School of Electronic
Engineering and
Computer Science

MSc Digital Music
Processing

Final Report

Development of
an IM AF

encoder

Eugenio Onate

Date: 29 of August, 2012

Disclaimer

This report, with any accompanying documentation and/or implementation, is
submitted as part requirement for the degree of MSc Digital Music Processing at
the University of London.

It is the product of my own labour except where indicated in the text.
The report may be freely copied and distributed provided the source is
acknowledged.

Acknowledgment

This thesis would not have been possible without the support of many people.
The author wishes to express his gratitude to his supervisor, Prof. Panos
Kudumakis who was abundantly helpful and offered invaluable assistance,
support and guidance.

Deepest gratitude are also due to the members of the Centre of Digital Music
of Queen Mary, Prof. George Fazekas and Stuart Mansbridge without whose
knowledge and assistance this thesis would not have been successful.

The author wish to express his gratitude to Montserrat Pla and his beloved
family; for their understanding, support and encourage through the duration of
his studies.

Abstract

In this thesis an encoder able to create a new interactive file format has been
developed. For this purpose a program in C has been written following the
standard defined by MPEG. This file is called Interactive Music Application
Format (IM AF). The IM AF file format allows users more control over the
song. More specifically, it permits to vary the volume of each instrument or
choose a predefined preset. All the actions are supervised by rules, thereby
protecting the initial intention of the author. In order to place the reader in
context, the thesis describes the previous file formats, which have been the
basis for the IM AF. Moreover, we compare the previous techniques that used
the same idea of multi tracks formats, but failed with the interoperability
between different players. Then we describe the key features of the new
encoder and the steps taken in its development and implementation. The
performance of the encoder has been validated by creating three IM AF files
with special features. These conformance files have been successfully tested
in the IM AF player provided by the MPEG group.

Content

1. INtrOAUCHION ... 1
1.1.Thesis statement ..., 1
1.2.MOtivationoveiiie e 1
1.3.G0alS/ODbJECHVESvvvecieie e 2
1.4.ContributionSoovviiic 3

2. Background research and literature reviewccccccceiieeeenens 5
2.1.0verview Of MPEG..........coiiiiiiiiieeeeeee e 5
2.2. MPEG Audio COmpressionccceeeeeeeeviieeeeeeeiieeeeee e, 6
2.3.MPEG-1 Layer-lll ... 7
24 MPEG-4.......c oo 9
2.5.Previous interactive systems.........cccoooovviiiiiiiiiiieiiiie s 10

3. Developmentofthe IMAF filecccooeeiiiiiiiiiiiceeeeee, 14
3.1. Interactive mMuSIC SErviCeccccvveiiiiiiieiiiiiieeeee e 14
3.2.Creatingan IM AF file..........iiiiiiiii 15
3.3.File structure of IMAFoeeiei e 17

4. Implementationccoooiiiiii e 27
4.1.Design: HOW it WOrKSuuiiiiiiiiiiieceeeeeeeeeeee e 27
4.2. Implementation: Explanation of the code............................ 29

4.2.1 Header: IM AF Encoder.........cccccoeeiiiiiiiiiiiiiiiieeeiiii, 30
4.2.2 Main programmecceueieeeeeeeernniieeeeeeeiine e eeeeennnnns 30
4.3.Programs that analyse files.........ccccoovvvriciiiii 32

5. Results and evaluationcoooiiiiiiiiiii 35
5.1.Conformance filesoouvuviiiiiiii 37
5.2. AdVANtagEsuuiiiiii 39
5.3.WeaKnNeSSES......ci i 40

6. Conclusions and further workcccoeeeiiiiiiiieeiiiieeeeei, 41

REfEIENCES ... 43

Appendices.1 — Paper: Development of an IM AF Encoder........... 45

Appendices.2 — Listening of the IM AF encoder program.............. 51
1Y = T o PP PURUPPRPPRRR 51

1Y 72N o = TeT0 Yo =T o HP TR 66

1. Introduction

1.1 Thesis Statement

This thesis will explain the process to create an encoder for the Interactive
Music Application Format. This encoder allows more control over the song.
Users can change the volume of each instrument or select predefined mixing
presets.

