Mercurial > hg > flst
changeset 0:1df4a6fb0d22
added flst files moved over from "smoothie"
author | matthiasm |
---|---|
date | Fri, 31 Oct 2014 10:52:27 +0800 |
parents | |
children | 4283604499f8 |
files | matlab/flstDecode.m matlab/flstMakeData.m matlab/flstUpdateModel.m matlab/flstUpdateTransition.m matlab/flstViterbiUpdate.m matlab/hmm_dummy.m matlab/test_flst.m |
diffstat | 7 files changed, 166 insertions(+), 0 deletions(-) [+] |
line wrap: on
line diff
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/matlab/flstDecode.m Fri Oct 31 10:52:27 2014 +0800 @@ -0,0 +1,13 @@ +function vpath = flstDecode(d) + +nFrame = min([d.memory, d.updateCount]); +psi = d.psi(:,(d.memory-nFrame+1):d.memory); +vpath = zeros(1, nFrame); + +% initialise backward step +[~, vpath(end)] = max(d.oldDelta); + +% rest of backward step +for iFrame = (nFrame-1):-1:1 + vpath(iFrame) = psi(vpath(iFrame+1), iFrame+1); +end \ No newline at end of file
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/matlab/flstMakeData.m Fri Oct 31 10:52:27 2014 +0800 @@ -0,0 +1,24 @@ +function d = flstMakeData(mdl, memory) + +% makeFLSTData just returns a struct that contains all the necessary data +% for a Fixed Lag Sparse Transition Viterbi decoder. + +init = mdl.init; +transFrom = mdl.transFrom; +transTo = mdl.transTo; +transProb = mdl.transProb; + +d = struct(); +d.init = init(:); +d.from = transFrom; +d.to = transTo; +d.prob = transProb; +d.memory = memory; +d.nState = length(init); +d.nTrans = length(transFrom); +d.delta = ones(d.nState, 1) / d.nState; +d.oldDelta = ones(d.nState, 1) / d.nState; +d.psi = zeros(d.nState, memory); +d.scale = ones(1, memory); +d.updateCount = 0; +d.path = [];
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/matlab/flstUpdateModel.m Fri Oct 31 10:52:27 2014 +0800 @@ -0,0 +1,7 @@ +function d = flstUpdateModel(d, mdl) + +d.from = mdl.transFrom; +d.to = mdl.transTo; +d.prob = mdl.transProb; +d.init = mdl.init; +d.nTrans = length(mdl.transFrom); \ No newline at end of file
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/matlab/flstUpdateTransition.m Fri Oct 31 10:52:27 2014 +0800 @@ -0,0 +1,10 @@ +function d = flstUpdateTransition(d, transMat, thresh) + +if nargin < 3 + thresh = eps; +end + +[d.from, d.to] = find(transMat > thresh); +temp = find(transMat(:) > thresh); +d.prob = transMat(temp); +d.nTrans = length(d.prob); \ No newline at end of file
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/matlab/flstViterbiUpdate.m Fri Oct 31 10:52:27 2014 +0800 @@ -0,0 +1,62 @@ +function d = flstViterbiUpdate(obsLik, d, isFinal) + +if nargin < 3 + isFinal = 0; +end + +% d.psi(:,1:(d.memory-1)) = d.psi(:,2:d.memory); +d.psi = circshift(d.psi, -1, 2); +% d.scale(1:(d.memory-1)) = d.scale(2:d.memory); +d.scale = circshift(d.scale, -1, 2); + +if d.updateCount == 0 + % initialise first frame + d.oldDelta = d.init .* obsLik; + deltaSum = sum(d.oldDelta); + d.oldDelta = d.oldDelta / deltaSum; + d.scale(d.memory) = 1.0/deltaSum; +else + tempPsi = ones(d.nState, 1); + + % calculate best previous state for every current state + % this would be the "sparse" loop in C++ + +% for jState = 1:d.nState +% temp = d.oldDelta(d.from) .* d.prob'; +% [d.delta(jState), tempPsi(jState)] = max(temp(d.to==jState)); +% end + + for iTrans = 1:d.nTrans + transProb = d.prob(iTrans); + fromState = d.from(iTrans); + toState = d.to(iTrans); + currentValue = d.oldDelta(fromState) * transProb; + if (currentValue > d.delta(toState)) + d.delta(toState) = currentValue; % will be multiplied by the right obs later! + tempPsi(toState) = fromState; + end + end + d.delta = d.delta .* obsLik; + deltaSum = sum(d.delta); + + if deltaSum > 0 + d.oldDelta = d.delta / deltaSum; % normalise (scale) + d.scale(d.memory) = 1.0/deltaSum; + d.delta = zeros(size(d.delta)); + else + warning('Viterbi has been fed some zero probabilities (update %d),\nat least they become zero in combination with the model.', d.updateCount); + d.oldDelta = ones(d.nState,1)/d.nState; + d.scale(d.memory) = 1.0; + d.delta = zeros(size(d.delta)); + end + d.psi(:,d.memory) = tempPsi; +end +d.updateCount = d.updateCount + 1; + +if isFinal + temp = flstDecode(d); + d.path = [d.path, temp]; +elseif d.updateCount > (d.memory-1) + temp = flstDecode(d); + d.path = [d.path, temp(1)]; +end
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/matlab/hmm_dummy.m Fri Oct 31 10:52:27 2014 +0800 @@ -0,0 +1,8 @@ +function mdl = hmm_dummy() + +% hmm_dummy returns a hidden Markov model for use in test_flst.m + +mdl.transFrom = [1,1,2]; +mdl.transTo = [1,2,2]; +mdl.transProb = [0.6, 0.4, 1]; +mdl.init = [1,0]; \ No newline at end of file
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/matlab/test_flst.m Fri Oct 31 10:52:27 2014 +0800 @@ -0,0 +1,42 @@ +% TEST_FLST tests the fixed lag sparse transition Viterbi implementation + +addpath('misc') +addpath('smoothiecore') +addpath('flst') + +%% setup model + +mdl = hmm_dummy(); +memory = 3; +d = flstMakeData(mdl, memory); + +%% now make up some probabilites + +obsLik = [... + [0.5, 0.5]; + [0.8, 0.2]; + [0.4, 0.6]; + [0.8, 0.2]; + [0.8, 0.2]; + [0.2, 0.8]; + [0.3, 0.7]; + [0.9, 0.1]]'; + +nFrame = size(obsLik,2); + + +for iFrame = 1:nFrame-1 + d = flstViterbiUpdate(obsLik(:,iFrame), d); +end +d = flstViterbiUpdate(obsLik(:,iFrame), d, 1); +e = d; +d = flstMakeData(mdl, memory); +disp(e) + +%% test + +if all((e.path-[1 1 1 1 1 2 2 2])==0) + fprintf(1, 'Test ok.\n'); +else + warning('Test has detected an error.') +end \ No newline at end of file