G2WO7k3tSjvBrlMG1Nqz4DsKBO8oaEcQ 0.00 0.14 0.70 0.54 1.00 1.00 a\n", "OK2yLWD54tr3klqiS631VXjQlroZfmD3 0.06 0.03 0.52 1.00 0.68 0.89 a\n", "t1Ybl1O1EAdpBEbxOLbaU4QlHtAcGCxa 0.09 0.11 1.00 0.99 0.65 0.54 a\n", "JZaBaWCeuGjSAyoUrfwdASaIHXkHCZml 0.00 0.00 0.71 0.83 0.84 0.93 a\n", "uoBPmOWdbNI4uowtBZRZK8BIEUVvUn1o 0.23 0.23 0.62 1.00 0.79 0.84 a\n", "lIOWKvmCLdlUhGFYwE3lOfizSeqtxyNT 0.11 0.24 0.69 1.00 0.66 0.83 a\n", "IXHrDvdwYoDCO7bvwRMB7jD46hoWAjDi 0.01 0.02 0.70 0.68 0.79 0.75 b\n", "iWogwaa7GooHWHcp8C0ZjRrTMDgcae0t 0.00 0.00 1.00 1.00 1.00 1.00 b\n", "bOyRMU1QCcMqMpcjcHNBuVMF45oksQMD 0.00 0.24 0.76 0.76 0.76 1.00 b\n", "U6mgdJX1DgAfYJ6DR7sKY0CL4YgcwZKq 0.00 0.00 0.96 0.91 0.92 0.92 b\n", "9UODgpqx7pTDhiiLm7ds39wh59aYBrHK 0.20 0.29 0.60 0.96 0.70 0.81 b\n", "VyX492RQzqQXRL84PByL9pLt8C5p4c50 0.00 0.00 1.00 1.00 1.00 0.81 b\n", "bKhIcFzfZ3YXPxNiw4E7kFyoTFAqeFTp 0.00 0.00 1.00 0.75 1.00 1.00 b\n", "ufohn9b31ZNI2zLGNqmmRYOMtIwiw6o1 0.13 0.08 0.86 0.95 0.74 0.76 b\n", "fZGbsBmuEtrB35G2IzQu0IxOCVoljWpz 0.00 0.00 0.97 0.99 1.00 0.61 b\n", "G2WO7k3tSjvBrlMG1Nqz4DsKBO8oaEcQ 0.00 0.00 0.49 1.00 0.65 0.82 b\n", "OK2yLWD54tr3klqiS631VXjQlroZfmD3 0.00 0.03 0.95 1.00 0.83 0.83 b\n", "t1Ybl1O1EAdpBEbxOLbaU4QlHtAcGCxa 0.00 0.15 0.48 0.76 0.74 0.87 b\n", "D0Fq5YbSHwHaHK9V5pIWlIg5T6Ji3fQH 0.00 0.00 0.98 0.74 0.92 0.91 b\n", "uoBPmOWdbNI4uowtBZRZK8BIEUVvUn1o 0.09 0.10 0.77 1.00 0.90 1.00 b\n", "lIOWKvmCLdlUhGFYwE3lOfizSeqtxyNT 0.12 0.11 0.77 0.92 1.00 0.90 b\n", "IXHrDvdwYoDCO7bvwRMB7jD46hoWAjDi 0.02 0.01 0.87 0.98 0.87 0.93 c\n", "iWogwaa7GooHWHcp8C0ZjRrTMDgcae0t 0.00 0.00 0.97 1.00 1.00 1.00 c\n", "bOyRMU1QCcMqMpcjcHNBuVMF45oksQMD 0.00 0.24 1.00 1.00 1.00 1.00 c\n", "U6mgdJX1DgAfYJ6DR7sKY0CL4YgcwZKq 0.00 0.00 0.72 0.85 0.88 0.66 c\n", "VyX492RQzqQXRL84PByL9pLt8C5p4c50 0.02 0.00 0.93 0.82 0.97 0.83 c\n", "bkHwhN78d7k2kIanOievgityZQD7gVOr 0.18 0.23 0.89 0.92 0.95 0.90 c\n", "ufohn9b31ZNI2zLGNqmmRYOMtIwiw6o1 0.07 0.11 0.77 0.93 0.87 0.93 c\n", "fZGbsBmuEtrB35G2IzQu0IxOCVoljWpz 0.01 0.00 1.00 1.00 0.97 0.75 c\n", "G2WO7k3tSjvBrlMG1Nqz4DsKBO8oaEcQ 0.20 0.20 0.60 1.00 1.00 0.75 c\n", "OK2yLWD54tr3klqiS631VXjQlroZfmD3 0.00 0.07 0.91 0.97 0.84 0.73 c\n", "D0Fq5YbSHwHaHK9V5pIWlIg5T6Ji3fQH 0.10 0.29 0.51 0.95 0.52 0.87 c\n", "KBKzd0PezF8bsGoEZTkVkpmj1o8OECIo 0.12 0.66 0.28 0.05 0.54 0.44 c\n", "uoBPmOWdbNI4uowtBZRZK8BIEUVvUn1o 0.12 0.14 0.77 1.00 0.95 0.97 c\n", "lIOWKvmCLdlUhGFYwE3lOfizSeqtxyNT 0.24 0.12 0.89 0.82 0.69 0.90 c" ] }, "execution_count": 3, "metadata": {}, "output_type": "execute_result" } ], "source": [ "task1_df = page1.append(page2).append(page3)\n", "task2_df = page4.append(page5).append(page6)\n", "task3_df = page7.append(page8).append(page9)\n", "\n", "def transform_df(df):\n", " records = []\n", " for n in range(len(df)):\n", " for c in df.columns:\n", " if c not in ['file_keys', 'story']:\n", " records.append({\n", " 'stimulus': c,\n", " 'story': df['story'].iloc[n],\n", " 'preference': df[c].iloc[n]\n", " \n", " })\n", " \n", " return pd.DataFrame.from_records(records)\n", " \n", "task1_df" ] }, { "cell_type": "code", "execution_count": 4, "metadata": {}, "outputs": [], "source": [ "task1_transformed = transform_df(task1_df)\n", "task2_transformed = transform_df(task2_df)\n", "task3_transformed = transform_df(task3_df)" ] }, { "cell_type": "code", "execution_count": 5, "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXgAAAEHCAYAAACk6V2yAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvNQv5yAAAFwhJREFUeJzt3W+IXOWhx/HvdrWJ4p9YKKzcVa8x8LwQIjWIfZOrEEob7gubhQvSuBcpbSz45r4wmlC4rr1QEgj4ppSyUBRiQmhehHihoJF4Sbx9E7zkSrn0KatGu6kraM1qipkkQ+6LORMn48zsOWfmzGye+X5AZufsnDkPvzz+9uzsmXkmrly5giQpPd8Y9QAkSdWw4CUpURa8JCXKgpekRFnwkpQoC16SEmXBS1KiLHhJStQNeR4UQngceBp4ALg5xphrP63MbKtjttUy39Uv7z/IZ8CvgZuA+eqGM5bMtjpmWy3zXeUminxUQQjhUeCNfn5ShxDWAA8BHwH1ss+ToO8CrwABuBM4FWOsFXkCs+2qme0GYJIS+ZptT87d6pWat5X+ShVCmAOer/IYCVrIbjcDb3V7kNmW8n7L113zNdvSnLvV65ltu1Gcwd8HLBw4cICpqamyT5Oc06dPs3PnTvbv38/27dsBNsQY3y3yHGbbWTPbY8eOsbS0VCpfs+3OuVu9svN2FH8UqQNMTU0xPT09gsOvTmfPnmViYqJ1cpf5NdVsO2hm25ZJ0XzNtgvn7lAVytbLJCUpUXkvk5wEbgS+md1fm32rFmP0A+X7UK/XuXz5MpcuXQLg4sWLIx5ROtqzrdVq5jtAzt3VL+9LNLPASy33v8xu7wXODHJA4+bo0aPs3r376v2tW7c2v5zGbPvSnu3GjRtHOJr0OHdXv1wFH2N8GXi50pGMqZmZGWZmZq7eX1xcZMuWLQCLIxtUItqzhWvyVZ+cu6ufr8FLUqIseElKlAUvSYmy4CUpURa8JCXKgpekRFnwkpQoC16SEmXBS1KiLHhJSpQFL0mJsuAlKVEWvCQlyoKXpERZ8JKUKAtekhJlwUtSoix4SUqUBS9JibLgJSlRFrwkJcqCl6REWfCSlCgLXpISZcFLUqIseElKlAUvSYmy4CUpURa8JCXKgpekRFnwkpQoC16SEmXBS1KiLHhJSpQFL0mJsuAlKVEWvCQl6oY8DwohTAJ7gCeBtcDrwFMxxk+qG9r4qNfr7Nu3jyNHjnDhwoXm5juAM6MbVRpas63VamzatGnUQ0qG2a5+ec/gdwGPAQ8D09m2/ZWMaAzNz89z/PhxDh8+zKFDh5qbXxzlmFLRmu2JEydGPZykmO3ql7fgdwB7Y4zvxRiXgWeBH4QQ7qluaOPjd7/7HT/5yU+46667uOWWW5qbHzHf/rVme+utt7Jjx47mt/5hlONKgdmufiu+RBNCWAfcDbzd3BZjfDeE8DnwAPBBwWNOAiwtLRXcLU3nz5/nr3/9K9/+9rdZXFxszeU8xfM12xbt2QJ84xtXz2nuB/67wNOZbYsBZwvm21NLLpNF9pu4cuVKzweEEO4CPgTWxxjfb9n+AfDzGOMrPfadA54vMiBd9THwTLd8zbZv/xFj/PdO3zDbvnXNFsy3T5tjjG/lfXCeP7J+kd3e3rZ9HfB5rx1jjHPAXOu2EMIa4AKwAajnGWTibgP+F/hn4P9o/IReAG6iR75mm0t7tvBVvqe77WS2uZTKFsy3pGa2p4rstGLBxxjPhRA+BB4k+4cLIayn8Q/8TtFRxhhrIQRijO8W3TdVWb5TMcbfZ/ehRL5m+3Udsl2ffet/ijyP2X7doLIF880jy6dWZJ9cl0kC88BzIYQ3gU+BvcBrMcYzxYaoLtrzBfMdlE5zF7MdCLNd5fIW/B4a12WfAtYAx4AnqhrUGGrPF8x3UDrNXQ2G2a5yK/6RtQohhCsxxomhH/g60U8+ZruyshmZ7cqcu9Upk0/ed7I+DjxN47K9m2OMec/8u3mhz/2T0SXbfvIx20yPeVs2I7Nt4dwdusL55DqDDyF8H/gWjSs75gdQ8MqYbXXMtlrmu/oVeokmhPAo8EY//5DZ5VAPAR/h5VCtvgu8AgTgTuBU0b+Ym21XzWw30LjcrHC+ZtuTc7d6peZtpT9xfUNDKQvZ7Wag6xsazLaU91u+7pqv2Zbm3K1ez2zbjeIM/j5g4cCBA0xNTZV9muScPn2anTt3sn//frZv3w6woeg1wWbbWTPbY8eOsbS0VCpfs+3OuVu9svN2FK+Z1QGmpqaYnp5e6bFj4+zZs0xMTLRO7jK/ppptB81s2zIpmq/ZduHcHapC2brghyQlqsiCHzcC38zur82+VYsxDv9C+oTU63UuX77MpUuXALh48eKIR5SO9mxrtZr5DpBzd/XL+xLNLPBSy/0vs9t7ybnqUMuqUD/OO7hxcPToUXbv3n31/tatW5tfLlDgJbQs390rPnCMtGe7cePGUs9jtp31mLvT2AtVKdQLuR4YY3wZeLnceK5qrgr1Q8DlXzIzMzPMzMxcvb+4uMiWLVvKPNUu4HuDGlcK2rOF0vmabQc95u5igaexFyo0zNfgd9D4MKK/DPGY42QH8JtRDyJRZlsde6FCQyn4TqtCaXBa8v3jqMeSGrOtjr1QvWGdwd+a3S4P6XjjpplvzwVYVIrZVsdeqNiwCr7bqlAajGa+t410FGky2+rYCxUbSsHHGM/RWNf1wWEcb9y05Hv/qMeSGrOtjr1QvWG+k3UeeA748xCPeV0r+H6DeeBnFQ8pJWuyfM128Ipmay8UUKQXhlnwzdVfXh3iMa9nkxR7v8Ee4B5g/QqPU8OfsluzHbyi2doL+RXqhaEVfIyxDjwTQvgV136qnzq7t8jaljHGegjhl8BPqxtSUnLna7aFFcoWe6GIQr3gZ9FIUqIseElKlAUvSYmy4CUpURa8JCXKgpekRFnwkpQoC16SEmXBS1KiLHhJSpQFL0mJsuAlKVEWvCQlyoKXpERZ8JKUKAtekhJlwUtSoix4SUqUBS9JibLgJSlRFrwkJcqCl6REWfCSlCgLXpISZcFLUqIseElKlAUvSYmy4CUpURa8JCXqhjwPCiFMAnuAJ4G1wOvAUzHGT6ob2vio1+vs27ePI0eOcOHChebmO4AzoxtVGlqzrdVqbNq0adRDSobZrn55z+B3AY8BDwPT2bb9lYxoDM3Pz3P8+HEOHz7MoUOHmptfHOWYUtGa7YkTJ0Y9nKSY7eqX6wwe2AH8Isb4HkAI4VlgIYRwT4zxg4LHnARYWloquFu6Dh48yOzsLBMTE5w/f765+ZES+Zptm9Zsl5eX2bZtGydPngS4i2K/IZltmwFmC+bbU0suk0X2m7hy5UrPB4QQ1gGfAd+JMZ5u2b4MzMYYX+2x7xzwfJEB6aq/Az/qlq/Z9m1XjHFvp2+Ybd+6Zgvm26fNMca38j44zxn8rdntctv2c8BtvXaMMc4Bc63bQghrgAvABqCeZ5CJuxP4A7AZWKTxE3oB+JQe+ZptLu3Zwlf5ftxtJ7PNpVS2YL4lNbM9VWSnPAX/RXZ7e9v2dcDnRQ4GEGOshRCIMb5bdN8UhRDOZV+ejzGeybZBiXzN9lqdss22A/ytyHOZ7bUGmS2Ybx5ZPrUi+6z4R9YY4zngQ+DBlgOtp3F2+U7RQepanfLNmG+fesxdMNu+mO31Ie8fWeeB50IIb9J46WAv8FrrT271pT1fMN9B6TR3MduBMNtVLm/B76FxXfYpYA1wDHiiqkGNofZ8wXwHpdPc1WCY7SqXq+BjjHXgmey/QXhhQM+ThPZ8QwhzfbyJzGxbdJq72VUcZZhtiwFnC+a7ksL5rHiZJEAI4XHgaeAB4OYYY94zf63AbKtjttUy39Uv7z/IZ8CvgZtovO6mwTHb6phttcx3lct1Bt8UQngUeKOfn9TZ9a4PAR/h9a6tvgu8AgQa1xifKnpJlNl21cx2A43riQvna7Y9OXerV2reVvorle9YK2Uhu90MdH3HmtmW8n7L113zNdvSnLvV65ltu1Gcwd8HLBw4cICpqamyT5Oc06dPs3PnTvbv38/27dsBNhR904fZdtbM9tixYywtLZXK12y7c+5Wr+y8HcUfReoAU1NTTE9Pr/TYsXH27FkmJiZaJ3eZX1PNtoNmtm2ZFM3XbLtw7g5VoWxd8EOSElVkwY8bgW9m99dm36rFGPO/xqOvqdfrXL58mUuXLgFw8eLFEY8oHe3Z1mo18x0g5+7ql/clmlngpZb7X2a395Lzc59bVoX6cd7BjYOjR4+ye/fuq/e3bt3a/HKBAi+hZfnuXvGBY6Q9240bN5Z6HrPtrMfcncZeqEqhXsj7TtaXgZfLjeeq5qpQPwRc/iUzMzPDzMzM1fuLi4ts2bKlzFPtAr43qHGloD1bKJ2v2XbQY+4udt3p6+yFCg3zNfgdND6M6C9DPOY42QH8ZtSDSJTZVsdeqNBQCj5bFepu4O1hHG/ctOT7x1GPJTVmWx17oXrDOoPvtiqUBqOZb+EFWLQis62OvVCxYRV8t1WhNBjNfHsuoahSzLY69kLFhlLwPVYt0gC05Hv/qMeSGrOtjr1QvWG+k3UeeA748xCPeV0r+H6DeeBnFQ8pJWuyfM128Ipmay8UUKQXhlnwzdVfXh3iMa9nkxR7v8Ee4B5g/QqPU8OfsluzHbyi2doL+RXqhaEVfHP1lxDCr7j2U/3U2b1F1raMMdZDCL8EflrdkJKSO1+zLaxQttgLRRTqBT+LRpISZcFLUqIseElKlAUvSYmy4CUpURa8JCXKgpekRFnwkpQoC16SEmXBS1KiLHhJSpQFL0mJsuAlKVEWvCQlyoKXpERZ8JKUKAtekhJlwUtSoix4SUqUBS9JibLgJSlRFrwkJcqCl6REWfCSlCgLXpISZcFLUqIseElKlAUvSYmy4CUpUTfkeVAIYRLYAzwJrAVeB56KMX5S3dDGR71eZ9++fRw5coQLFy40N98BnBndqNLQmm2tVmPTpk2jHlIyzHb1y3sGvwt4DHgYmM627a9kRGNofn6e48ePc/jwYQ4dOtTc/OIox5SK1mxPnDgx6uEkxWxXv1xn8MAO4BcxxvcAQgjPAgshhHtijB8UPOYkwNLSUsHd0nXw4EFmZ2eZmJjg/Pnzzc2PlMjXbNu0Zru8vMy2bds4efIkwF0U+w3JbNsMMFsw355acpksst/ElStXej4ghLAO+Az4TozxdMv2ZWA2xvhqj33ngOeLDEhX/R34Ubd8zbZvu2KMezt9w2z71jVbMN8+bY4xvpX3wXnO4G/Nbpfbtp8Dbuu1Y4xxDphr3RZCWANcADYA9TyDTNydwB+AzcAijZ/QC8Cn9MjXbHNpzxa+yvfjbjuZbS6lsgXzLamZ7akiO+Up+C+y29vbtq8DPi9yMIAYYy2EQIzx3aL7piiEcC778nyM8Uy2DUrka7bX6pRtth3gb0Wey2yvNchswXzzyPKpFdlnxT+yxhjPAR8CD7YcaD2Ns8t3ig5S1+qUb8Z8+9Rj7oLZ9sVsrw95/8g6DzwXQniTxksHe4HXWn9yqy/t+YL5DkqnuYvZDoTZrnJ5C34PjeuyTwFrgGPAE1UNagy15wvmOyid5q4Gw2xXubwF/y80roH/JnBTjHGmz+O+0Of+yQghPA48DTwA3BxjvCGEMNfHm8jMNtMp22z7XMmnNNtrfa0X+sgWzHclhfNZ8TJJgBDC94FvATcB883/UdQ/s62O2VbLfFe/XP8gMcbXAEIIj1Y6mjFkttUx22qZ7+o39J+42fWuDwEf4fWuraYAQgj30bjG+FTRS6LMtqtmtv9I43riwvmabU/O3eqVmreVFrzvWCtlIbvdDHR9x5rZlvJ+y9dd8zXb0py71euZbbtcr8E3Zb+KvdHPa23ZT/mFAwcOMDU1VfZpknP69Gl27tzJ/v372b59O8CGom/6MNvOmtkeO3aMpaWlUvmabXfO3eqVnbej+KNIHWBqaorp6emVHjs2zp49y8TEROvkLvNrqtl20My2LZOi+ZptF87doSqUbZHPg7+RxuVQhBDWZt+qxRjz/wqgr6nX61y+fJlLly4BcPHixRGPKB3t2dZqNfMdIOfu6pf3DH4WeKnl/pfZ7b24KEVfjh49yu7du6/e37p1a/PLacy2L+3Zbty4cYSjSY9zd/XLe5nky8DL/RyoZVWoH/fzPKmZmZlhZuar940tLi6yZcsWgP+iwEtoWb67V3zgGGnPFq7JNzez7azH3F3sulMbe6GwBQr0wjDXZG2uCvXDIR5znOwCvjfqQSTKbKtjL1RomAW/g8aHEf1liMccJzuA34x6EIky2+rYCxUaSsFnq0LdDbw9jOONm5Z8/zjqsaTGbKtjL1RvWGfw3VaF0mA08y28AItWZLbVsRcqNqyC77YqlAajmW/PJRRVitlWx16o2FAKvseqRRqAlnzvH/VYUmO21bEXqjfMd7LOA88Bfx7iMa9rBd9QNg/8rOIhpWRNlq/ZDl7RbO2FAor0wjALvrn6y6tDPOb1bJJibyjbA9wDrF/hcWr4U3ZrtoNXNFt7Ib9CvTC0go8x1oFnQgi/4tpP9VNn9xZZ2zLGWA8h/BL4aXVDSkrufM22sELZYi8UUagXhnkdvCRpiCx4SUqUBS9JibLgJSlRFrwkJcqCl6REWfCSlCgLXpISZcFLUqIseElKlAUvSYmy4CUpURa8JCXKgpekRFnwkpQoC16SEmXBS1KiLHhJSpQFL0mJsuAlKVEWvCQlyoKXpERZ8JKUKAtekhJlwUtSoix4SUqUBS9JibLgJSlRFrwkJeqGPA8KIUwCe4AngbXA68BTMcZPqhva+KjX6+zbt48jR45w4cKF5uY7gDOjG1UaWrOt1Wps2rRp1ENKhtmufnnP4HcBjwEPA9PZtv2VjGgMzc/Pc/z4cQ4fPsyhQ4eam18c5ZhS0ZrtiRMnRj2cpJjt6pfrDB7YAfwixvgeQAjhWWAhhHBPjPGDgsecBFhaWiq4W7oOHjzI7OwsExMTnD9/vrn5kRL5mm2b1myXl5fZtm0bJ0+eBLiLYr8hmW2bAWYL5ttTSy6TRfabuHLlSs8HhBDWAZ8B34kxnm7ZvgzMxhhf7bHvHPB8kQHpqr8DP+qWr9n2bVeMcW+nb5ht37pmC+bbp80xxrfyPjjPGfyt2e1y2/ZzwG29dowxzgFzrdtCCGuAC8AGoJ5nkIm7E/gDsBlYpPETegH4lB75mm0u7dnCV/l+3G0ns82lVLZgviU1sz1VZKc8Bf9Fdnt72/Z1wOdFDgYQY6yFEIgxvlt03xSFEM5lX56PMZ7JtkGJfM32Wp2yzbYD/K3Ic5nttQaZLZhvHlk+tSL7rPhH1hjjOeBD4MGWA62ncXb5TtFB6lqd8s2Yb596zF0w276Y7fUh7x9Z54HnQghv0njpYC/wWutPbvWlPV8w30HpNHcx24Ew21Uub8HvoXFd9ilgDXAMeKKqQY2h9nzBfAel09zVYJjtKper4GOMdeCZ7L9BeGFAz5OE9nxDCHN9vInMbFt0mrvZVRxlmG2LAWcL5ruSwvmseJmkJOn65GfRSFKiLHhJSpQFL0mJsuAlKVEWvCQlyoKXpERZ8JKUqLzvZO2bq0KtLITwOPA08ABwc4wx97+P+fZmttUx22r1k+8wz+BdFWplnwG/Bv6txL7m25vZVsdsq1U636G9kzWE8AGNVaF+m92/j8bnG/9jiVWhkhZCeBR4o+CZkPnmYLbVMdtqlcl3KGfw2apQdwNvN7dln/v8OY1fO9QH862O2VbHbKs3rJdoSq8KpVzMtzpmWx2zrdiwCn6gq0Lpa8y3OmZbHbOt2FAK3lWhqmW+1THb6pht9Yb5R9afA/8K/IDG6i+/BW6NMf5gKAO4DmSXjN0I/BPwe+CW7Fu1GGPPfyjz7c1sq2O21eon32FeJrkH+E8aq7+cpbFKuKsWXWsW+BJ4jUY+X2b/3ZNjX/PtzWyrY7bVKp2vC35IUqL8qAJJSpQFL0mJsuAlKVEWvCQlyoKXpERZ8JKUKAtekhJlwUtSov4fCa2WZS1H/3YAAAAASUVORK5CYII=\n", "text/plain": [ "<matplotlib.figure.Figure at 0x7fbd38ebb128>" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "fig, axes = plt.subplots(nrows=4, ncols=4)" ] }, { "cell_type": "code", "execution_count": 6, "metadata": {}, "outputs": [], "source": [ "from matplotlib import gridspec\n", "#sns.set(font_scale=1.3)" ] }, { "cell_type": "code", "execution_count": 7, "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAWAAAAFgCAYAAACFYaNMAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvNQv5yAAAIABJREFUeJzt3Xt8XGW59/9PkqbkCQXSA/QIpYC91IKI1M0GREHlpeCvT6EbFagocgb1oT93KSc1bTd7c1BRNsqWssEqFFTEPlWUk8hWLKgFFYrKhVAK9og9DG0ItU0nzx9rTTqdzCSzkpm15vB98+ora+51uhKSa+65131o6O7uRkRE4teYdAAiIvVKCVhEJCFKwCIiCVECFhFJiBKwiEhClIBFRBKiBCwikhAlYBGRhCgBi4gkRAlYRCQhQ5IOIC5mtgfwbmAtsDPhcESk9jQBY4Fl7v6PYk6omwRMkHwfTzoIEal5xwG/LubAekrAawEWLVrEmDFjko5FRGrMunXrmDlzJoS5phj1lIB3AowZM4YJEyYkHYuI1K6imzj1EE5EJCFKwCIiCYm1CcLMTgc+AxwOtLp7n/c3s6nALcChBO0q7e5+V9kDFRGJQdw14M0ECXVWfwea2T7AA8B9wHDgIuBbZnZ0WSMUEYlJrDVgd38IwMyOL+LwGUAncIO7dwOPmNli4ALgybIFKbG54447WLp0KQAdHR0ADBs2DIBjjz2Wc845Z9DnDOQehcyZM4eNGzf2XGvbtm15j2tpaem5x9atW9lrr72KPmfz5s0ADB8+vOh7jBw5khtuuKHo76OYn8lAvtfsWEr5c48a+2COH+g5A1XJvSAOB/4QJt+M3wNn9Xeimc0F2ssUl5RB5g88+4+51OcM5B7ZNm7cyIb162nbsYN0UxM05v8Amd66la5UilRzMzQ18Y9/dNLWtoN0uolCHzrT6a10daXYsaOZ7sYmVnV10ZROF/yIujWdJtXVRXMqNaDvJaPQz2Tjxo1s2LC+6LgBUqnmSPcYrDj+/5cr9oyGJBblDGvAP++rDdjMbgeGuPunsso+DVzt7ocM4J4HAi8/+uij6oZWgc4991wAbr/99rKdM5B75J7ftWoV8154oajj2ydPJtXSQlvbNubNK+6cSy+dwra2kbwwb15Rx09ub2fCkCGD+p6g98/k3HPPpatrVdFxA7S3T2bIkAl5r5XvHoMVx///KOesWrWKD3zgAwCT3H1lMdev5F4QW4F9csragC0JxCIiUnKV3ATxDHBKTtkRYbnUkez2yGwbNmwAdtVSskVtFxVJQtzd0JqAZmBo+Lol3PWPnLZegMXADWZ2GXATwfjqGcCJMYUrFSK7PTLb0KFNAHR1rdqtvFBbpJTXli1DSKc39HpD1BtlYXHXgM8Cvp31+s3w6yQz25+g29nb3f1Vd0+Z2cnAN4H5BP2AL3J39YCoQ21tO4puj2xvn1zmaCSfdLqBncCqrq7dypuGDoU85YN9gFgL4u6GthBYWGD3SmC3R43uvgz4p7IGVWI333wzK1as4Gtf+1rSoUgVSqeDxDS5vbhOPM2pFB0tLf0fGJMdbW2RHiCWQzU1WVVyG3Bd6urqYsiQ2v3fMpA/jg0bNtDWVvbQyiKdTpNKNUerlafT5QuoDlRTk1Xt/qXHYMGCBdx11110dHSw7777MmfOHG699Va6u7s54ogj2G+//XjooYd47bXXmD9/PsuWLWPPPffk9NNP5/zzz6ehoYEf/ehH3HPPPRx55JEsXryY6dOns2TJEu644w6mTJkCBJ353/Oe93D//fez//77J/xdD052X9psQ5vCP45Vq3qdk26urzbddEtLpFrksBp+wx6oammy0v+5AVqxYgWLFi3i3nvvZfTo0axevZquri4uvPDCXk0Q//qv/8rEiRP55S9/ydq1aznvvPPYd999OfXUUwH405/+xEc+8hGWLl1KV1cXO3bsYMmSJT0J+MEHH2TKlClVn3wz2nbsKLovLcCl4c+hGjU2NkbuB7y9tbXMUUmlqOR+wBWtqamJ7du38+KLL7Jjxw7Gjx/PxIkTex23bt06li1bxpw5c2hpaWHSpEl8+tOfZsmSJT3HjBw5kk996lMMGTKElpYWTj31VH7605+yc2cwreiPf/xjTjklt0eeiFQ71YAHaOLEiVx11VV885vfZNasWRx99NFceeWVvY5bv349e+21F3vvvXdP2fjx41m/fn3P6zFjxtDQ0NDz+h3veAfDhw/n17/+NW95y1t49tlnueWWW8r7DYlUqKjPDQbyzGDz5s0Fnz/kuweU5sGdEvAgTJs2jWnTptHR0cHcuXO59tprmTx59/ak0aNHs3Xr1t0mZVm9ejWjR4/uOSY7+WaccsopLFmyBDPj+OOP7zlX+qf+qL3FkcTKJepzg4E8M9i5cyfrN2xgR843Xe4udErAA7RixQrWr1/PkUceydChQ2lpaaGrq4uRI0fyq1/9inQ6TWNjI2PGjGHq1Kl8+ctf5qqrrmLdunUsXLiQSy65pM/rT58+nVtuuYXnnnsub81aClN/1N7iSGLl7EIX5bnBQJ8ZJNGFTgl4gLZv386NN97Iiy++yJAhQ3jnO9/J/PnzaWlp4cc//jFHHXUU++23Hz/96U/56le/yrx583jf+97Hnnvuycc+9rF+23T33Xdfpk6dynPPPcdxxx0X03dVO8rxx9TR0cG25mbaJxf31DzV3Ey6grqUxZHEyiHqzz0NdHY2lTeoElECHqC3vvWt3HvvvXn33XPPPbu9Hj16dME23BkzZjBjxoy8+8aNG8fEiRNrul+w1I7GRtgW8Y2v3rvQ1fd3X8HWrVvHz372M+6+++6kQ5HQsGHDaEmlIk9HWY3SEHkASToNTZ2dJY8l6s/90ilTaG0temHiRKkbWgX6+te/zkknncTMmTM55JDIUx+LSJVQDbgCzZo1i1mz+l02T6RsGok2mgyqexBJOp1OZA4OJWCpOdU+oY3UDyVgEakpUduvM5PxRO05U4oHiErAUnOq/Wl8vtp75uHWzpyP+M2pFIwaFVtsUlqV81snUkDUGk25nsbHobGxG9IwOucNYcP27QCMzRrSDsCoUYwcOTKu8KpC1Pbr9vbJpFLJNEEpAYtUkL337mLIkDGxrSwsyVIClooXtUZTzU/jq52aT6JRAu7D5y+8kM2bNpX9PsNHjODGW28t+31EyknNJ9EpAfdh86ZNtD/1VNnvM2/q1LLfQ6Tc1HwSnRJwFfrOd77DPffcw/r169lnn32YNm0as2bNoqmpOiYgEYkqlWcyns7w97115+7Djitn+qP+KQFXoTFjxnDbbbcxYcIE/vKXv3Deeecxfvx4Tj/99KRDkxK64447WLp0KdB73t5jjz2Wc845J7HY4lSomWJ7+DPZe+zY3cobN2wAduQ5o/LEmoDNrAm4DjgbaAEeBi509w0Fjp8NXAzsB6wDvubudb80xIc+9KGe7be//e1Mnz6dJ598Ugm4hrXU8Ui9QhPlF2raOPfcc3utfFyp4q4BXwFMB44CNgJ3AHcCJ+UeaGb/G5gHfMDdf2NmRwM/N7O/uvsjMcZcce6//36+/e1vs2rVqp5FPA8//PCkw5ISO+ecc+qmlltq+fqNZ+YIzp0pLcll6eOeDe0C4Hp3X+HurwNzgA+bWe/VLOEQ4Bl3/w2Auz8JPAvUdaZZu3Ytl112GRdffDGPP/44Tz/9NDNnzkw6LJGKMXLkSEaNGs2QIRN2+7d9ezPbtzf3Kh81anRiz09iqwGbWRtwAPB0pszdXzKzLQRJ9ZWcU74HnGNmxwJPAscCk4EH44m4MnV2dpJOpxkxYgTNzc388Y9/ZMmSJRx88MFJhyYVrJZXlcgVtckis++NnKWq4hBnE0RmVcnXc8pTQE4HQQBeA34IPMaumvosd3+uvxuZ2VygNIs2VZiDDz6Yz33uc1xyySXs2LGDo446io985CM8//zzSYcmIhHFmYC3hl/3ySlvA7bkOf6LwBnAO4G/AG8Hfmxmb7p7nx0K3X0uMDe7zMwOBF6OEvDwESNi6aM7fMSISMd/9rOf5bOf/WyZopFaVMurSlSz2BKwu6fM7FXgXcAfAczsIILa77N5TjkSWOzufw5f/8nM/i8wDYilR7dGp4lIOcX9EG4BcLmZTTKzvYHrgYfcfWWeY5cCp5jZWwDM7G3AKWS1IYuIVLO4u6FdBwwHlgF7AI8AnwAws5nAre4+LDz2ywTNFY+Y2ShgE3BveA0RkaoXawJ2953A7PBf7r5FwKKs110E/YaviC1AKbuoT+Ohsp7IRxkSm2oO+pdG7ZNa5xOE9anWRgdqKLJIkaIOiR0FbN26lb322qv3OdvDc/bOOWdU4fvI7mphdKASsMQq6tN4qJwn8gPpX1pINcwQFqXmnjm+3LX3co4OTGIuYyVgEemlsbubNEMYMmT0buWFau5Q3bX3QnGXey5jJWAR6WXvri6GjKmfuX1L+ekmCiVgqQpRPg6n01oaR6qDEnAfPv/5C9m8OYYliYaP4MYbixv08f73v59LL72U6dOnlzmqyhH143Bz82ZAS+NI5VMC7sPmzZtob49hSaJ5WpKoL6X6OFyrH5+lesU9Ek5EREJKwFXob3/7G2eccQZHHHEEM2bM4Nln802lISKVTgm4Cn3ve9/j6quv5re//S0f/vCHueCCC+jo6Eg6LBGJSG3AVei0007j0EMPBeD888/n7rvv5rHHHmPatGkJR1acKMN5M8erj0J1qbUhw+WiBFyFxo8f37Pd0NDA2LFjWbduXYIRFS/qcF4IhvSql0L1qoUhw+XSbwI2szeB7mIu5u6t/R8lg7V69eqe7e7ubtauXcuYMWNiu//y5csBOOywwyKfm1SH90pQT7VCLShanGJqwBdTZAKWeNx3332ceOKJTJ48mYULF/Lmm29y/PHHx3b/u+++G4Brr702tnvWGtUKBYpIwO6+MIY4KtLw4SNi6aM7fHi0JYk+/vGPc8011/D8888zadIkFixYkHfGrXJYvnw5zz33XM/2QGrB9Uq1wtIazCexSqE24D4UOzotTr/4xS8AElsTLlP7zWyrFlw9os5lXOkPPsv1SSzOpqJICdjMhgJXAmcCE4Hm7P3uXhmzZovIbgYyl3ElP/iM65NYuZuKotaA24FPEqzl9mWCZDwJOI1gFWOpcWeeeSZXXXVVz7ZUh8E8/KzEh4fl/CQWZ1NR1IEYpwMXufs3gC7gPne/GLgGeG+pg5PKc9hhh3HooYdy6KGHVnXbmwxMS0uLHiCWUNQa8Fhgebj9BsGS8gA/AeaVKiipbKr51pdKfHhYK5/EoibgNcB+wKvASuA9wB+AtxPUiKUOqOYrSct8EstsV6uoCfgXwHTgKeB24GYz+xjwTuCuEscmIlJQNdd8MyIlYHe/wMwawu3bzCwFHAd8D6i8PlsiUrOqueabEbkfsLt3Z23fC9xb7Llm1gRcB5wNtAAPAxe6+4YCx+9H0Nvi/yPo8rYCONnd10SNW0TqTyX24MgWtR/wP/W1391/188lriBowjgK2AjcAdwJnJTnXi3Ao8BvAAM2AW8DNO+iiERWib03otaAf0MwL0RDVln2PBH9DcS4AJjv7isAzGwO8KKZTXT3V3KO/RTQBlzi7jvCsj9FjHdQLvz859m0eXPZ7zNi+HBuvfHGst9HpN5UYg+ObFET8KSc183AkcDVwGV9nWhmbcABwNOZMnd/ycy2AIcDuQn4BOCvwEIz+zDwd+BWd/9af0Ga2VyCQSODsmnzZp5qH/Rl+jV1nnrwidSjqA/hcpMkBDXYLQRJ+KE+Ts/MFvN6TnmKXf2Js40iSMKzgE8D7wAeNLPX3H1RP3HOBeZml5nZgcDLfZ1XLd544w2+8Y1v8PDDD7Np0ybGjh3L/PnzmTpVi3uKVJNSTcbzAkFNuC9bw6/75JS3AVsKHL/a3W8KXz9lZncRtCH3mYBr3dVXX81rr73GwoULmTBhAq+++mrSIYnIAAw6AZvZcOBygoEZBbl7ysxeBd4F/DE89yCC2m++VSX/COSr0tX13MQbN27kgQce4P7772f//fcHYOLEiQlHJSIDEbUXRO7qGA3AUILa6hlFXGIBcLmZPUbQC+J64CF3X5nn2IXhsZ8BvgUcCswEkpmHsUJkVsM48MADkw1ERAYtag04d3WMNPAa8Dt3L6a7wHXAcGAZsAfwCPAJADObSfCQbRgE7c1mdjLwNeAGgmHQc939+xFjrimZ9eBeeeUVDjnkkISjEelfuSZOr7sJ2Qe7Ooa77wRmh/9y9y0ip23X3f8HOGIw96w1I0eO5EMf+hDz5s3j2muvZfz48T1twGqKkEpUronTa2FprGIW5Tyg2Iu5u54GxeA//uM/uOmmmzjrrLNIpVKMGzeOefPmKQFLUeIcHVauidNrZWmsYmrAKyn+wVdNrYgxYvjwWProjhg+PNLxw4YN4+qrr+bqq68uU0RSL8o9OqxcE6fXytJYxSTgo7O2DwK+Avw3sDQsOxY4l34GYlQjjU6TWlTpo8PqSb8rYrj7bzP/gPOA2e7e7u4Ph//agTkEw4xFRHpkTxlZyukjy3XduEXtBXE0cGGe8mUEtWIRkbKr1wnZ1xL0xc1tGD0z3CdStEqfKlAGr5xttdVc882ImoC/CNxpZscDT4RlxxBMyv7JEsYldaZcD4OU5GtXNdd8M6L2A77bzF4gmCAnM4fvn4F/dvenSh2c1La4HwZV4nywta5WFs8sl4GsiPEU4eg1kUqnJ/7JqpW22nIpZiDGfu7+Wma7r2Mzx4mIZKjmW1gxNeC1ZjY2TK7ryD8ooyEsr6mBGCIyeKr5FlZMAn4/wXpsme26ng5SkqWHalJL+k3A7v7LrO3/KWs0IhHooZpUu6jzAT8LfBe4W0vDSxL0UE1qSb9DkXPcTzAh+itm9rCZfcLMWssQl4hIzYuUgN39Knc/EDgReBX4BrDezL5rZh8sQ3wiIolZvnx5z8Tv5RC1BgwEbcHufh4wmmAmtMOAB0sZmIhI0u6+++7dhlOX2oAX5TSzNuDjwFnA4cBfShWUiEjS4pj0PVIN2MyazewUM7uPYPKd+cDTwLvdfUrJoxMRSUjuRELlELUGvA5oIXgY91HggXCdNxERiShqG/DlwDh3/7i736/kKyK1Ko5J36POhqZJ10XQiLx6EMdEQsVMxvMz4Ax3fz3cLsjdT+7nWk3AdcDZBE0ZDwMXuvuGfs67GLgF+KK7X9NfzCJx0oi82lXuiYSKqQGvB9JZ24NxBTAdOArYCNwB3MmuuYV7MbOJwL8C5euMJxKRRuTVh3JPJFTMXBCfzrc9QBcA8919BYCZzQFeNLOJ7v5KgXNuB64GLh7kvUVEKsqA+wFHFfYbPoCg2xoA7v6SmW0h6EfcKwGb2YXAG+7+/bAZoth7zQXaBx20iEgZFdMG/BhFTkHp7u/vY/de4dfXc8pTwN557nsA8AXgn4u5d04cc4G5Odc7EHg56rVERMqlmBrw81nbjcDpwAbgt2HZUcAo4J5+rrM1/LpPTnkbsCXP8f8NXOPuq4uIUUSk6hTTBtzz0d/MbgC+D1zk7umwrBH4JvBGP9dJmdmrwLuAP4bnHkRQ+302zyknAkea2b+Hr/cB3m1mH3L34/qLW0Sk0kVtAz4bOC6TfAHcPW1mNwG/Bmb3c/4C4PKwWWMjcD3wkLuvzHPs/jmv7wUeB74aMWYRkYoUNQHvARwEeE75JKC5iPOvA4YDy8JrPUK4wrKZzQRudfdhAO6+KvtEM/sHsMXdB9sVTkSkIkRNwD8AbjezK4Anw7JjgP8I9/UpHLo8mzw1ZXdfBCzq49zjI8YqIlLRoibgzwHbCJoSMjXeHcBtwJwSxiUiUvOizgWxDfhcWAM+OCx+yd37fAAnIiK9DWggRphw8/VcEBGRIkVdFbkF+P+BDxIsR7TbdJbu/vbShSYiUtui1oC/AfwLu7qEFTVCTkREeouagE8BPu7uD5cjGBGRehJ1RYwuNJ+CiEhJRE3AtwDnlyMQScby5ctZvlxTLYskIWoTxDjgY2b2foL5HLZn73T3S0oVmMQjs9rrtddem3Ak5Zd5oyn3JNsixYqagA14Jtw+uK8DpfItX76c5557rme71hNTPb3ZSHWIOhDjhHIFIvHLJKTMdl+JKXsRyo6ODgCGDRsGVMcilPX2ZiPVoZSLcna7+0dKF5pUqm3btgG7EnA1iPJmIxKXuBfllApy5plnctVVV/Vs9yV7EcrM8uu33357eQMUqXFxL8opFeSwww7j0EMP7dmuZVHebETiEtuinFKZ6iUZ1dObjVQPJeA86qm7Uj18jxn18mYj1UMJOI8FCxYAcPPNNyccSXGqvYdCXOrpzUaqQ9SRcDVv+fLlrFy5kpUrV1blCLFt27b19FIQkcqmGnCOTO03s13KWnC5aqpReyioxixSGVQDzvHaa6/l3S61SqmpVkocIvVINeAco0eP5uWXX+7ZLqVK6UtbKXGI1Dsl4Bznn39+T3/R888vbuK3Wuw1MWfOHDZu3Jh334YNG4BdyTvbyJEjueGGG8oam0itiDUBm1kTcB1wNtACPAxc6O4b8hx7MsHy9e8AmoDngKvc/fFyxnjYYYcxadKknu1i1OIkLxs3bmT9hg3saGvrta9p6FAAVnV17VbenErFEptIrYi7BnwFMB04CtgI3AHcCZyU59jhwM3AY0AHwTzED5jZ29z9b+UMstiaL9T2JC872tp4Yd68oo+f3N5exmhEak/cCfgCYL67rwAwsznAi2Y20d1fyT7Q3RflnPtfZtYOvBsoawKOkkSTmuSlUBOBmgdEqkdsCdjM2oADgKczZe7+kpltAQ4HXil0bnj+YcAooN/OuWY2F6jp6tjGjRvZsH49bTt27FY+tKkJgK5Vq3YrTzU3xxabiBQnzhrwXuHX13PKU8DefZ1oZvsB9wFfcfe/9ncjd58LzM25xoGUYT27JCd5aduxg3kvvFDUse2TJ5c5GhGJKs4EvDX8uk9OeRuwpdBJZjYOeITggd2V5Qlt4DTJi4gMVGwJ2N1TZvYq8C6C9eQws4MIar/P5jsnrLU+Cix299kxhRqZJnkRkYGI+yHcAuByM3uMoBfE9cBD7r4y90Azeyvwc2Chu38h1igjUs1XRAYi7qHI1wE/AZYBqwn6934CwMxmmllH1rGXA+OBWWbWkfVvZswxi4iURaw1YHffSTC4oldzQtjtbFHW608DWoFDRGqWJuMpgeXLl1fl1JUikiwl4BK4++67dxuQISJSDCXgQcoMRX7uuedUCxaRSJSAByl3KLKISLGUgEVEEqL5gAcos6zP9u3be8pWrVrFueeeu9uyPpo0R0QKUQIepKHh3Li52xmF5tWt9Dl1Ozo6aN62LdIUk82pFB0tLWWMSqS2KAGHoi5Umb2sz1lnnQUUXtYnyry6mlNX4lSLq7lUEyXgPDKLVGYScH/y1XzLraOjg23NzUXPcrapuRlee61Xk0ehppBt27YNaEL2YUP0K1VNanE1l2qiv5ZQfSxU2U1X1+7zBA8dGs4fnFOeTmv+4FpXy6u5VIu6TsDV/IBs2LBhtKRSRc8HfOmUKbSN2MG8eUUef+mUwYQnVSCp1Vxkl7pOwFpVQkSSVNcJGLSqhNSvJFdzkUDdJ2CRalCO3gpazSV5SsAiVaBcvRVU801WXSfgqF25Us3NtHR09H+gSAmVs7eCar7JqusEHFUa6OzsLLovLcDmzZthr716lYsUS70ValddJ+CBdOWisfi+tKlUM+l0A82pVNEj3DScV6R+1HUCHoi2tuL70ra3T2bTpvhHyUltUW+F2qUEXGaNjY1sizgXhIbzSjb1Vqhd+ksXqQKq+dYmJeA6kSZok25vL67HRzoNTZ2d5Q1Kiqaab22KNQGbWRNwHXA20AI8DFzo7hsKHP9h4KvAQcBLwOfd/eF4ohURKa+4a8BXANOBo4CNwB3AncBJuQea2UHAj4ALgB8AHwUWm9kUd18ZV8C1opFoDxAvvXQK21tbyxuUSJ2LOwFfAMx39xUAZjYHeNHMJrr7KznHfgp42t3vCl8vMrOLwvLiJ6ntRyociNHZ1MT2xvxL5A1Np2nduZM0sGlTM5deOoV0uu/rNjYSHpPu6YbW1NlJY9YSRtnSQ4eys7U1WBFj1KiyxJ5pgujsbGL79gLHD03T2rqTdJrdus+VOnYRiTEBm1kbcADwdKbM3V8ysy3A4UBuAj48+9jQ78Py/u41F+i34+3IkSN7ths7OiCciD1X4557MmTYMBo3bCCdTgONNDR0093dnff4hoYGoIHGxqAXxIgRIwDoaGwk/x1gz8bGoPfDqFG7xVWq2Js3bwZgyJDRNDZ2QIFIGhv3ZMiQYTQ3B8ePDntklDJ2EQnEWQPODAd7Pac8Bexd4Ph8x/Y7Ua27zwXmZpeZ2YHAy9lllTCv70BVc+wiEohzWfqt4dd9csrbgC0Fji/2WBGRqhNbAnb3FPAq8K5MWfigbW/g2TynPJN9bOiIsFxEpOrF/RBuAXC5mT1G0AvieuChAr0avgtcZmZnAD8ETgOOBD4ZU6wiImUVZxMEBH2AfwIsA1YDTcAnAMxsppn1zPXo7i8BM4AvEDQ7fAE4VV3QRKRWxFoDdvedwOzwX+6+RcCinLIHgQfjiU5EJF71NBS5CWDdunVJxyEiNSgrtzQVe049JeCxADNnzkw6DhGpbWMJpk7oVz0l4GXAccBaYGfCsYhI7WkiSL7Lij2hodBoLhERKa+4e0GIiEhICVhEJCFKwCIiCVECFhFJiBKwiEhClIBFRBKiBCwikhAlYBGRhCgBi4gkRAlYRCQhSsAiIglRAhYRSYgSsIhIQpSARUQSogQsIpIQJWARkYQoAYuIJEQJWEQkIUrAIiIJqZtFOc1sD+DdaFFOESmPnkU53f0fxZxQNwmYIPk+nnQQIlLzjgN+XcyBsSZgMzsd+AxwONDq7n3e38ymArcAhxLUXNvd/a4B3n4twKJFixgzZswALyEikt+6deuYOXMmhLmmGHHXgDcTJNT/BSzo60Az2wd4APgKwTvKe4HFZvaSuz85gHvvBBgzZgwTJkwYwOkiIkUpuokz1gTs7g8PaTSLAAAVRElEQVQBmNnxRRw+A+gEbnD3buARM1sMXAAMJAFLFZo3bx4/+clP8u5LpVIAtLW15d0/bdo02tvbyxZb5h5r1+av8KRSKTo7Owd03dbW1oLf19ixYwv+TEqh0n/mfam22Cu5Dfhw4A9h8s34PXBWfyea2Vwgud8CiUUmuRX6g4rD2rVrWfPqGsalx/Xe2RD+G4jXgVTv4jWNawZ4wd0N9I1j586gcldo/5133lkwAZb7jaM/lfD7kquSE/BeBL+G2VLA3v2d6O5zgbnZZWZ2IPByaUKTuLS3txeslUydOhWAp556Ks6QehmXHsdTG+OJYerIqSW5Tl9vHG3hf/mkGsJa5M4CSWw7ZX3j6E81/L5kq+QEvBU4MKesDdgSfygitaca3zhqTSUn4GeAU3LKjgjLpYb09XG4L2vWBLWqTM0milJ9HE6lUnQ2dsaWYNY0