The created file will be reproduced by the IM AF player to prove its
compliance.

1.2 Motivation

The music market is strangled with decreasing sales. Customers need new
products that attract their attention. Now it is a very exciting moment to
innovate and create a new file format that will change the way people listen
the music. Formats like mp3 were a good revulsive for industry, but have
been here since the 90s; today it is all about interactivity between user and
technology. From the first recordings in Vinyl’s through the Cassettes era and
later with the CDs, customers have not had the opportunity to modify the
songs and adapt them as desired. When a song arrives at the store it has a
specific sound created by the musicians and the producer. Sometimes users
have felt the curiosity to listen in detail an instrument of a song, or have
wanted to turn down the volume of another instrument because it was
annoying.

At present, technologies have led people to live in a society where everyone
is connected among themselves and sharing all kind of information. The
music industry has been reluctant to let people interact with the songs,
basically because the technology was not ready. But today, with the
expansion of smart phones and tablets, a great amount of people joining
social networks and thousand of webpages linking songs from popular and
unknown artists, it is the perfect opportunity to change the concept of the
listener, making him/her participate of the experience. A new interactive music
services has emerged. Future will be dominated by this new concept of digital
music content; thus, is essential to have a standardized file format to ensure
interoperability between different types of interactive services as music
players and music albums.

The Moving Picture Experts Group (MPEG) defined a new file format called
Interactive Music Application Format (IM AF) [1] as part of the Multimedia
application format (MPEG-A) [2], which is a versatile file format standard for
mixing different types of multimedia data (music, images and text). It allows
users to modify the volume of each instrument separately or change the
mixing style according to some presets predefined by the producer. Also, it

permits interoperability between interactive music contents: users can share
different versions of the song (changing the mix) or add/ change instruments.
Besides that, it supports metadata information as synchronized text (karaoke)
and images (album cover).

This new file format opens a new range of possibilities for the music sector.
Webpages like Myspace.com or Last.fm, where thousand of bands share their
tracks, could use the IM AF file format as their standard instead of the regular
MP3. This will have a direct impact on its success, as services interoperability
is ensured. Webpages will not be restricted to just present the songs; instead
they will provide a range of additional options that will provide a better
experience to the user.

1.3 Goals/Objectives

The creation process for standardized files like MPEG-1 Layer Ill (.mp3) or IM
AF (.ima) is split in two sections: encoder and decoder. In the encoder
section, the file is created following the appropriate standard; parts like
headers, track information and samples data are put together inside a binary
file. On the other hand, the decoder is responsible to read and understand the
file so that it will be able to reproduce it.

When a new file is defined, as it is the case, the decoder of the file is made
publicly available through ISO/IEC MPEG to let companies design their own
encoder. Thereby, they ensure compatibility of the file no matter how it was
created. Since MPEG defined the standard for Interactive Music Application
Format in 2010 no one has publicly released an implementation of the
encoder although commercial services exist.

In this project an encoder for IM AF files will be designed, following the 1ISO
14496 Part 12: ISO base media file format and ISO 23000 Part 12: Interactive
music application format. This file encoder will support a maximum of 16
simultaneously audio tracks with a sampling frequency of 44.1kHz at 16 bits
per sample. In this version, individual music-tracks must be encoded in MP3.
Also, it will be able to add different mixing presets and rules. Presets are
predefined values of the volume of each instrument, presets will be very
useful since a) the producer can create different versions of the track and b)
users exchange and share their own mixtures. Rules are limitations imposed
by the creator of the song, usually producers, to avoid users destroy the
essence of the song. The encoder will be implemented in C and will have a
simple command line user-interface in order to introduce the information
needed by the program.

The technology presented in this project has to become the base for future
applications. Having an encoder is the first step to create associated
technology for the media sector. Interactive services will dominate the market
in next years, so companies that will be able to adapt faster to the changes
will have an important advantage in front of their competitors. Also, not only

companies will benefit from the encoder, researchers working in multi-track
applications will make their job easier. They will move from working with
multiple files (one for each track) to work with only one file.

The IM AF file encoder needs multi-track songs. Nowadays it is not
straightforward to find versions of the songs in that format. In the future, as
the standard becomes popular, studios will release their songs as IM AF files.
In this project we will select examples of different music styles and features in
order to demonstrate the good performance and compliance of the encoder.
However, any song that satisfies the requirements is perfectly reproducible.
Besides the implementation in C of the encoder and its corresponding
explanation, this thesis will compare previous interactive music services with
the current model, demonstrating the effectiveness of the IM AF model. Also,
it will study the file structure of MPEG-4 and MPEG-1 layer lll formats, since
the first one defines the bases for IM AF files and the second one is the
supported audio file version (MP3).

Due to the short period for developing the thesis project, it will not be possible
to implement the totality of the encoding standard. Hence, the project will
include a section to describe reasonable improvements for future versions.
However, the final version presented in this thesis will be functional on its own
and the possible future improvements will be related to the incorporation of
metadata as images or synchronized text (karaoke).

1.4 Contributions

The concept of creating an interactive music service, where user can modify
the volume of the instrument is not new. Since the year 2000, commercial
applications have been originated in diverse countries around the world. For
example, UK released the U-MYX, MXP4 and iKlax [3] in France and
Music2.0 in Korea (these examples are explained in detail in chapter 2).
These services supply various interactive tools for users based on multi-track
music contents. However, each of them uses a different file format, letting no
interoperability between them. Users cannot use the same song on those
players causing fragmentation in the interactive music market.

IM AF file format has emerged to become the standard in the industry. It will
provide interoperability between them. The fact that IM AF is based on ISO
standards from MPEG-4 [4] makes it the perfect candidate to consolidate and
consequently expand the interactive music service market. IM AF file keeps
some functionalities from the previous systems, it works with multi-track songs
and allows users to modify the volumes. Also enables users to save mixing
presets and share them with other users.

Besides, IM AF introduces the concept of interactivity rules. Those rules
should not be confused with Digital Rights Management. The IM AF rules are
defined by the music/producer to avoid loosing his/her artistic creation. For
example, a composer might not want his/her guitar to be completely

eliminated or his/her bass jazz to be mixed as rock style. Rules can be of two
types: selection and mixing. Selection rules applied to an instrument and
specify which ones are active or inactive. Mixing rules allow driving the way
the listener will interact with audio tracks volumes at rendering time.

Moreover, as an interactive application file, it has a specific space for
metadata, information related with the album or the song is stored there. Also,
images like the cover of the album or others can be stored there. It supports
time text synchronized with the song, perfect for karaoke.

The IM AF file format supports a number of widespread media files formats. In
terms of audio, it can handle uncompressed data (WAV and PCM) [5] or
compress data (MP3 and AAC) [6] [7]. For images it works with JPEG [8] and
for synchronized text uses the 3GPP standard [9]. Thus, it guarantees
maxima compatibility. The significance of having a file that supports the most
used file formats in the market ensures an easy transition for users to the new
service. Any new costumer, from a producer that works with high quality
audio files to a basic user that has his/her songs stored in MP3 files will find
IM AF very useful.

The availability of an standard file like IM AF will encourage companies to
focus on developing new tools without the interoperability fear. Recent history
provides some examples of good technology that were not successful in the
market and disappeared. Examples like DVD-Audio or MiniDisc failed in their
purpose. The first one because it could not transmit to the public its quality
benefits with respect to the CD, and the second because it wanted to have all
the aspects under control (it worked with its own specific file format that is luck
of interoperability).

With the description of the file and the corresponding encoder that will be
developed in this thesis, it is intended to provide enough information and tools
to help the popularization of IM AF files and its consequently the market
expansion with interactive music services.

2. Background research and literature review

In this chapter is going to analyse the previous standards that have
contributed to create the IM AF file format. Moreover, it will present similar
applications based on interactivity files.

2.1. Overview of MPEG

In 1988 the International Organization for Standardization (ISO) together with
the International Electrotechnical Commission (IEC) founded the Moving
Picture Experts Group (MPEG) with the aim of creating a standard for digital
formats of audio and video. The first format based on MPEG was MPEG-1
[10]; it is used for medium rates of data around 1.5 Mbit/s. This standard was
followed by the MPEG-2 [11]; it is employed for high data transfer on the order
of 10 Mbit/s or more. The last file format created by MPEG was MPEG-4 [4]; it
is chosen for very low data transfer with rates of 64 Kbit/s or less.