rqE11RrLvaT84u6G1gQ0A0PD1y3hrn/ktPUCLAZuMLPLgJsIekLMAE6MKVyJSZ/tqH1obQgT0cpo94vr47BIf+KuAZ8FfDvr9Zvh10lmtj9Bt7O3u/ur7p4ys5OBbwLzCfrWXTTALmhS4ar143BbWxttqbZ4Y6+cZ0iJqOZPTLni7oa2EFhYYPdKYFjO8cuAfyprUCJSVWrpE1OkBGxmU4CLgEOAc9x9rZmdArzi7n8oR4AiItky/Xmjause+EeHgd6zP0XPhmZmHwCeBiYB7ycYzQZBMv5i6UMTEaltUWrA1wBXuPvXzWxrVvn/ALNKGpWISAG11O4eJQEfCpyZp3wDMKo04YhIHNR9rjJEmZB9K7BvnvLMTGUiIhJBlBrwYuDfzGxG+LrbzN4CXA/8oOSRSd1QbSx+tfQxvppFqQFfDrQA64FW4DfA84Tz9JY+NBGR2lZ0DdjdO4D3mdkJwJEEyftpd3+0XMFJfVBtTOpV0QnYzD4JfN/dHwMeyyofCpzu7t8tQ3wiIjUrShPEt4F98pTvxe7Di0VEpAhRHsI1ALkT5gCMJughIVKX1jSuifwAsWde3Yijs9Y0rmEc0Ybg1qJa+Zn3m4DN7BfhZjfBmmzbs3Y3AW8FflWG2EQq3tixYwd0XueacHWGcdGSwTjGDfietaKWfubF1IA9/Ho88CK7ZjCDYP77xagJQurUQGfIqsTVGapFLf3M+03A7n4xgJmtA77i7m+UPSoRKbta+RhfzaJ0Q5tXzkBEJD619DG+mkWdjvJTBPNBTCRc1SLD3Q8qYVwiUka19DG+mkXpB/x5ghFvtwHvA24FJgNHAzeWJTqpG/o4LPUoSg34AuBCd/+emV0I3OTuK8zs3wi6okkVWrp0KQDHHntsYjHo47DUqygJ+AAgsx7bNoIBGADfDcs/U8K4JCZf+cpXgGQTsD4OS72KMhLu7+waQb8KODzcHktlL28vBSxdupQnnniCJ554oqcmLCLxiZKAfwV8KNz+PvB1M7sTuAd4sNSBSfllar+52yISjyg1188Be4Tb1wM7geOAu4F/K3FcIiI1L0o/4FTWdjfw5fCfVKnZs2czY8aMnm0RiVeUbmgHFNjVDWxz97+XJiSJy7HHHssxxxzTsy0i8YrSBLGS/LOhAWBmrwO3E6ycvHOQcUlMVPOVWjJv3ryCvWrWrFkD7Oo9k2vatGm0t8e7uE+UBHwmQZPDf7OrO9rRwLnAlwgW7LwSeJ1gCXupAqr5Sr1oba28dQCjJODzgNnu/v2ssofN7HngfHf/oJmtB65CCVhEEtDe3l6wFlsJg45yRUnAxwAX5Sl/ml3TUT5OMGBDRKSiVMKgo1xR+gGvAz6ep/zj4T4IBmqk8hwjIpKYSh10FKUG3A4sDFdF/k1YdhRwAnB2+PoE4JGSRSdSxartgVAtyx10VCm14Cj9gO80MwcuBU4Oi/8CHO3uy8Jj+pwVzcyagOsIEnYL8DDBBD8b8hx7PMHqy9kTwD/r7scUG7NIparEB0ISv0hzOLj774CZg7jfFcB0gprzRuAO4E7gpALH73T3YYO4n0hi+nogVMlqseZeqYOOok7Ivh9wFnAw8CV332BmxwJr3P3lIi5xATDf3VeE15sDvGhmE939lYixi0jMqrXmXqmDjqKMhDsCeBRYQzAR+1eADcCJwFvop2ZsZm0EPSSezpS5+0tmtoVgZrV8CbjJzP4GNIfnXeXuzxQbs4hEV6019/5UUs03I0oN+KvAAne/wsy2ZpU/xK6HcH3JzB/8ek55Ctg7z/HPA+8E/gQMAy4HfmFmh7n7mr5uZGZzCR4aSpWrxY/DIhlREvC7CJoQcq2huBUxMkl7n5zyNmBL7sHuvo5d3dtSwJVmdhpBe/Htfd3I3ecCc7PLzOxAoJhmEqkS1fpxWJJRif2AoyTgLmDPPOUHA5v6O9ndU2b2KkEi/yOAmR1EUPt9tsgY0kBDkcdKDajVj8OVOCqrlmX6AWe2K+XnHiUBPwhcZmZnha+7zWw4MB8odk2ZBcDlZvYYQS+I64GH3H1l7oFm9n7gVWAF0ArMJqhpPxQhZpGKVIm1sVpWqf2Ao4yEmw0cCbxE0If3PoKP9G0E8z8U4zqCZL0MWA00AZ8AMLOZZtaRdezhBA/9thIk4X8GTnT3v0WIWaTiVOqoLIlfQ3d3wRkmezGzFuAMgkTcSNAzYZG7bytPeKWTaQN+9NFHmTBhQtLhSB079dRTez4OH3PMMSxevDjhiGrf0qVLe/oB/+hHPypLDXjVqlV84AMfAJiU71N9PkU1QZhZM3Ar8G/u/m12Tb4jIlLxKrUfcFFNEO6+AzitzLGI1IXs/qiV2De1Vs2ePbvift5RHsI9QLAq8rfKFItIXajU2litq8SfdZQE/Ctgvpm9g+AhWvYkObj7D0oZmEgtq7SamCQjSgK+Ofx6Eb0nZu8GlIBFilSJtTGJX5TpKKN0WRMRkX4oqYqIJCTKbGhfKrCrG9gG/BV4sBr6BEtt0HBeqXZR2oDPAMYTzAexPiwbTfAwbhMwAVhtZu8rthOyyGBoOK9UuygJ+BqC2dA+lUmwZjaJYFWLBQTLB/2AYNrKfyltmDIYfU3pmEoFa6i2tbXl3V+pUzpW6uQqIlFEaQOeB8zKrt2Gq2DMBq4Jp4+8kmD5eqkSnZ2ddHZ2Jh1GZLmTq4hUoyg14PEE7b25uoFx4fZq8k+uLgnqa0rHzGTmTz31VJwhiQjRasBPAP9pZvtnCsLtG4HMlE5vJZhCUqSsNJxXakGUGvD5wBLgZTPLrFQxBvgzcEr4upmclShqRS22o1YzDeeVWhBlIMaKcBjyiQQ1XYC/AD939+7wmGInZq8pmTbUQglYykM1X6l2kZalDxPtw+G/uqJ21Mqjmq9UOw3EEBFJiAZiiIgkRAMxasS0adNYu3Zt5PPWrFkD7GpGiWLs2LEFH0yKSP+iJOB5wEdzB2KY2WzgB+5+sJldCfywxDFKEdauXcuaV9cwLj2u/4OztDa0Bhsro91vTeOaaCeISC8aiFFDxqXH8dTGeB4ETh0ZvcYsIrvTQAwRkYRoIIaISEIGMhDjg8DbwmINxBCpI5qDubQiDcQA2oBRQCswFDgaONrMcPf5pQ5ORCqL5mAurSgDMd4NPAjsBEYA6wiaIDqBVUDVJ2B15RIpTHMwl16UGvCXgXuBi4EtwHsJRsB9D/jP0ocWP3XlkrhU40f53DmYqyn2ShUlAb8TuNjdu80sDQwN24UvJxiMURP9f6u1K1cqlaKzsTO27mFrGtfQmmqN5V61SB/lBaJ1Q9sJ7Ai3XyMYegywAZhYyqBEalnmo/wTTzzRUxOuBpqDufSi1ICfJagFvwj8BrjSzLoJhid7GWKTCNra2mhLtcVbe9fsmwNSrR/lNQdz6UVJwP8ODAu3vwj8FHgE+DtwWonjEpEKpJpvaUXpB/zzrO2VwBQzGwFszvQD7o+ZNQHXAWcDLQTzCl/o7hsKHP9hgsl9DgJeAj7v7nU3F7HUltmzZzNjxoye7Wqimm9pRe0HvBt33xTxlCuA6cBRwEaCh3d3AiflHmhmBwE/Imji+AHwUWCxmU0p13SXepAlcdBHeckYVAIegAuA+e6+AsDM5gAvmtlEd38l59hPAU+7+13h60VmdlFYPq9cAe5kZ97uYWnSdOedi6h/DTTQmOd55052Duh6haxpXJP3zSPVkKKzYWBLz7d2t9LW3buxd03jGsYRrbue7FJtNV8pj9gSsJm1AQcAT2fK3P0lM9sCHA7kJuDDs48N/T4s7+9ec4HIq2C+7W1vKzgQI5VK9az9FlVra2vB9eLGjh07oGtGuk6KYLjMQLSS92HbOMaVLPZ6pJqvQLw14L3Cr6/nlKfIP4XlXgWOndLfjdx9LjmTApnZgcDLfZ1XzSPSqjl2kXoVpR/wYG0Nv+6TU95GMLIu3/HFHisiUnViqwG7e8rMXgXeBfwReh607U3QxzjXM8AJOWVHAI8OMIQmgHXr1vV3nIhIZFm5panYc+J+CLcAuNzMHiPoBXE98FCBXg3fBS4zszMIhjmfBhwJfHKA9x4LMHPmzAGeLiJSlLEE3Wb7FXcCvg4YDiwD9iAYyPEJADObCdzq7sOg5wHdDIJ+wHcAK4BTB9EFbRlwHLAWStz9IPAyMKkM142DYk9GtcZerXFDeWNvIki+y4o9oaG7e2Bdq2R3Ztbt7g1JxzEQij0Z1Rp7tcYNlRd7nA/hREQkixKwiEhClIBFRBKiBFw6ZRseHQPFnoxqjb1a44YKi10P4UREEqIasIhIQpSARUQSogQsIpIQJWARkYQoAYuIJEQJWEQkIUrAIiIJiXs2tIrX38rNZvZJguWOxgLLgUvc/ems86cCtwCHEsy81p61rh1mth/wLeBEYBvBTG9Xuns6qbjN7H8RTP/5TuBg4Evufk3O9f8PMBM4DFjj7ocMJt6ca58OfIZgualWdx+Ss7/P1bHN7L+BowEDFrr7eVGuX464zWw8we/BOwmW4jor+/cgPKbP34VyxV2i2K8BPkKwQs2v3P2Dee5xGTCLYCGFJ4ELMutBVnLsZvYB4KrwGiOA/d191WDjzkc14N6yV26eEJbdCWBm7wH+C7iYYFrN+4Cfmdne4f59gAfC8uHARcC3zOzorOsvCr9OCO9xKnBZknED3cATBIum/q7A9dcANwD/XoJYc20m+KOZlbsja3XsawlWSLmWYHXsA7MOexb4PPDjqNcfpL6umyZ4EzwTKPTH29/vQrni7u/axcT+EvAlgjm+ewmnl70MmAbsC/wZ+HFYURisssYOvEFQIRno3ONFUw24t4IrNwPnAz/K1L7M7MvAZwn+cL4DzCBY/vIGd+8GHjGzxeE1nzSzScAHgUPc/XXgdTO7HvgCweT0icTt7tuAr4X7tuW7uLv/MNx/9iDjzHfth8JrH59nd7+rY7v7f4bnnzGA65clbndfC3wz3N9r/ulifhfKFfdgYw+P+Xa4/8gCt7iAYH7v34fHXQW8BrwH+GUlx+7uvwF+k/MmXxaqAWcptHIzwTp0h5OzUnOYZP/ArpWaDwf+EJZn/D5n/+vhNbP3H5hVG00i7ko24NWxK1xZfhcqSO7vXAfwV6r//1tJKQHvrr+Vmwut1Jz5gxnofsi/MnSxBht3Javm2PtSrt+FSlGr/99KSgl4d/2t3NzfSs0D3Z9974EYbNyVrJpj70u5fhcqRa3+fyspJeAs7p4CMis3A71Wbn4mZ18DwZPSZ8KiZ8LX2Y7I2b9PeM3s/SvDdsCk4q5ku8Ueyv6ZVquy/C5UkNzfuWHAW6j+/28lpYdwvRVcudnMbgMeNLPvAI8D/4egy9fi8NzFwA1h95ubCBYBnUHQzQh3f9nMfh4ecw4wErgcuDXhuDGzPYAGgjflIWbWAux09x3h/iEEvy/NQEO4n/AB3qCET8abgaHh65Zw1z8oYnVsMxsaxt0EdIfnp919e3/Xz2mvL1nc7t6d9boBaA5fd7l7VzG/C+WKe7Cxh8c3E/y8hwCN4f5ud/9HeN4C4MbwIfTzwDUEC2L+ejBxxxG7mTWG194jvM4e4THbB9tdNJdqwL1dB/yEYGXT1QT/oz4B4O6/Bi4BbiNo3/oYcLK7bwn3p4CTgY+G+28DLnL3J7OuP5Pg5746vMcSgu5dicUdcuBNgjeN9nD7tqz9XwjLFhD0x30z/FcKZ4XXeiiMO3PtieFDqhnh/beEX3NXx344PP4TBP2g3wzL+r1+ueIO92deH0DQx/fNMP6M/n4XyhV3KWK/LSy7Gjgh3PbMTndfRNB3+6cEFYLDgP/t7qVYkbyssQPvDcueD1+/GL5+bwli340mZBcRSYhqwCIiCVECFhFJiBKwiEhClIBFRBKiBCwikhAlYBGRhCgBS80ys7lm9nz/R1bXvaR2KAFL1TOzfzaz7jzTB36FYPpDkYqkochSs8IpEDuSjkOkECVgqRpm9l6COS4OA3YSzC97EcFyNwAvmxnAL939eDObC5zu7m8Nz18IjAEeBGYTzM51D8Ew7XOBKwlm8PoB8NmsuST+B3je3S/KimW3a+eJdSEwxt0/nFV2NvAtd28JX+8P3EwwxLWFYAWHazMThkvtUwKWqhBOBrQEuJ1gLoBGgtnDdhCs7/VT4J+AvwHb+7jU0QRr9Z0IHEKQbCcAG4CTCOYTuI9g1q5vluFbyXYLQeI9gWCei7ewawIYqQNKwFIt9iaosf7E3V8My16AnkVFAf7u7uv6uU4nweKQO4C/mNnDwLHA+HA2rD+b2QMEywWVOwFPBO5z98wUjS+X+X5SYZSApSq4+6bwY/1DZvYo8Bjww5xZ0Yrx58wUm6F1weV7plHMlB0xmHiLdBPwX2Z2EvAL4P+6e6FFUaUGqReEVA13/zRBM8MvCZodnjez6REvsyPndXeBsuy/jTTB3LLZmvu5T7/nuPvtwCSCZpWDgcfDhTmlTigBS1Vx92fd/QZ3P4HgYdo57GrzLcWS5/m8BozLKctdpWNA57j7ane/zd0/TjAh+0W5x0jtUhOEVAUzO4Sgp8JPCHoLTCJoJriHYDmmNHCymX2fYGWEUi7r83Pgm2Z2GsHDuY8SPMzrq7355wQrlFwEPELQpvwvOd/TzQQPD18AhhFM5v+XEsYtFU41YKkWbwBvBe4l6H52F8GSSnPdfQMwB7iCoIfDkhLf+zvAtwh6LfyOoCtbnw/o3P3nBKswfJEgaR9HsCxPtiaCbmh/ImgD3gqcXsrApbJpRQwRkYSoBiwikhAlYBGRhCgBi4gkRAlYRCQhSsAiIglRAhYRSYgSsIhIQpSARUQS8v8AMG/nN+1rc7UAAAAASUVORK5CYII=\n", "text/plain": [ "<matplotlib.figure.Figure at 0x7fbcfc9585f8>" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "#sns.set(style=\"whitegrid\", color_codes=True)\n", "fig = plt.figure(figsize=(5,5))\n", "gs = gridspec.GridSpec(2,1,height_ratios=[2,1])\n", "plt.subplot(gs[0])\n", "g = sns.boxplot(data=task1_transformed, x='stimulus', y='preference', hue='story', width=0.8, palette={'a':'red','b':'yellow','c':'cyan'})\n", "g.set_ylabel('individual')\n", "g.set(xticklabels=[], xlabel='',)\n", "g.set_xticks([])\n", "plt.subplot(gs[1])\n", "g2 = sns.boxplot(data=task1_transformed, x='stimulus', y='preference', width=0.6, palette='gray')\n", "g2.set_ylabel('aggregate')\n", "for box in g2.artists:\n", " box.set_facecolor(\"magenta\")\n", "fig.tight_layout()\n", "plt.savefig('task1.pdf', dpi=300,bbox_inches='tight')" ] }, { "cell_type": "code", "execution_count": 