All models have the same goal: to obtain a better quality through the use of
complex encoding/compression methods. The combination of an array of
pictures and sound tracks can represent a huge volume of memory occupied
when displayed in digital formats. For example, a picture with a resolution of
360x288 pixels and 8-bit precision occupies 311 Kbytes. If the number of
pictures per second is 24 and the uncompressed data is nearly 60 Mbit/s. In
case of audio track, the data transfer is smaller; if the sound track is sampled
at 44Khz with 16-bits, the data rate is 1.4 Mbit/s.

Video Decompressed
Decoder video

MPEG bitstream . o .

ot o System timing informatian

Syste -

oystem decoder

oStream timing
Audio Decompressed
Decoder Audio

Figure 1. MPEG-1 system structure

The MPEG system splits the input data into layers in order to obtain a
compressed version. Those layers have the assignment of mixing one or
more audio and video bitstreams’ into a single bitstream. A MPEG bitstream
has two groups of layers: system layer and compression layer. The system

1 A series of bits. It typically refers to the transmission of bits but may refer to
bits in memory or in storage

layer offers a cover for the compression layers, and those store the audio and
video data that will be later decoded. Also, the system layer furnishes the
tools for de-multiplexing the interleaved compression layer. A block diagram
used by most MPEG systems is shown in Figure 1.

The MPEG bitstream involves a string of consecutive packs that each one is
break down in packets, as illustrated in Figure 2. One pack has a single start
code and header followed by various packets of data. And one packet is
conformed by a packet start code and header, succeed by packet data. This
data represents compress audio or video samples.

/

lpack start code] pack header I packet data |

Figure 2. System layer pack and packet structure

The decoder analyse the bitstream and provides the partitioned video and
audio data to the suitable decoders alongside timing information.

2.2. MPEG Audio Compression

Audio compression uses different tools to reduce and eliminate unnecessary
data in order to have a smaller size, whereby the file will be more useful.
Perceptive coding is a technique used in audio that bases on the theorem of
auditory masking. In presence of two nearby frequencies, the ear/brain
combination is more sensitive to the strongest one. The weaker frequencies
that are covered by the loudest one can be rejected. Consequently, the
number of bits needed to codify the sound will decrease. The heightened
quantizing error generated by reducing the number of bits is admissible if it is
masked by the presence of the first tone. Another successful technique is the
sub-band coding. It imitates the behaviour of the ear for analysing the different
frequencies. For that, it divides the audio spectrum in multiples bands getting
an exhaustive control over the frequency range. Then, those signals are
quantized independently; reducing significantly the number of bits to transmit.
A further method is Transform Coding, where the time-domain representation
of the signal is transformed into a frequency domain such as Fourier, discrete
cosine or wavelet transform [12]. Audio signals have slowly changes in
amplitude along time and so the coefficients of the transform can be
transmitted infrequently. Not all parts of the signal can be transmitted in that
way; in presence of transients? adaptive systems are needed in presence of

2 In audio, high amplitude and short duration sound.

transients. Transients contain important information of the sound, so their
coefficients have to be refreshed constantly. While on the contrary, parts of
the signal with stationary parts, such as maintained notes, the refreshing rate
can be decreased. An example of this process is used in Layer-1ll of MPEG
audio where the discrete cosine transform is used to code the samples.

2.3. MPEG-1 Layer-lll

MPEG-1 Layer-Ill, most commonly known as MP3 [6], was released in 1991
soon become the most used tool for Internet and audio delivery. It became
very popular due to its big impact on the music industry, offering good sound
quality with low bit-rate. The subsequent technology that has appeared since
then has contributed even more to the popularity of MP3. Extensive uses of
computers with fast Internet access and personal music players where users
can store thousands of tracks have consolidated MP3 as the standard file
format for the general public.

MPEG has designed a file that offers flexibility in order to be applicable in
different scenarios. It works with mono, stereo and joint stereo signals. Stereo
tracks are not very useful in terms of saving storage. Comparing to the same
MP3 file, stereo tracks would need almost twice the size to provide the same
quality as a mono file has. Opposite to that, joint stereo achieves efficient
results in terms of saving space, coding parts of the spectrum that human ear
cannot perceive as mono. It creates two channels, one containing the
information of both channels and the other the differences. Thus, it succeeds
with a lower bit file. However, this method fails when it has to codify sounds
with phase shifted or delay effects. Those can be eliminated from the original
sound or can cause interferences damaging the final sound.

While keeping the versatility of MP3, MPEG works on different sampling
frequencies. MPEG-1 fixes three values: 32 kHz, 44.1kHz and 48 kHz.
MPEG-2 decreases this to half rates: 16 kHz, 22.05kHz and 24kHz. Also,
MPEG audio supports variable compression ratio. For Layer-lll the standard
determine a variety of bit-rates from 8 Kbit/s to 320 Kbit/s. The most used are
192 Kbit/s and 320 Kbit/s as they provide transparent quality. Bit-rate can
change from frame to frame (variable bit-rate) permitting higher bit-rates for
more complex parts of the song while less space is needed for less complex
parts.

The MP3 encoder is shown in Figure 3. It is composed by a filter bank that
divides the signal into 32 sub-bands. The perceptual model fixes the quality of
the encoder, generating the permitted noise values for each frequency
section. In MP3 these sections are the same as the critical bands of human
hearing [13]. Finally, the generated data is quantized and coded. Quantization
uses a power-low> system, where larger values are coded with less accuracy

3 Mathematical relationship between two quantities.

[14], and then those values are coded using a Huffman coding. Different
Huffman tables can be selected.

Quantized
Analysis Quantization | samples Encoding of Encoded
filterbank & coding bitstream bitstream

Digital
audio
signal

Perceptual
model

Figure 3. MPEG Layer-3 encoder

The fulfilment of the MPEG standard does not guarantee an optimal output in
terms of sound quality. There are different factors that have an influence on
the final result. MPEG Layer-lIl presents artefacts* caused by a time-varying
error signal that appears at some frequencies. Another problem occurs when
the block of music data to be encoded is larger than the actual bit-rate. In that
case some frequencies, especially high frequencies, may be deleted.

Audio encoders may have different architectures depending on the model.
MPEG standard encoders do not have any restriction in their design.
However, all files produced by them have to be compatible with the
corresponding decoder. MP3 file is split into small blocks or frames where the
data is stored. Each frame has 1152 samples per frame [15]. The standard
sampling frequency is 44.1kHz, which means that the duration of one frame is
1152/44100 ~ 0.026 sec. Knowing the bit-rate it is possible to calculate the
size in Bytes of one frame [15], if the bit-rate is 128kbps the size is 417 Bytes,
while if it is 192kbps the size is 626 Bytes. At beginning and end, MP3 files
may have ID3 TAGs. Those are metadata containers allowing information
related to the song as title, year of creation and style.

[ID3 TAG] Frame1 Frame2 Frame3 ... FrameN [ID3 TAG]

Each frame is structured in the same way. It has a 32-bit header followed by
the samples. The header contains information associated with technical
specifications as MPEG version, Layer, Bit-rate and sampling frequency. The
decoder will use this information to decode the file properly.

As each encoder creates the file in its own way, the quality of the resulting
MP3 file may vary. Different methods exist to analyse the performance of the
encoders but well controlled listening tests with large amount of tracks and
subjects is the best way to categorise their quality.

4 A distortion in a sound caused by a limitation or malfunction in the hardware or
software.

2.4 MPEG-4

MPEG-4 was created as an evolution of MPEG-2. Unlike its predecessor,
improving the compression methods was not the main task. The growing
availability of the bandwidth has permitted better transference of data. The
main difference with previous audio-visual coding standards is the object-
based representation model that consolidates MPEG-4. An object-based
scene is created using independent objects that have connection in space
and time. Different types of data are integrated in the audio-visual scene.
They can be audio objects like multichannel audio content or speech, or
video, like movies.