8, "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAWAAAAFgCAYAAACFYaNMAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvNQv5yAAAIABJREFUeJzt3X98XHWd7/FXJknNDWlNm2KTtN3SBedwaQuC9XaxCyJdH0W5vYUuCFJ/0aIoF7YVBdayuyHIClRBeSAslBXKdQF3WXTLD5FeKiIU72PhumqL8mWRn2mScpN2pDHEJJ3cP86ZMJ3MzzNz5ntm5v18PProzJz5zvl+O6ef+Z7v+Z7Pt25iYgIRESm/iO0KiIjUKgVgERFLFIBFRCxRABYRsUQBWETEEgVgERFLFIBFRCxRABYRsUQBWETEEgVgERFLGgot4DjOu4APAH3AwZLXSESkMtUDHcCzxpg/5lOg4ACMG3yf8lFORKQWnAQ8nc8b/QTgPoB77rmH9vZ2H8VFRKpPf38/a9euBS9G5sNPAD4I0N7ezrx583wUFxGpankPzeoinIiIJQrAIiKWKACLiFiiACwiYomfi3Aih7jzzjvZuXMnAENDQwC0tLRMbl++fDnr1q2zUjfwX7/kcunK2m5XtbLx727ru1YPWEpqZGSEkZER29XIqJj6hb1t1crGv3u59llX6KKcjuMcAbyyY8cOTUOTKdavXw/Ad7/7Xcs1Sa+Y+oW9bdWqkH/3Up2N+fmue3p6WLFiBcBCY8yr+ZRRD1hEqlIlnLFoDFhEqsa6desme7iVcMaiHrCIiCUKwCIiloQ6AN9888186Utfsl0NEZFAhDoAF2t8fNx2FUREMgpNAN6yZQsnn3wyJ5xwAitXrmTHjh3cfvvtbN++neOPP56VK1cC8Oabb3LxxRezbNkyTj31VLZs2UJiKt0PfvADzj77bK677jqWLVvG5s2bWbZsGc8///zkfg4cOMBxxx3HG2+8YaWdIiIJoZgF8fLLL3PPPfdw//33M2fOHPbs2cP4+DgXXnghL7/8Mt/61rcm3/vlL3+ZBQsW8OSTT9LX18cFF1zA4YcfzplnngnA888/z+mnn87OnTsZHx9nbGyMbdu2sWjRIgB+/OMfs2jRIubPn2+lrSIiCaEIwPX19YyOjvLSSy8xa9Ys5s6dm/Z9/f39PPvss9xyyy00NTWxcOFCzj//fLZt2zYZgNva2vjMZz5DXV0dDQ0NnHnmmXzxi1/kiiuuoL6+ngcffJAzzjijnM2TCnH55ZczODiYcfvAwADwzvSmVG1tbWzevDmQukl1CkUAXrBgAZs2beKWW25h48aNnHjiiXz1q1+d8r69e/cyffp0ZsyYMfna3Llz2bt37+Tz9vZ26urqJp8fe+yxzJw5k6effpr3vve9/PrXv+bWW28NtkFSkQYHBxkY2Etr61ja7dOm1QMwPt4zZVss1njI87Dnx5BwCEUABli1ahWrVq1iaGiIq666imuvvZZoNHrIe+bMmcOBAwc4cOAA06dPB2DPnj3MmTNn8j3JwTfhjDPOYNu2bTiOwymnnDJZViRVa+sY3d0vFlyuqyuacVvibqzkAFypgkpak+3sI6gzDxv7TBWKAPzyyy+zd+9e3v/+9zNt2jSampoYHx+nra2Nn/3sZ8TjcSKRCO3t7SxdupRvfOMbbNq0if7+frZu3cpFF12U9fNXr17Nrbfeyu7du9P2rEVKrdLuyPKrVD8ug4ODDOzdS+vY1LOPafXemUfP1DOPfY2NDAwMpA2UuYLowMAAB4Gx1tYp2+qnTQOgJ81MqsZYLHNDChSKADw6OsqNN97ISy+9RENDA+973/u4+uqraWpq4sEHH2TZsmW85z3v4ZFHHuGGG26gu7ubD33oQxx22GF8/OMfzzmme/jhh7N06VJ2797NSSedVKZWiVSf5B8WKO2PS+vYGN0vFnb2sWHRIuBg2mGhbENGAPF4I2Oz2nixu7ugfUa7ugp6fzahCMBHH300999/f9pt99133yHP58yZk3EMd82aNaxZsybtts7OThYsWEBDQyiaLCIl4nfYaMOGRQHUpjChmQccpP7+fn70ox9xzjnn2K6KiMikqg/A3/72t/noRz/K2rVrOeqoo2xXR0RkUtWfj2/cuJGNGzfaroaIyBRV3wMWEQkrBWAREUsUgEVELKn6MWDJj5ZgFyk/9YAlrUpY0FCk0qkHLECwdziJSHplCcCXXngh+/ftC3w/M2fN4sbbbw98PyIipVCWALx/3z66nnsu8P10L10a+D5EREqlpseA7777bk477TSOP/54TjnlFG644QYOHjxou1oiUiNqegy4vb2dO+64g3nz5vHb3/6WCy64gLlz53LuuefarpqIBCwed1NLFprdrDEWY6ipqSR1qOke8MqVK5k/fz51dXUcc8wxrF69mp///Oe2qyUiNaKme8APP/wwd911Fz09PZMLeB533HG2q1Uzwra6wsDAAGlyc0uVikRgpLXVVz7glhKlta3ZANzX18dll13GzTffzMknn8y0adO4/vrr2b17t+2q1SzbqyvEGxunvCYSpJoNwMPDw8TjcWbNmkVjYyO//OUv2bZtG0ceeaTtqtWMcK6u4M9bbzUQj/tbGqfcqynnOvOAyrnzMY67IGq2Nfkylo1D/fBw6StVgJoNwEceeSSXXHIJF110EWNjYyxbtozTTz+dF154wXbVpALF43UcJP0aYuVaX8yvalo0tNKUJQDPnDWrLHN0Z86aVdD7L774Yi6++OKAaiO1ZszneGK5VdNdjxGKW5JotLm59JUqQFkCsO5OExGZqmaHIMQ/v7MMoPzjnSJhpgAsBRscHGRgYC+trWlmGWRZCjwWC/csg0q/oCOVRwFYfPEz7uYnsIlUMwVgEU+lX9CRyqMAXAGS521W8pxNgP3792ccH9b4sdQaBeAKU+lzNg8ePMjegQHG0tzzG/b5siKlpgBcAZLnbVbynM2ESpkvKxK0ms6GJiJiU3mWJLr0QvbvL8OSRDNnceON+d30ceqpp7JhwwZWr14dcK1ERNIrz5JE+/fR1VWGJYm6tSSRiFQODUGIiFhS0xfh3njjDT7xiU/wwgsvsHDhQq666iqOPfZY29WSChSG5W2k8tR0AP7+97/PbbfdRjQaZevWrXz+85/n8ccfr9gpXlJbqml++NDQECONjXRFC7tbMg4MD9cHU6kyqOkAfNZZZ7F48WIAPve5z3HvvffyxBNPsGrVKss1k0pje3mbSp8fXqtqOgDPnTt38nFdXR0dHR309/dbrFF5ae20ylZN88NbWlpoisV8rWLS3HwwoFoFr6YD8J49eyYfT0xM0NfXR3t7e9Yy1XTap7XTROyq6QD8wAMP8JGPfGRyDPjtt9/mlFNOybt8NZz2lXvtNBF5R3mWJJo5qyxzdGfOLGxJonPOOYdrrrlmchbEli1bmD59etYy1XTa55ffvLmxWCPxeDyYSoVAplkQiTzBB9NkS2uMxWD27MDrJuFUniWJ8rw7rZx+8pOfAGhNOCmJSGQC4jAnzQW1gdFRADpmzJhacPZs2tragq6ehFRND0GIP37z5nZ1RYnFqnPO64wZ4zQ0tKc9G6rVMyXJTXfCiYhYoh6wVJ1andRfqzJdj0h8l5mmqYXhcoQCsIhUrMjEBHEaaGiYM2Xb6Kg7l33GjI70ZSMDgdYtHwrAUnVqdVJ/LZoxPk5Du7+x9/Xr16ddfaWcNAYsImKJesAiklG229VBC6kWSwFYRDIaHBzMuIgqaCHVYikAi0hWfhZRBS2kmo+yBOALL72Uffv3B76fWTNncvuNNwa+n6D5zVIGOuUTqSRlCcD79u/nuTL8Gi718SsdRtlO+3TKJ1I9anoI4g9/+APf+c532L59O/v27aOjo4Orr76apUvtL+7p57RPp3wihbGdQKmmA/CVV17Jm2++ydatW5k3bx6vv/667SqJSJlkS4JUrgRKNRuABwcHefTRR3n44YeZP38+AAsWLLBcq+oXj8e1eKWEQrZrJeVKoFSzN2IkVsM44ogj7FZERGpWzfaAE+vBvfbaaxx11FGWa1M7IpGI1cUrRcKkZnvAbW1trFy5ku7ubnp6epiYmOC1117jtddes101EakRNd2l+PrXv85NN93Epz71KWKxGJ2dnXR3d2ssuArEMqSjHPYWG20+ODXpTgiyE0qNKUsAnjVzZlnm6M6aObOg97e0tHDllVdy5ZVXBlQjsSHbFepR70aWGR1TUxRGBgaAqStEVwO/N/cMDAxAhtuQpXhlCcDVcHeaVA6/V7fXr1/P+HhPYPWyaXBwkIGBvbS2Tv2BmTbNPStI1/Z4vDHwutWymh6CEKklftbx27BhUUC1EVAArmlaumeqTMvbQPYlbmKxRq0uLwVTABZfRkYiBa/DFYuF+3Q2191N2Za4mT07d3mRVArANczv0j1fOuYY4vWFr8M1ezbsL0NWPL9yZZHT8vJSagrAUrBi1+H6g+V1uETCQgFYys52BqpyuPPOO9m5cyeQfprX8uXLWbdunZW6hZWfuduxxkYq56iYSgFYyioMGajKrUlJhHLyO3d7do6yYacALGUVhgxU5bBu3Tr1cAtQK8dFqprNBSEiYpsCsIiIJQrAIiKWaAw4B61QLGFRzLE4MDCgnDohpACcw+DgIAN799I6liaJiTc9ZrxnahKTWGO47/qSyuP3WASI63gMJQXgPLSOjRV8t1ih+RVE8uHnWATYsEhJdcJIAVikBsTJnmgoY7n4OzfISOkpAEvRdNeXiD8KwFJSuusrnCL4zwc8mubWcCkNBWApmu76EvFHAVhEMorHMydPyqUxFmNIZ0RZKQCH0NDQEI0jIwUf9DrgRSqLArCIZBSJwEhrKy/6WNU82tVFS4NCTDb61wmhlpYWYk1NBR/0OuBFKotyQYiIWKLukojUvOS57DB1PntQc9kVgEVEUpRrPrsCcI2rxXW4RFLZmsuuAFzDanUdLpGwUACuYbW6DpdIWGgWhIiIJQrAIiKWKACLiFiiACwiYokuwolIqNi6KcIGBWARCbVqTvKvACwioVJLCf41BiwiYol6wGJNLY31lcLQ0BAjGW4dzyUODA/Xl75SUhQFYAmNah7rE0lHAVisqaWxvlJoaWmhKRaj+8XCVjYG2LBoEc3NUxMriV1lGQPetWsXu3btKseuREQqRll6wPfeey8A1157bc73Jo8LDg0NAe4vf4LGBUWkWgTeA961axe7d+9m9+7dBfeCR0ZGGBkZCahmIiJ2Bd4DTvR+E49z9YKTxwWVElFECpF8Bp06qwbCdwati3AiUpUqYVZN4AH4vPPOY9OmTZOPRUSCUmkzawIPwEuWLGHx4sWTj8tl27ZtAKxevbps+yxEYjy8nP8mIhIuZRmCsNHzTYw9hzUAFzIzRESqUyABOPUW09TpZEEPhG/bto3h4eHJx2ELwomZIYnH6gWL1Kay9IATU8mS5/MGKXXmRdgCcKEzQ8pBeRlEyi+QAJw6EF7u6WQHDx5M+1jyVwlXkEUqXVVOQ5s5cyb9/f2Tj8MmjDNDKu3qcSEqbW6o1I6qzAc8e/bstI/DYsmSJTQ3N9Pc3Kzx3zJrampS715Coyp7wGHsYSbbtWvX5EVCXYQLXjX37qWyVWUPODH3ePHixaEMbqkX4USkNlVlDxjC2fMtRGMsRrSra8rr9V7P+WBzc9oyhHDIRUTSq9oAHMaeb0KuIZK2traMZQdGRwHomDFj6sbZs7OWFZFwqdoAHGa5bs/evHlzxrLKECdSPRSALan0IRIRKZ4CsCVhHiIRkfKoylkQIiKVQD3gHIaGhhhpbKQrGi2oXKyxkSYvCZGISDoKwCKSVaYpkaBpkcVSAM6hpaWFpliM7hdfLKhcVzRKQ5myv4kEJRKZgDjMaUgfKjQtsjgKwCKS0YwZ4zQ0tGec9qhpkcWxHoAvv/xyBgcH025Ll7kqVVtbW9Z5s2FhO0m9iISP9QA8ODjIwMBeWlvHpmybNq0egPHxnrRlY7HGQOsWpHInqReR8LEegAFaW8fo7i5sjBWgq6uwmQk22U5SLyLhE4oALCL5iWWYEjlc754tNmdYASYeaK3Er5IFYL9juQMDA7S2lqoWItUr24yCUe//2IyOjrTbIwMDwNRhPrGrZAF4cHCQgb17aR1LM5br/TqP90wdy403Vu44rkg5FZOkaf369RmvpYg9JR2CaB0bK3i+7IZFi0pZBRHJIBZrTHvdZHjYG75onjp8EYs16l6KAGkMWKQGZB2+GPWGL2ZMHb6YPTt7WSmOArBIDVCO6XBSAM6DnyvPscZGdOYmItlUTQAO6k4zv1eeZ+coW6127doFKN+xSD4qOgC/9VYD8fgA69evd9NGeneXAcTj7szHxGuPPfbYIQE631uYdepWmMQqz9dee63lmoiEX0UH4Hi8joNAz/g4NDW5fzyJNHmjXpq8ESA2Pg54afLKoJg8F5WS4yLZrl272L179+TjSu8Fp55VpX5nyt8hxSpZAPabuDzOO9Ng/BhrbeXF7u6CymTKbVpqfvNcVGqOi0TvN/G42nrBTUk/8CKlUNE94ErgJ89FJeW4qGap+TtESq1kAdhv4vJLFi1idDTiK+jE4+8MNYh95513Hps2bZp8LMFKHiJJN6SVaYgk19BKtrJSWuoBB8i9MJj+7qNsYrFGmpoqbz25JUuWsHjx4snHUj7FDI9oaMUe6wE4gv90lJdcsojI6GjBY7qNsRhDOugCoZ5v+fgdItHQSnhYD8DVrKWlhaammK8x4IaGykzUrp6vSP5CEYD9JAlJ8DsLoiXDIoMiIuViPQpFJiaI00BDw5wp27IlCQGIRAYCrZuISJBKGoATOROG6+sZjUQyvm9aPD6ZPyFeV8fs2bMn7yZLvUKbKvnq7Pr169k7MEC0q4v64WEi3hLZ6cSnTeOgd1NGYyyG3xx7hV55TvTuh4frGR3N8m8yLT7Z009NAej3ardIqenmlNIqWQBOznsQGRqCpNuCU0UOO4wGL0dDtpwJua7OJpcbikTIvEc4LBJ5Z9hh9uyS5GkopH6RyBBkqWEkctjkuG+2FIC6Yi1houOxOHUTExMFFXAc5wjglR07djBv3rxAKiUiUml6enpYsWIFwEJjzKv5lMl8TiwiIoFSABYRsUQBWETEEgVgERFLFIBFRCzxMw2tHqC/v7/EVRERqVxJMTHvBOd+AnAHwNq1a30UFRGpeh3A7/J5o58A/CxwEtAHZE7SICJSW+pxg++z+RYo+EYMEREpDV2EExGxRAFYRMQSBWAREUsUgEVELFEAFhGxRAFYRMQSBWAREUsUgEVELFEAFhGxRAFYRMQSBWAREUsUgEVELFEAFhGxRAFYRMQSBWAREUsUgEVELFEAFhGxRAFYRMQSBWAREUsKXpTTcZx3AR9Ai3KKiCSbXJTTGPPHfAr4WRX5A8BTPsqJiNSCk4Cn83mjnwDcB3DPPffQ3t7uo7iISPXp7+9n7dq14MXIfPgJwAcB2tvbmTdvno/iIiJVLe+hWT8BWGpYd3c3Dz30UMbtsVgMgNbW1ozvWbVqFV1dXSWvWzFytQsqt23VqhTHItj9zjQLQkpqeHiY4eFh29UIRDW3rRpVwvdVNzExUVABx3GOAF7ZsWOHhiBkiqVLlwLw3HPPWa5J6VVz26pRub+vnp4eVqxYAbDQGPNqPmXUAxYRsUQBWETEEl2EE5FQWrVqFX19ec/omqK3txd4ZyjCr46OjpwXaP1SABaRUOrr66P39V46452+yjfXNbsPXvVfh95Ir//CeVAAFqlylTx1sDPeyXOD9i56Lm0rrveci8aARWpcJUzXqlbqAYtUua6urqy9V02vs0c9YBERSxSARUQsUQAWEbFEAVhExBJdhJOaUOykfijNxP4gJ/VL5VEAlppQ7KR+KH5if9CT+qXyKABLzaj2Sf1SeTQGLCJiiXrAIhJKsViM4ciw1TOH3kgvzbHmwD5fPWAREUvUAw5IJSdAEQmD1tZWWmOt9sftsy8pVxQFYEsSyU9yLRhYbrWQg1UkLBSAA1KpCVBqIQerSFgoAMsUmq4lUh4KwFITauGKulQezYIQEbFEPWCpCbVwRV0qj3rAIiKWKACLiFiiACwiYokCsIiIJQrAIiKWKACLiFiiACwiYonmAcshqvmOsd5Ib1HtitV5Gewm/E3m7Y300on/JZFqUTHfWbHfV2L/QX5nCsBSEzo6Oor+jOFeL4Ndp7//0J10lqQetaLYf6tivy8I/jtTAJZDVOsdY6VIbRnWDHbVqtjvrBK+LwVgkQoXhhzOyt/sjwKwSIWzncNZ+Zv9UwAWqQI2czgrf7N/moYmImKJesAyRbVP/REJCwVgOUQtTP0RCQsFYDlELUz9EQkLBWAfip32A5r6IyIKwL4UO+0HNPVHRBSAfdPS7SJSLE1DExGxRD1gkQpnO4NdUNnraoF6wCIilqgHLFLhbGewCyJ7Xa1QD1hExBIFYBERSxSARUQsUQAWEbFEAVhExBIFYBERSxSARUQssToPuLu7O2s2r1jMS+7dmn2S4apVq+jq6ipp3UREghbqGzGGh73k3jkCsIjUnlwduHxTvtrswFkNwF1dXVkbruTeIuJXc3P481OEugcsIpJJrg5cJVAAloKU4rRPY/YiLgVgKalKOO1LJ9cPC+jHRUpPAVgKUg2nfX5V6o+LhJcCsAi1/cMi9uhGDBERSxSARUQsUQAWEbFEY8A+2F4EEbQQokg1UA9YRMSSQHvAq1atoq+vz3f5fO/lzqWjoyPnHM9C2F4EEbQQokg1CDQA9/X10ft6L53xTl/lm+u8U+xX/dehN9Lrv7BIheiN9PoeEovVeVkHJ/z9ovdGeunE3//xWhf4GHBnvNN+T1GkBHbu3AnA8uXLLdfkUB0dHUWVH+71sg52+gvAnXQWXYdapYtwUlJhDVKl8M1vfhMIX9uKHV5T1kF7FIClpMIapIq1c+dOnnnmmcnH1dY+sUOzIKRkEkHqmWeemewJV4vED0vqY5FiKABLyShIiRQm0CGIar5hoZirzqArz5XmK1/5CmvWrJl8LFIKGgP2oRRXfKvxynM1B6nly5fzwQ9+cPKxSCkEGoCr9YaFUtzUUY1Xnqs9SFXbj4rYF3gPONupeqwuxnDdcNH7aJ5ozngqb+tUvVaX7qnmIFWpPyq1eixWgkADcM5T5BhQfPyFZjL2csN4qg7Vu7pCpQapWlatx2IlqJuYmCiogOM4RwCv7Nixg3nz5gVSKRGRStPT08OKFSsAFhpjXs2njKahiYhY4mcIoh6gv7+/xFUREalcSTGxPt8yfgJwB8DatWt9FBURqXodwO/yeaOfAPwscBLQBxz0Ub5QrwALy7AfG6q1bdXaLqjetqldxavHDb7P5lug4Itw5eY4zoQxps52PYJQrW2r1nZB9bZN7bJDF+FERCxRABYRsUQBWETEkkoIwN22KxCgam1btbYLqrdtapcFob8IJyJSrSqhBywiUpUUgEVELFEAFhGxRAFYRMQSBWAREUsUgEVELFEAFhGxJLAliRzHqQeuAz4LNAHbgQuNMQPe9k8DXbjZg3YBFxlj/m9S+aXArcBi3MxrXcaYf0ra/h7gNuAjwAhwJ/BVY0zc23498N+B+cAQ8AhwhTFmn612OY7zX4D/BbwPOBL4O2PMNSmf/1fAWmAJ0GuMOSpl+6eBLwD/FTcb3bPA5caYXUW261zgfwLHAc3GmIaU7acBNwB/iptq71JjzPak7f8InAg4wFZjzAUFfv7HgK8Ax+JmldoNbDLGPBVUuxzHmYt7jL0P+BPgU8nHmPeeXMeZlXaVqG3XAKcDi4CfGWP+Is0+LgM24i769XPg88aYl4NsW9DtchxnBbDJ+4xZwHxjTE/S9j8D/hZYivt//CXga8aYfyumXekE2QP+a2A1sAxIrF30PQDHcf4c+Afgi8BM4AHgR47jzPC2vxt41Ht9Jm7Auc1xnBOTPv8e7+953j7OBC5L2n4Q+CTQhvtFzgO22mwXMAE8A3we+PcMn98LbAb+PsP26bgBfh4wF/gFsN1xnGIX9tqPe2BvTN3gOM6fAj8ArgXe7f39Q295qoRfA5cCDxb6+Z6ZwM3AUcDhwL3Ao47jzC+0IQXsN477A3oe0JNmO+Q+zmy1K9e+82nb74C/A7ak2+g4zlrctq7CrftvgAe9TgiE9zvL2i7gD7gdoU9n2D4L+GfcAD4T+Bpwn+M4H8in8gWZmJgI5E80Gn0tGo2uT3p+ZDQanYhGowui0ejd0Wj0e0nb6qLR6OvRaPQz3vPzvfJ1Se/5XjQavct7vND7rCOTtq+PRqOvZKnPadFo9C2b7Ur5nJ9Go9G/ybKfz0aj0ZfyqE+Tt/8TSvS9nRKNRsdTXuuORqNPpbz2VDQa7UpTfms0Gv3HQj4/y3v7o9HomqDalbL91Wg0+smU1/I+zmy1y2/bUrZfFY1GH0/z+pPRaPRrSc9botHocDQa/VBYv7N82pW0/Qjv+52XR13+TzQavbRU31niTyA9YMdxWnFPDyaHFIwxvwPewu2NHpeybQL4D+91vL//w3s94Rcp23/vfWby9iOSepupVgC/8tsmKEm7grACd23p/wxwH4e0y5P8fZSc4zhLgNm4wzi2+DnOsgpJu/KVejwP4R5nab/3Cmtb3hzHacftDRcVP9IJaghiuvf371NejwEzvO2ZtlHEdpLeM8lxnL/EHcbYkEfdsym2XSXlOE4UuAv4sjHmQBD78JS7Xe/BHb75pjEmyB+WXAo6znIJUbvylff3XoFty4vjOIfhtusRY8yOUn9+UAE4EQzenfJ6K25v8UCWbRSxPXnfADiOczZwB/A/jDG/yLP+mRTbrpJxHOcY4AncA/62Un9+inK2qxO3XduBr5b68wuU93GWS8jala+8vvcKbVtOjuNMx70W9SaZx4uLEkgANsbEgNeBExKveRdyZuBerPlVyrY63CuSiS7+r7znyY5P2f5u7zOTt79qjJn8xXYc53zgdmCVMeaJELSrJBzHOQH4KXCdMWZzKT87g0Pa5Un+PkrCu6j3FPCoMebilCEoG/I6znIJYbvylXo8twD31vMbAAAFJUlEQVTvJel7r+C2ZeU4ThuwA/ei+NnGmNEg9hPYNDTcK5BXOI7zBDAIXA88Zox51XGcO4AfO45zN+6X91e40z1+6JX9IbDZmwJzE+4ioGtwpwJhjHnFcZzHvfesw53pcAVusAUmp3N1ASuNMXkvkhdwu3Ac511AHe6PX4PjOE3AQWPMmLe9Afd7aQTqvO0YY0a87cuBh3Gnnt1RqkZ5V7YbgWne8yZv0x9xrxhf5jjOJ4B/Bc4C3k9Sr8BxnGlem+qBCa98PHHgZvt8Y8yE4zhHA4/jTmH7m3K0y9tv4nkd0Og9HzfGjOd5nFlpV7Ft897fiPt9NQARb/uEMeaPXrktwI2O4/wQeAG4BneRy6e98qH7zvJpl+M4Ee+z3+V9zru894waY+LemO/juOPf64wxgS0+HOQ0tOuAh3Dnqe7B/Qf5JIAx5mngItyhgd8DHwc+Zox5y9seAz4GnO1tvwP4gjHm50mfv9ar/x5vH9twp28l3ITbM33CcZyhxB+b7fIY4G3cH5Uu73FyIP0b77UtuHNu3/b+JFyDe1r4reR2OY5zUpHt+pS3n8e8NiX2u8C7CLXGq9tb3t9nGmNeTSq/3Xv/J3HnSL/tvZbz873tV+BOq9uY0q61QbXL2554/ie4c3zf9tqXkOs4s9WuUrTtDu+1K4EPe49NYqMx5h7cud+P4HY2luAO5SUCUli/s6ztAk72XnvBe/6S9/xk7/mFuBfdzgJ+n9SuTUW2awolZBcRsUS3IouIWKIALCJiiQKwiIglCsAiIpYoAIuIWKIALCJiiQKwWOU4zlWO47yQ+52VtS+RfCgAS1k4jvNnjuNMpOQQBvgm8OcWqiRiXZC3Iovk5KU4LMUdiiIVRwFYSspxnJNx82MswV2V5D9xU4EmbiN/xXEcgCeNMac4jnMVcK4x5miv/FagHfgx7nI3rcB9uLd4r8fNtvVu4F+Ai5NyTfwUeMEY84Wkuhzy2WnquhVoN8aclvTaZ4HbjDFN3vP5uKs+nIyb16MHuNYYc5e/fyGRdygAS8l4iYS2Ad/FvZ8/gps9bAx3ja5HgP8GvAFkyy51Iu46gB/BXe7mX3CXBBoAPoqbE+AB3KxctwTQlGS34gbeD+PmwXgv7yRxESmKArCU0gzcHutDxpiXvNdehMkFSQH+nzGmP8fnDOMu/jgG/NZxnO3AcmCul9HqN47jPAr8BcEH4AXAA8aYRArGVwLen9QQBWApGWPMPu+0/jHHcXbgJun+15Ssafn4TSI9p6ff/fjJNImJ144vpr55ugn4B8dxPgr8BPg3Y0ymBVVFCqJZEFJSxpjzcYcZnsQddnjBcZzVBX7MWMrziQyvJR+/cdz8sMkac+wnZxljzHeBhbjDKkcCTzmOc32OzxXJiwKwlJwx5tfGmM3GmA/jXkxbxztjvvWZSxblTaAz5bXUVTx8lTHG7DHG3GGMOQc3B+4XUt8j4oeGIKRkHMc5CnemwkO4swUW4g4T3Ie7lFMc+JjjOP+Mu7pB3sv65OFx4BbHcc7CvTh3Nu7FvGzjzY/jrm7yBeB/444p/2VKm27GvXj4ItCCu1DAb0tYb6lh6gFLKf0BOBq4H3f62T/hLsd0lTFmALgc+GvcGQ7bSrzvu4HbcGct/DvuVLasF+iMMY/jrqTwt7hB+yTcFUeS1eNOQ3sedwz4AHBuKSsutUsrYoiIWKIesIiIJQrAIiKWKACLiFiiACwiYokCsIiIJQrAIiKWKACLiFiiACwiYsn/B3BsR3pZ/w++AAAAAElFTkSuQmCC\n", "text/plain": [ "<matplotlib.figure.Figure at 0x7fbcfa0c80b8>" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "fig = plt.figure(figsize=(5,5))\n", "gs = gridspec.GridSpec(2,1,height_ratios=[2,1])\n", "plt.subplot(gs[0])\n", "\n", "g = sns.boxplot(data=task2_transformed, x='stimulus', y='preference', hue='story', width=0.8, palette={'a':'red','b':'yellow','c':'cyan'})\n", "sns.set_style({'legend.frameon':False})\n", "g.set_ylabel('individual')\n", "g.set(xticklabels=[], xlabel='',)\n", "g.set_xticks([])\n", "g.set(yticklabels=[], ylabel='',)\n", "g.set_yticks([])\n", "\n", "plt.subplot(gs[1])\n", "g2 = sns.boxplot(data=task2_transformed, x='stimulus', y='preference', width=0.6, palette='gray')\n", "g2.set_ylabel('aggregate')\n", "g2.set(yticklabels=[], ylabel='',)\n", "g2.set_yticks([])\n", "for box in g2.artists:\n", " box.set_facecolor(\"magenta\")\n", "fig.tight_layout()\n", "plt.savefig('task2.pdf', dpi=300,bbox_inches='tight')" ] }, { "cell_type": "code", "execution_count": 9, "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAWAAAAFgCAYAAACFYaNMAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvNQv5yAAAIABJREFUeJzt3X18XNV95/GPHtEaoYwfwJJtYlyob7a2IKTueosLIThZSHgpBDcPxDRNYgNOsiQmCSGt2SDkUpw4gTxQUmwWYrZFyZZAagIJoTgkDYJuoU8ZkXAIAQOyZFPJHmxZCEse7R/3zjCW5nnmzrlz5/t+vXj5ju6cuedohp/OnHPu79RNTU0hIiKVV2+7AiIitUoBWETEEgVgERFLFIBFRCxRABYRsUQBWETEEgVgERFLFIBFRCxRABYRsUQBWETEksZCCziOcxzwB8AQcLTsNRIRqU4NQAfwpDHm9XwKFByAcYPvL4ooJyJSC84GHsvnicUE4CGAu+++m/b29iKKi4iEz969e7n00kvBi5H5KCYAHwVob29n0aJFRRQXEQm1vIdmNQknImJJRQJwNBolGo1WrFw1CHPbRCQ/FQnAvb299Pb2VqxcNQhz20QkP74H4Gg0Sn9/P/39/QX1+IotVw3C3DYRyV8xk3AFSe3l9fb2smXLFl/LVYMgtu3OO++kr68v+Xh0dBSA1tZWAFatWsW6detylp1eLlvZUq5ZCBv1K/aahajENbJdM911y92uXNe45pprGBkZOea54+PjGV+7paXlmN/R3Llz2bp1a8U+i9P5HoClOiU+xKkfVj/LlVq2Etew8TsJ0jVsXTfbNUZGRhge3kckMgFAPN5Ati/28fghJidjAMRiTUVds5zqCt2U03GcU4AXdu3aldcytGg0yqZNmwC48cYb6ezszOs6xZarBtXQtvXr1wNwxx13VKRcqWUrcQ0bv5MgXcPWdbNdY/369UxODtDT82zBr9vdvZTGxkUZXzfTNTMZGBhg9erVAEuMMbvzKeN7D7izs5Ply5cnj/0uVw3C3DYRyV9FhiDWrl1b0XLVIMxtk2DLNd4J/o15BsnBg43E48PJ3m6q4eFhgLTn4I2x41JVJAAX28sLc+8wzG2T6mJr/Ni2eLyOo8DA5OSMcw3NzZDhXFMsVrY6aBJOpMasW7fumN6trfHjIJiIRHi2p6egMku7u8t2/UDfinzLLbfw2c9+1nY1RER8EegAXKrJNF8fRESCIjABePv27Zxzzjm87W1v4/zzz2fXrl1s27aNhx9+mDPPPJPzzz8fgFdeeYUrr7ySlStXct5557F9+3YSS+nuu+8+PvCBD/DlL3+ZlStXsnXrVlauXMnTTz+dvM6hQ4c444wzePnll620U0QkIRBjwM8//zx3330399xzD/Pnz2fPnj1MTk6yYcMGnn/+eb7+9a8nn/v5z3+exYsX8/Of/5yhoSEuu+wyTjzxRC6++GIAnn76aS688EL6+vqYnJxkYmKCnTt3smzZMgAeeughli1bxsknn2ylrSIiCYEIwA0NDRw5coTnnnuOOXPmsHDhwrTP27t3L08++SS33norLS0tLFmyhI9//OPs3LkzGYDnzp3LRz/6Uerq6mhsbOTiiy/mk5/8JF/84hdpaGjg/vvv533ve18lmxc602//TFWp5TsiYRCIIYjFixezadMmbr31Vs466yw+85nPMDQ0M6n8vn37OOGEE2hra0v+bOHChezbty/5uL29nbq6uuTj008/ndmzZ/PYY48xODjIL3/5S9797nf726CQS9z+OTk5MOO/5uYJmpsn0p4bHt6XMXCL1KJA9IABurq66OrqYnR0lOuvv54tW7awdOnSY54zf/58Dh06xKFDhzjhhBMA2LNnD/Pnz08+JzX4Jrzvfe9j586dOI7DueeemywrxYtEJgq+/bO7e2nuJ1mUrWcP6t1L+QWiB/z888/zxBNPcOTIEZqbm2lpaaG+vp65c+eyZ88e4vE44PZuV6xYwVe/+lXGx8fZvXs3O3bs4L3vfW/W17/ooov42c9+xr333qvhB8koW89evXvxQyB6wEeOHOHmm2/mueeeo7Gxkbe+9a1s3ryZlpYW7r//flauXMlJJ53Egw8+yE033URPTw9vf/vbOf744/ngBz+YM6ieeOKJrFixgv7+fs4+++wKtUqqUTE9ewh+716CKRAB+C1veQv33HNP2nPf/e53j3k8f/58vv3tb6d97po1a1izZk3acwsWLGDx4sU0NgaiyRIyQcgrINWnJqLR3r17+dGPfqQtgMQ3QcgrINUn9AH4G9/4BnfddRcf+9jHOO2002xXR0LMdl6Balbs0sbh4WEiEV+r5qvQB+CrrrqKq666ynY1RCSLkZERhvftIzIxMeNcc0MDAJMDAzPOxZsy72pRDUIfgEWkOkQmJuh5trAJ0I3eHa7VSgFYRKpWHHdvt2JWocTj0DA2Vv5KFSAQ64D9EI1GteW7iARaaHvAiRUPfm75ngjw2t1CxI56il+7vXHjMo7MmlX+ShUglD3gaDRKf38//f39vvaCe3t7tbRNRIoWygCcGhT9CpCVCvIiEl4VGYL43IYNHNi/3/frzJ4zh5u3bfP9OjAzyPs51CEi4VSRAHxg/366n3rK9+v0rFgBuFu+b9q0KXksIhJEoRyC6OzsZPny5SxfvjzrBNldd93FBRdcwJlnnsm5557LTTfdxNGjR/O6RmpgV5AXkWKEdhVEPkGxvb2d22+/nUWLFvHrX/+ayy67jIULF3LJJZfkLJsI8oljyc+BAwcyJqVR0hqpNaENwPkExcRGnwC/93u/x0UXXcQTTzyRVwAG9XyLcfToUfYNDzOR5gZ+Ja2RWhPaAJyPBx54gO985zsMDAwkN/A844wz8i6vnm9x/E5aU6uJXaQw8bj7h73QhEhNsRijLS1lqUPNBuChoSG+8IUvcMstt3DOOefQ3NzMV77yFfr7+21XTUpUq4ldpPrUbAAeGxsjHo8zZ84cmpqa+Pd//3d27tzJqaeeartqFRPmnmItJnaRwtTXw3iR38Zay7SxQ2gDcK7bhE899VQ+/elP86lPfYqJiQlWrlzJhRdeyDPPPFPJalqlnqKIXRUJwLPnzEmu0fX7Ogn55IK48sorufLKK32vV5CppyhiT0UCcKXuTktI3CacONZkmYgEUSiHIPy8TfjOO++kr68PgNHRUQBaW1uT51etWsW6devKdj0RCa9Q3glXKePj44yPj9uuhohUqVD2gP3MBbFu3bpkDzexQuCOO+4o6zWCrthdCGKxJuLxuPW1l5mUurtC0/79gWxXNRgdHWW8qYnupYX97uPA2FiDP5WqgFAGYN0mLCLVIJQBGHSbsJ+K3YWgu3spsViL9bWXmZS6u8J4ZE4g21UNWltbaYnFilqRM2tWfgm0gii077x6viISdJqEExGxRAFYRMSSymxJ9LkNHDhQgS2JZs/h5pvzu+njvPPOY+PGjVx00UU+10rEvmLzfoDyMPupMlsSHdhPd3cFtiTq8f9253LRlvZSSSMjIwwP7yMSSZP3o9nL+zE5M+/H/v1NDA8PK4m+T0I7CRd0+eSqECmnYlZ4bNy4jKOkT5IPSqJfqpoOwC+//DIf/vCHeeaZZ1iyZAnXX389p59+uu/XVa4KqSbFJNCHwpLoA8Qy3Igx5mXmm5Vmv8Z4wbUKlpoOwN/73ve47bbbWLp0KTt27OCKK67gkUceOSa3gx9KyVWhoQsJo7lz52Y8d8Qb5mjr6Jhxrn54GJg5rFItajoAv//970/eMXf55ZfT29vLo48+SldXl+WaZVbOoYtavf1TgifbOHG2W/7Xr1/P8PC+tLePJz6jmW7UyLYlUcPYGABHZ82aca4pFoN58zLWtxA1HYAXLlyYPK6rq6Ojo4O9e/f6ft1ic1Vo6ELkWFl7zke8nnPbzJ4zQFPTAQDmp7kTcfjIEQA62tpmFpw3L+t1C1HTAXjPnj3J46mpKYaGhmhvb/f9usXmqih3ms1avf1TwqPYnnMulUq0VdMB+N577+Vd73pXcgz4tdde49xzz63ItZWrQkQqsyXR7DkVWaM7e/ac3E9K8aEPfYgbbrghuQpi+/btnHDCCT7V7ljFDB/4mWZTRCqvMlsS5Xl3WiX99Kc/BaiqPeGUZjM/mlyUalHTQxDVSD1fkfBQAJbQ0eSiVAsF4CqjW5hrVykJdYaHh4lEfKuaFEkBuIpoHXBtGxkZYXjfPiITaRLqeLfrTg7MTKgDEG9q8rVuUhwF4CpS7nXAUn0iExMFD62AO7wiwaOE7CIiligAV5HUFRBaDSFS/TQEUUW0DlgkXBSAq4x6viLhUZEAvOFzn2P/gQO+X2fO7Nlsu/lm369jk3q+IuFRkQC8/8ABniowO34xVhSRtV9ExJaaHoI4fPgwf/VXf8XDDz/M/v376ejoYPPmzaxYUT2be1Yj20mwRYKipgPwtddeyyuvvMKOHTtYtGgRL730ku0qVVyl9+FqaGhg3uzZac9VKgm2SFDUbAAeGRnhxz/+MQ888AAnn3wyAIsXL7Zcq8oqZR+uWIyCt4GJxZqYN292xiTXlUqCLRIUNRuAE7thnHLKKXYrYlGxuwlky0mQbRuYefOyB32RWlOzATixH9yLL77IaaedZrk21cWvbWDEP3HcbyDpvrVkLRd/Y2xeyq9m74SbO3cu559/Pj09PQwMDDA1NcWLL77Iiy++aLtqIlIjarYHDHDjjTfyzW9+k4985CPEYjEWLFhAT09PzY0FS/jVA5HIBD09BeZI3riMI2lWpUh5VCQAz5k9uyJrdOdkmF3PpLW1lWuvvZZrr73WpxpJLdHyOilURQJw2O9OE6mvn4I4zG+c+b+UltdJJjU9BCFSLm1tkzQ2tqedfNTEpGRSs5NwIiK2KQCLiFiiACwiYokCsIiIJYGehItGo0A4cuDeeeed9PX1JR+Pjo4C7lI4gFWrVrFu3bqcZaeXy1VWCpPtbrHceS58rZoV8Xjm5XW5NMVijLa0+FCr8Ah0AE7sAhzG3X/Hx8eBYwOpn+Ukt/qpKeI00tg4P+155bmQcgtsAI5Go/T39yePq70XvG7dumN6qYUsTUotqyVN/mmbnKSxPf1SMrD/ux8dHWU8Q/rQXOK80YMvRH09jEciPFvEjVRLu7tpTbMuWt4Q2N9OovebOA5jLzhIpg+RDHvpKBNBR8McIuUX2AAsdrVo7C5wWltbaYnF6Hm2sHwOABuXLUs7di12BTYAr127lk2bNiWPxV/Th0hExH+BDcCdnZ0sX748eSwiEjaBDcCgnq+IhFugA7B6viISZroTTkTEkkD3gEWk9tTSkkgFYBEJtDAviVQAFpFAqaUlkRoDFhGxRD1gCaVYhpwJYw1eRrOjaTKaNTURwoRmEmAKwBI62bKSHfEmdNo60mQ0y1FWpNwUgHO45pprGBkZSXtu+uzsdHPnzmXr1q2+1U3Sy/Y7t53RTCSVAnAOIyMjDO/bR2RiYsa5Zu/r7OTAwIxzsaYm3+smItVNATgPkYmJgjNQFZOzVcRPmXb7yLbTRzzue7VqmgKwSA3ItttHtp0+6uuHfa9bLVMAFqkB2Xb7yDYuvn79egYmJ32vX63SOmAREUvUAxaR0EjNI5FulVLQ8kgoAItIKFVDDglfAvD0bEajo6PAG1upB+2vkIiEQ7XlkajIGPD4+Djj4+OVuJSISNXwpQc8/a+Q7j4SEZlJqyBERCxRABYRsUQBWETEEgVgERFLtA44gJQCU6SybG0EqgAcQCMjI+wbHmYiEplxrqG5GSDt/flNsZjvdROpBZW6iUMBOKAmIhGe7ekpqMzS7m6faiMSbrZu4NAYsIiIJeoBi1SRYjYbTZTThqPBowAsUiWK3WwUtOFoUCkAi1QJbTYaPhoDFhGxRD1gSSsajQLQ2dlpuSZiW1MslnGFTcPYGABHZ81KW455GnnORgFY0rr99tsB+Na3vmW5JmJTrnHj4SNHAOhoa5t5ct48jTvnoAAsM0SjUV544YXksXrBtSvXXZUaey5NaAJwmHbhGB0dpWl8vOAbK5piMUbLcAdPovebOFYvWGwK83BY4AJwaiCdHkQh/0Ca2IEjtazkZ9++fWmPy83W/fdSXXp7ewHYsmWL5ZqUX+ACcKpCgmiYduFobW0l1tJS1K3IrY2lv6UnnXQSu3fvTh5XSjVsoiiVFY1G6e/vTx6HrRccuACcGkirOYhWsyuuuIJNmzYlj/1SbRsoSuUler+J47D1ggMXgMPkwIEDGdNGZksrOTw8DGkyoVVKZ2cnxx13XPJYRPyhAJzD6Ogo4xnuv88m1tREfGKC4eF9RCITM843N7v37k9ODsw4F483FVfZMolGo7z++uvJYwVhsWXt2rXJb2Nr1661XJvyUwD2WSQyQU/PswWV2bhxmU+1yU/Yv/ZJ9ejs7GT58uXJ47BRAM6htbWVlliMnmcLC6LdS5cS06SSSMnC2PNNUC4ImSH1Ax/mD79Uh87OzlD2fqGMPWDtYxYeYf/aJxIUZQvAIyMjDO/bR2QizYSTlyx6cmDmhNP+piaGh4czrwYgc+AGBW+/qOcr4r+yjgFHJiYKHivduGwZcDTtaoBsKwUAYjG7qwXCTD1fEf8FYhKumJUCAN3dhS0NExEJEk3CiYhYEogecLEOHmwkHi9u/FhjxyJiW1UH4Hi8jqPAwOTkjHMNzc2Q4VxTLOZ31UREcqrqAAwwEYkUlTUs6DJtA6MtYETCo+oDcBjV109BHOanSS2pLWCqQ2qu43TDYcp1LKAAHEhtbZM0NranTcOpFJ3VR3mOJRMFYBEfKNex5EPL0ERELFEPOA+xDPmAx7xbrGcdPZq2jIhINgrAOWSb1DriTa60dXTMODcPd0cMqV7aNFT8pgCcQ7abNXJNiK1fv57JycO+1EsqT5NpUm4KwFKysC650kSa+E0BWMpKvUSR/CkAS8mC3lMMaw9dql9VB+B4PPMtu9k0xWKMqqdWk9RDlyCp6gAsko+g99CldlV1AK6vh/Eik/G0psmzICJSSboTTkTEEgVgERFLFIBFRCxRABYRsUQBWETEEgVgEQmlaDRKNBqteNlCKACLSCj19vbS29tb8bKF0GJYH42OjjI+3kR398xcwtnEYk20tIz6VCuR8ItGo/T39yePOzs7K1K2UGULwKOjo4w1NbFx2TLieTw/0fWOA/v3N7Fx4zL3cR6F673C8Tg07d/P0u5uGsbGqPc2rEwn3tyc3Em4lN2DC80rEI+7AbXQdpVyTakNxX4ucuU5LqVsUD6Lqb3X3t5etmzZUpGyhSpbAG5paWF8fByAuqkppqamMj63rq4O6urcB8loU++dy6MsXlniNNTXM7+xkdH6esaz1O/4+vo37n4r0+7BufIKLF68mJGRESDRG85cw5aWFlpbW5OPM9VPuQwknVI+F7bKCtRlC3bpOI5zCvDCrl27WLRokS+VEhEpRTQaZdOmTQDceOONBQ9BFFN2YGCA1atXAywxxuzOp4zGgEUkdDo7O1m+fHnyuFJlC6UALCKhtHbtWitlC6EALCKhVErv1e+eb4LWAYuIWKIALCJiSTFDEA0Ae/fuLXNVRESqV0pMbMi3TDEBuAPg0ksvLaKoiEjodQC/zeeJxQTgJ4GzgSHgaBHlRUTCqAE3+D6Zb4GCb8QQEZHy0CSciIglCsAiIpYoAIuIWKIALCJiiQKwiIglCsAiIpYoAIuIWKIALCJiiQKwiIglCsAiIpYoAIuIWKIALCJiiQKwiIglCsAiIpYoAIuIWKIALCJiiQKwiIglCsAiIpYoAIuIWFLwppyO4xwH/AHalFNEJFVyU05jzOv5FChmV+Q/AH5RRDkRkVpwNvBYPk8sJgAPAdx99920t7cXUTx/73jHOwB49NFHfb2ODRs2bABg27ZtlmsiIuWwd+9eLr30UvBiZD6KCcBHAdrb21m0aFERxfOzbds2Dh48CMCDDz6YDFhh0NfXx1NPPQXAiy++yKpVqyzXSETKKO+h2WICcEV87WtfO+Y4TAF4etuqKQD39PTwwx/+MOP5WCwGQCQSyficrq4uuru7y163UuRqF4S3bbXcLrDbNq2CkLIaGxtjbGzMdjV8Eda2qV321E1NTRVUwHGcU4AXdu3a5fsQxHXXXQfA5s2bQ9UD7uvrY82aNQDcd999VdUDzmXFihUAySGWMAlr29Su8hgYGGD16tUAS4wxu/MpE9ghiA0bNiS/qocp+AKsWrWKs846K3ksIjN1dXUxNJT3fNYMg4ODwBuBuFgdHR05h6eKFdgADHD11VfbroJvwtw2kXIYGhpi8KVBFsQXFFV+Vt0s92B38XUYrB8svnAeAh2Aw9bzTaWer0huC+ILeGrE3tDIirml9Z5z0SSciIglCsAiIpYoAIuIWBLoMeC+vj5A46VSulJn1KE8s+p+zqhL9Ql0AE4sQwtjAA7qH5ewLv0pdUYdSp9V93tGXapPYANwX18fjz/+ePI4aIGqVEH94xLmpT9hn1GX6hPYAFzN+RJyCfofFwUqkcrQJJwF0/+4iEhtCmwATr1TTHeNiUgYBTYAJ/IlnHXWWYH7il4q/XEREQjwGDDABRdcYLsKvli1ahXLli1LHovITLFYjLH6MatzAoP1g8yKzfLt9QPbAwZ46KGHeOihh2xXwxeHDx/m8OHDtqshIhYFtgcc9JUCpejr62P37t3J4zC1TaRcIpEIkVjE/oqc7BtqlCSwPeAwrxT40pe+lPZYRGpLYANwmL388stpj0WktgR2COLqq69ObtsTtpUCJ598Mk8//XTyWPxXCxM6Un0C2wMO8zK0v/iLv0h7LCK1JbA9YAhfz7cahLWnWAsTOlJ9AtsDBrcXHLbeL4R7glFE8hfoHrBUnnqK1ScIKUT9ynM8WD9Y9LexWF0MgMhU8R+mwfpBFlB8CtNcFIB90tPTk/EDOT4+njz+zW9+k/GD39XVRXd3ty/1k/CwnULUr/ShHR0dJZUfGxwDILKg+AC8gAUl1yMbBWALWlpa0h6LFMtmClG/5gtK7VEnOjZPPWXv21wuCsA+6e7uztp7Xb58ORDsD4eI+EsB2BL1fEUk0KsgRETCTAFYRMQSBWAREUsUgEVELNEknMwQ9sXvIkGhACzHqIXF7yJBoQAsx6iFxe8iQaExYBERSxSARUQsCXQA7uvro6+vz3Y1RER8Eegx4ESu3DDmBBYRCWwADvO29GJHKcvroPQldn4tr7O9i4n2uiteYAPw9F0jFIClFOVY1lbqEjstr5PpAhuARcqpHLs1BHWJne1dTLSDSfECOwmXuiGnNucUkTAKbA84sS194lhEJGwCG4BBPV8RCbdAB2D1fEUkzAI7BiwiEnYKwCIiligAi4hYogAsImKJArCIiCVWV0H09PRkvUMpFvPuvY9kv82mq6uL7u7ustZNRMRvge4Bj42NMTY2