AY objetts AV objpcts
coddd
code

AV objects
uncoded

L» E dec| >
o)
omp BIFS -
P —> e (e e [[ers] | »
Info = g 7| dec. 8
V) 3 — i
v £ 2
(9,4 —> E |—>|dec{{ &
3 o = £
' o £ . s
S, S |—>|dec|—| ©
t-»enc.a n '

Figure 4. MPEG-4 object-based architecture [16]

An MPEG-4 system involves various audio-visual objects that are conveyed
through a number of audio-visual streams to a receiver, those can be online
or stored in a file. This section will provide a brief overview of the tools
available in the MPEG-4 standard, focusing its interest on the Systems
described in 1ISO14496 Part 1, and Audio described in ISO 14496 Part 3, as
they are the most relevant related to the work described in the thesis. The first
Systems tool is the Object descriptor framework [17]; it defines the
relationship between the individual audio or video stream and the media
objects in the scene. ODs supply information such as the elementary stream
available to represent a given media object, the characteristics of the decoder
needed to understand the stream and the location of the elementary stream
data. This location can be a URL of the element allocated in the hard drive or
in the web. Another tool is the Transport tool defines the MP4 [17] file format
for storing MPEG-4 information (the MPEG-4 file format). The overall
operation of a system communicating like audio-visual scenes is divided in
two sections. The transmitter compresses the information of the scene

together with synchronization information. These data are multiplexed in one
or more binary stream and finally sent or stored. The receiver reverses the
process by demultiplexing and decompressing the information. The final user
gets the media objects according to the scene information and may have the
chance to interact with the presentation.

On the other hand, MPEG-4 Audio represents a new standard that combines
multiple formats of audio: sounds created naturally with sounds generated by
computer, low quality transmission with high bit-rate transmission, complex
soundtracks with simpler ones, and traditional content with interactive content.
Unlike previous standards MPEG-4 does not focus on a single application, it
is used in every application that needs advance audio compression, synthesis
or manipulation. Audio storage and transportation are not defined in the
standard because there are a wide range of applications that can benefit of
MPEG-4 technology, and it is impossible to describe a single solution that
would cover all of them. What it is defined is an interface: the Delivery
Multimedia Interface Format (DMIF) [17]. This interface allows transmission
functions much more complex than its previous MPEG standards.

MPEG-4 Audio does not focus only on coding high quality audio at the
necessary bit-rate as the previous standards did, it also includes new
techniques for transmitting audio at low bit-rates, very useful for the present
technologies as Internet or digital radio. Also, MPEG-4 provides different
toolsets that can work independent or together depending on the application.
Preceding standards transmitted individual content, MPEG-4 allows more
than one content at a time, introducing the concept of soundtrack.
Transmitting several audio objects with multiple tools creates an audio
composition system or soundtrack. This ability furnishes MPEG-4 important
superiorities in quality and flexibility versus its predecessors.

As mentioned above, the file format defined by MPEG-4 is called MP4, it is
described in ISO 14496 Part 12 Base Media File Format. It is an important
part of the IM AF file, thus it will be explained in detail in the next sections. It is
intended to accommodate multi-media information in a versatile arrangement
that allows ease manipulation, correction and display of the media. The
structure of the file is based on boxes; a file can be decomposed into main
boxes and each one has its sub-boxes and the structure of the boxes is
deduced from their type. The file format is created with the intention of being
independent of any pre-defined architecture while maintaining an efficient
relationship between all the boxes.

2.5 Previous interactive music systems
IM AF was not the first file format to include interactive control over the media.

In this section we describe three examples of earlier formats: iKlax [3], IEEE
1599 [18], and iXMF [19].

10

iKlax technology was developed by iKlax Media company and LaBRI in
France. iKlax proposes a file format with separated tracks and interactivity to
manipulate the music piece. The project includes a music player and a music
editor. iKlax format groups all the tracks of a song and related metadata in a
single file, while tracks maintain quality as they do not suffer any compression
(multi-track compression) because they are stored separately from the other
tracks. iKlax file has two levels of interactivity, the first level allows the
selection of the track, where listeners can chose the track that they want to
listen. The second level is the mixing; here listeners can modify the level of
each track. Each level has different constraints. Those are stored in the
metadata section of the file. For example, the selection level defines two
constraints: exclusion and implication. The exclusion constraint specifies that
the selection of track A stop automatically track B; and the implication
constraint specifies that the selection of track A activates track B. On the other
hand, the mixing level defines three constraints: equality, inequality, and
balance. The equality constraint means that some elements will have the
same level during the whole song. Inequality means that some elements will
be at a higher level than others. Finally, balance defines a group of elements
with a constant level.