ZrsaIiK+sNoD7u7uztpzDeq99yJBY3MjVW2iWrxA34gRVF1dXQwNDZX0GoODg8Abf2SK0dHRUZYkM1LdbG+kaivLW64hzHz/H7M5hKkAXIShoSEGXxpkQbz4v/qz6rz8qbuLKz9YP1j0tSVctJFqerNmBT9HsQJwkRbEF1hL/wdYS74tEhS5hjCrQaAn4UREwkwBWERCqRo29dUQhIiEUjVs6qsesIiETmJT38cffzzQvWAFYBEJnemb+gaVhiCKYHsbcNBW4CJhoAAsBSnH4nfl7hC/XX311axZsyZ5HFQKwEWwvQ04BHcr8GpY/C7hVy2b+ioAS0HCsPhdakOQe74JvgbgUnMmlCNfAihngkgtCnLPN8HXAFxqzoRS8yWAciaISHD5PgShnAkiIulpHbCUVTXc/ikSFJqEk7Kqhts/RYJCPWApm2q5/VMkKNQDlrKZfvtnNfWCc91gArrJRMpPAVgkT7rJRMpNAbhIpWyCCOHcCLFabv9MRzeYiA0KwEUoxwaE1boRYjbVcvunSFAoABehHHfVhXUjxGrr+Up4bdu2DYANGzZYrklmCsBSVur5SlAkJoWDHIC1DE1EQmfbtm0cPHiQgwcPJnvCQeRrDzgWi3Go/hALTkw/WRQnzhRTJV+njjrqM/wtOcpRToidUPI1CqW8uRIUtfhZnL4kMqi9YF8D8PHHH8/Y2FjmJ8ShDPEX6sjYl2+ggeOPP74MFykvLWmSoNBn0Z66qanCIqDjOKcAL+zatYtFixb5UikRkVJs27aN6667DoDNmzdXpAc8MDDA6tWrAZYYY3bnU0ZjwCISOhs2bKCtrY22trbADj9AcUMQDQB79+4tc1VERMrn8ssvB9yeaSWkxMSGfMsUMwTxR8AvCiokIlI7zjbGPJbPE4vpAT8JnA0MAUeLKF+oF4AlFbiODWFtW1jbBeFtm9pVugagAzdG5qXgHnClOY4zZYyps10PP4S1bWFtF4S3bWqXHZqEExGxRAFYRMQSBWAREUuqIQD32K6Aj8LatrC2C8LbNrXLgsBPwomIhFU19IBFREJJAVhExBIFYBERSxSARUQsUQAWEbFEAVhExBIFYBERS3zbkshxnAbgy8DHgBbgYWCDMWbYO/+nQDdu9qAo8CljzL+klF8BfBtYjpt5rdsY87cp508CbgPeBYwDdwJ/boyJe+f/ElgLzPXO/yPwOWPMS7ba5TjOfwH+D/BW4FTgOmPMDdNe/zPApUAnMGiMOW3a+Q94r7/Q+9HTwLXGmJ+X2K5LgP8JnAHMMsY0Tjt/AXAT8DvAb3F/lw+nnP/fwB8CDrDDGHNZga9/NvBN4BTcrFK/BW4wxtznV7scx1mI+xl7K/Bm4COpnzHvObk+Z1baVaa23QBcCCwD/tEY88401/gCcBUQAZ4ArjDGPO9n2/xul+M4q4FN3mvMAU42xgyknHeAu4DfBZqAAeAbxpjtpbQrHT97wH8GXASsBBJ7F/0NJHMK/zXwSWA2cC/wI8dx2rzzbwJ+7P18NvAJ4DbHcf4w5fXv9v5d5F3jYuALKef/BnirMaYN9wPyEvA9m+3C3QHvceAK4J8zvP4gsBX4ywzn/wl4lzFmNu4fl29514iU0CaAA7gf7Kumn3Ac53eA+4AtwJu8f3/gbU9ZcOgAAAAIU0lEQVSV8Evgc8D9hb6+x+C+h3Nx/2e/Cvhbx3H+a6ENKeC6cdw/oGtx/ydLJ9fnzFa7cl07n7b9FrgOSBtYHMe5FLetXcCJwK+A+71OCAT3PcvaLuAwbkfoTzOc3wt8BDjJix+XADc4jvM/8qp9AfzclPMKYHPKX8trgOccx1kMXA7cl+hBOY7zVeBK3DfzLmANMAZsNcZMAf/gOM4PvNd8wnGcJcA7gdOMMa8CrzqO8xXgfwFfATDGPJNSlzrcN86x2S5jzDjwde/ceLoXN8Z83zv/sQznX055WIebk3kWcDIQK7ZRxpifeNc9N83pjwL/ktLTuNtxnE94P+/xyn/LK//hIl4fY8wriWPHcepx36964DTg1wU3KI/rGmOGgFu98zNyW+f5ObPSrlzXztU27znf8c7/foZLXAFsM8b8q/e8TcArwB8BPw/ie+Y9J2u7jDH/BPzTtA5E6vlXgVdTfjTl/efgBv+y8aUH7PXG3gwkhxSMMb8FDuJ+rThj2rkp4N+8n+P9+2/ezxP+ddr5V73XTD1/SkpvE8dx1jqO8yowCmwErrfcrrJwHOfNjuPEgCPA94HvGWOi5bzGNMe0y5P6fpSN167XcXdd+X+U+QNfoLw+Z/kIWLvyNf3zPAr8hmnve5W2LSfHcX7pOM7ruN/uXgG+W+5r+DUEcYL376vTfh4D2rzzmc5RwnlSnoMxptcY8ybc8djrccdkS1Fqu8rCGPOSMSbive7HgZ+V8/XTqEi7ALx2teJ+a/gRMFnuaxQgr89ZPgLWrnzl9b5XadtyMsacjtuud+IOwR0u9zX8CsCHvH/fNO3nEdze4qEs5yjhfOq1k4wxe4HbgQccx5mTR/0zKbVdZWWMOWyM2QFsdBznfD+u4al0u143xvw98HbgslzP91FBn7NcAtSufOX9vldh2/JijJkwxuzCHQO/rtyv70sANsbEcCe93pb4mTeR04bbnf+PaefqcGck/8P70X94j1OdOe38m7zXTD2/2xu/SacROB5YUESTgLK0yy+NuDO2fjmmXZ7U98Mvfrcrl2I+Z/mw3a58Tf88t+LWO9v7Xi1tK5Qv7fJzEm478EXHcR4FRnAnLX5ijNntOM7twEOO49yFO270GdwlXT/wyv4A2Ootgfkm7iaga3CXAmGMecFxnEe856zDnYX9IrANkhMCnwL+zhjziuM4i4BbgN1A6uRcpduF4zjH4U6e1QONjuO0AEeNMRPe+Ubc96UJqPPO403gJZa5PQ48j/sH5bO449I/LaVR3sx2E9DsPW7xTr2OO2P8BW+C7fvA+4HfJ2UW2XGcZq9NDcCUVz5ujDmS6/WNMVOO4/wx8Czu5E0j7iz0ecBX/WqXd93E4zqgyXs8aYyZzPU5s9muUtvmPb8J9/1qBOq981PGmNe9ctuBm70J8GeAG3A3uXzMKx+49yyfdnnxoRk4znud47znHDHGxL1vkzHc+Zsp4D3AnwCfLqVd6fi5DO3LwA9xdwjdg/sL+RMA427Z/CncYYFXgQ8C7zHGHPTOx3Ab/QHv/O3AJ4wxT6S8/qVe/fd419iJu3wr4T1Av+M4h3EnBsaAdybeJBvt8hjgNdw/Kt3e8e0p5/+X97PtuGtuX/P+S1gK7ML9evg87le+C40xvyqxXR/xrvMTr02J6y72JqHWeHU76P17sTFmd0r5h73n/wnuGunXOHYyJuPre+c7cMfZYrhL8dYBHzbG/INf7fLOJx6/GXeN72te+xJyfc5stascbbvd+9m1wDu8Y5M4aYy5G3ft94O4nY1O4L3GmMTqg6C+Z1nbBZzj/SzRGXvOe3yO97jNe939wH/izh993hhzR4ntmkEJ2UVELNGtyCIiligAi4hYogAsImKJArCIiCUKwCIiligAi4hYogAsVjmOc73jOKXeHBO4a4nkQwFYKsJxnP/uOM5UmhSAX8NNbyhSc/y8FVkkJy/F4ajteojYoAAsZeU4zjm4+TE6cZPF/wZ3R5PEbeQvOI4DbkLvcx3HuR64xBjzFq/8DqAdeAi4Gjf71ndxb/FeD/w5boauvwOuTMk18TPgGWPMJ1Lqcsxrp6nrDqDdGHNBys8+BtxmjGnxHp+Mm0fkHNy8HgPAlkTSb5FSKABL2XiJhHYCd+Dez1+Pmz1sAnePrgeB/wa8jJtMPpM/xN0H8F24uyv8He6WQMPAu3FzAtyLm5XrVh+akurbuIH3Hbh5MH6XN5K4iJREAVjKqQ23x/pDY8xz3s+eheSGpAD/6eVnzmYMd/PHCeDXjuM8DKwCFnoZrX7lOM6PcRNl+x2AFwP3GmMSKRhf8Pl6UkMUgKVsjDH7va/1P3EcZxfwKPD9aVnT8vGrRHpOz1735ZNpEhM/O7OU+ubpm8BfO47zbtyUn39vjMm0oapIQbQKQsrKGPNx3GGGn+MOOzzjOM5FBb7MxLTHUxl+lvr5jePmh03VlOM6Oct4KQiX4A6rnAr8wtuYU6RkCsBSdsaYXxpjthpj3oE7mbaON8Z8GzKXLMkrzNztZPouHkWVMcbsMcbcboz5EG5C9k9Mf45IMTQEIWXjOM5puCsVfoi7WmAJ7jDBd3G3cooD73Ec5//i7m5QyrY+0z0C3Oo4zvtxJ+c+gDuZl228+RHc3U0+AfwD7pjyH09r0y24k4fP4m7Q+B5K3E5eJEE9YCmnw8BbgHtwl5/9Le52TNcbY4aBa4A/w13hsLPM174LuA131cI/4y5lyzpBZ4x5BHcnhS/hBu2zcbfdSdWAuwztadwx4EPAJeWsuNQu7YghImKJesAiIpYoAIuIWKIALCJiiQKwiIglCsAiIpYoAIuIWKIALCJiiQKwiIgl/x/xPHvkhlxPewAAAABJRU5ErkJggg==\n", "text/plain": [ "<matplotlib.figure.Figure at 0x7fbcfa3d32b0>" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "#sns.set(style=\"whitegrid\", color_codes=True)\n", "fig = plt.figure(figsize=(5,5))\n", "gs = gridspec.GridSpec(2,1,height_ratios=[2,1])\n", "plt.subplot(gs[0])\n", "g = sns.boxplot(data=task3_transformed, x='stimulus', y='preference', hue='story', width=0.8, palette={'a':'red','b':'yellow','c':'cyan'})\n", "g.set_ylabel('individual')\n", "g.set(xticklabels=[], xlabel='',)\n", "g.set_xticks([])\n", "\n", "g.set(yticklabels=[], ylabel='',)\n", "g.set_yticks([])\n", "plt.subplot(gs[1])\n", "g2 = sns.boxplot(data=task3_transformed, x='stimulus', y='preference', width=0.6, palette='gray')\n", "g2.set_ylabel('aggregate')\n", "\n", "g2.set(yticklabels=[], ylabel='')\n", "g2.set_yticks([])\n", "g2.legend('')\n", "for box in g2.artists:\n", " box.set_facecolor(\"magenta\")\n", "fig.tight_layout()\n", "plt.savefig('task3.pdf', dpi=300, bbox_inches='tight')" ] }, { "cell_type": "code", "execution_count": 10, "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAhAAAABQCAYAAABIx0zMAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvNQv5yAAAAzdJREFUeJzt3b+KXGUcxvHfOInbLKx/smAwjRg8RWwtU1jZ2QreQcBCryCxsLDzEmwXwcZbSJcrOKCkiVioMcssMWtcj412GuYZ9/XNOfv5VFvMC88LO/CFc2BW0zQVAEDihd4DAID5ERAAQExAAAAxAQEAxAQEABATEABATEAAADEBAQDEBAQAEBMQAEDsUnpgGIa9qnqnqn6oqrNzXwQA/J/WVXW1qu6N43i67aFnBsQwDHeq6vZ/2wUAzMDNqrq77YdX6Y9pDcPwZlV9+8XjX+twoT/EdeuDz3tPaOrKjS97T2jq3a/e7z2hmQ9vfNJ7QlPTx2/3ntDUNx897j2hqffe+qz3hKa+Przfe0ITm82mjo6Oqqquj+P43bbn4kcY9ddji8NpqtcWGhDr/Vd7T2jq8iuXe09o6uDFl3pPaOba/u+9JzQ1XVv2a1kv7616T2jq9f0rvSc0dXDwsPeE1qLXEpb9bQUAmhAQAEBMQAAAMQEBAMQEBAAQExAAQExAAAAxAQEAxAQEABATEABATEAAADEBAQDEBAQAEBMQAEBMQAAAMQEBAMQEBAAQExAAQExAAAAxAQEAxAQEABATEABATEAAADEBAQDEBAQAEBMQAEBMQAAAMQEBAMQEBAAQExAAQExAAAAxAQEAxAQEABATEABATEAAADEBAQDEBAQAEBMQAEBMQAAAMQEBAMQEBAAQExAAQExAAAAxAQEAxAQEABATEABATEAAADEBAQDEBAQAEBMQAEBMQAAAsUs7nFlXVf24Wp3zlOfH2cnPvSc09fTh094Tmjr+7VHvCc08ONnlKzsf04M/ek9o6pfTqfeEpr4/+an3hKaOj497T2his9n8/ec6Obeapn//hx6G4U5V3d55FQAwFzfHcby77YefGRD/ZBiGvap6UlXXq+os2zYb96vqjd4jGnK/+Vry3arcb+7cb57WVXW1qu6N43i67aE4IKqqhmGYxnFc7DMM95u3Jd9vyXercr+5c7+LxUuUAEBMQAAAMQEBAMR2DYhPz3XF88f95m3J91vy3arcb+7c7wLZ6SVKAOBi8wgDAIgJCAAgJiAAgJiAAABiAgIAiP0JwuSVW1Zv18wAAAAASUVORK5CYII=\n", "text/plain": [ "<matplotlib.figure.Figure at 0x7fbcfa3ca240>" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/plain": [ "[(0.8941176470588235, 0.10196078431372557, 0.10980392156862737),\n", " (0.21568627450980393, 0.4941176470588236, 0.7215686274509804),\n", " (0.3019607843137256, 0.6862745098039216, 0.29019607843137263),\n", " (0.5960784313725492, 0.3058823529411765, 0.6392156862745098),\n", " (1.0, 0.4980392156862745, 0.0),\n", " (0.9999999999999998, 1.0, 0.19999999999999996),\n", " (0.6509803921568629, 0.33725490196078434, 0.1568627450980391),\n", " (0.9686274509803922, 0.5058823529411766, 0.7490196078431374),\n", " (0.6, 0.6, 0.6)]" ] }, "execution_count": 10, "metadata": {}, "output_type": "execute_result" } ], "source": [ "sns.choose_colorbrewer_palette('qualitative')" ] } ], "metadata": { "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.6.4" } }, "nbformat": 4, "nbformat_minor": 2 }