Together with the iKlax file, iKlax provides the Player (Figure 5). It is a classic
media player that includes a zone to control the different tracks of the song.

(r—
» Playlist » Multitrack

» o
I x [l @ Tracks

@® 1,000,000 Bass

@ 1,000,000 BY

© 1,000,000 Drums

1,000,000 expand

@ 1,000,000 Gtr
NIN - 1,000,000 - 2006 01:59 1,000,000 Gtr2

@ 1,000,000 LV

@ 1,000,000 Rozz

® 1,000,000 Rozz2

@ 1,000,000 Tamb

SOFTPICKS.NET

Figure 5. iKlax Player

IEEE 1599 combines in a single file music and XML symbols as graphical
representation of the music or performance indications. This information is
integrated and synchronized within the same framework and can be
accessible individually or as a whole.

An exhaustive description of music must integrate different types of
information. IEEE 1599 has developed a new XML encoding system to

11

allocate this heterogeneous information in a single file. XML organises the
information in six different layers [18]:

* General — it stores information about the piece, i.e. title, author.

* Logic — coherent representation of score symbols.

» Structural — classifying musical objects and the connection.

* Notational — visual representation of the score.

* Performance — computer-based description of musical representation.

* Audio - digital audio recording.

The standard accentuates the readability of symbols by humans and
computers, and it is created for applications that include additional information
of the piece. Figure 6 shows the characteristic multi-layer structure of IEEE
1559. Additionally, the figure includes graphical examples to illustrate the
objective of each layer.

General o
! by G. Paisiello

—{ Il mio ben quando verra, from Nina o sia la pazza per amore

- C#5, quarter note
Logie 1 D5, eight note
ES, eight note

Structural 1 ® %-'? @ = @ = @ = @

(BPEES S W Y
hr 3 "

. \ —t - Z
r, ks ?J"J-i.; 2 et =
y -3 : *®

4

ak I = =] -~ |
PSR | S STEST)‘E ===
' v - EF ¢

Notational W

Performance

Audio N W

Figure 6. Multi-layer structured of IEEE 1599 [18]

iXMF or interactive eXtensible Music Format is a file format created by the
video games industry, to provide a standard structured audio file format that
supports cross-platform interchange of advance interactive audio tracks.

An iXMF file includes in a single file all the information needed to perform the
audio track as the artist intended. The same information defines the structure
of the file. iIXMF uses a structure such that an event can be triggered at a
particular moment in time . The selected event can activate a wide range of
activities such as the playing of an audio file or the execution of specific code.

12

The structure of a single file is as follows [19]:

Cue folder — contains all of the cue description resources. Each cue is
a collection of Media Chunks.

Media Chunks folder — contains all media chunk resources that may
contain the same metadata files as cue.

Media Files folder — contains all playable media files for the soundtrack
Transitions folder — contains transition definitions resources as cross-
fades and edits.

PositionRules folder — includes position definitions as start at chunk
beginning and start at next bar.

Callbacks folder — includes callback definitions as cue end and chunk
end.

The figure below shows an example of how a Cue Sheet might look.

(] My Cue Sheet =]
Sheet Name:| I
Notes:
[(Addcue | [DsistecCus|
Cue Name | MediaPool Action Transition Level |
Intro [y | Edit.. Edit.. || Cut Edit.. |
Explot T [Edit cur (Bt] =——==
FootstepL Ceny | (et] [Egiti]} overtap (Bt | =——@—
Footstep R Ceny | (Eae.] [Edit] overtsp (Bt | =—=
CarBy [(ewy | Cut (et | =P—
Bridge @ [(Edit.. | [[Edita]} Crossfade =@=
Tire Sques Lo | Lea. | [Eda] oo (st | ——lp—

<«]

S

Figure 7. iXMF player [20]

13

3. Development of the IM AF encoder

In this chapter is going to present the interactive music file IM AF. Also, it will
analyse the different sections of the file that are used in the encoder
developed in this thesis. IM AF uses parts of the MPEG-4 standard as new
parts designed specifically for this file.

3.1 Interactive music service

Standard version of creating music content is to record the instruments in
individual tracks and then mixing all the tracks generating the final version in
stereo. The producer together with musicians decides the style of the song
and the presence of each instrument in the song. The final user receives the
song where he/she can only change the global volume, having no chances to
adjust individual volumes.

Seeing this limitation, some companies started to develop new interactive
services that allow users more control over the instruments (Chapter 2.5). To
ensure interoperability between different multimedia content, the International
Standard Organization (ISO) presented in 2010 the Interactive Music
Application Format (IM AF). This standard is defined under the umbrella of
Multimedia Application Formats (MPEG-A) Part 12. IM AF specifies how to
connect multiple tracks with related information under a well-defined structure
that facilitates the manipulation of interactive music content.

Interactive music content involves audio tracks, preset data and rules. Audio
tracks represent the instruments of the song, they can be a single instrument
or a group, sometimes is preferable to have the drums in a single track.
Preset data is a pre-defined information related to the volume of each track,
and allows the user to create different version of the song. Those values
cannot be changed after the file is created, so it can be useful for producers to
present the same track from different points of view. Finally, IM AF files
introduce rules to avoid the user destroy the initial intention of the author.
Moreover, additional media data can be used to improve the user's
experience: timed text synchronized with the song for karaoke and images as
cover of the album.

The created files are reproduced by an interactive music player as shown in
Figure 8, users have two different options to listen the song: preset-mix mode
and user-mix mode. In preset mode users chose one of the pre-defined
presets in the IM AF file, and then the tracks change the volume according to
the values of the preset. In user mode, the user selects/deselects the tracks
and controls the volume of the tracks. All the actions performed by the user
need to be compatible with the rules; otherwise the actions will not be carried
out.

14

A e)
ETIRI @iKlax

| 00:00:39/00:03:26

J

—)

19
| Frosetms Usermix | Fieirfo | Rule |

WA P

|

J

00:00:39/00:03:26

)

B
ETIR @iKlax

i Preset-mix | Usermix | Fieirfo | Rule |

Group | All tracks (No Grou v

preset_ID =1
[num_preset_elements = 6
preset_element_ID[0] = 1
preset_element_ID[1] =2

preset_element_ID[2] = 3
preset_element_ID[3] = 4

(4] |

Figure 8 IM AF player. User-mix mode (left) and preset mode (right).

- preset_type =0
preset_volume_element[0] = 200

preset_volume_element[1] = 200
nrsest walima slamant(2] - 200

3.2. Creating an IM AF file

The encoder is responsible for creating the IM AF file, for doing that it follows
the standard defined in ISO 23000-12. The framework of this file is based on
the MPEG-4 ISO based Media File Format standard; IM AF has introduced
some improvements to enable interactive control. In this section we will
describe in detail the structure of the IM AF files together with the basic
framework of the MPEG-4 used in IM AF.

IM AF files consists of a series of boxes that include all data. There are two
different types of boxes: ones that may contain other boxes inside them, and
others that just contain data (called FullBoxes). All boxes start with the
header, which defines the size and type. FullBoxes incorporate in the header
the version and flag information. The size defines the total size of the box,
including data and, if necessary, other boxes. It has a size of 32 bits
(unsigned integer), but if the data stored in the box is bigger than that it can
use 64 bits. Type is the identification of the box, and each box has its own
type, i.e. ftyp, moov, mdia. The version is an integer (8 bits) and specifies the
version of the box, and the flag is a 24-bit integer and its use depends on
each box.

A complete list of the boxes that form the structure is presented below:

ftyp File type and compatibility

moov Container of all the metadata

15

mvhd Movie header

trak Container for an individual track

tkhd Track header

mdia Media information container

mdhd Media header

hdlr Handler, declares media type
“soun” (sound) for audio data

minf Media information container

smhd Sound media header

dinf Data information box

dref | Data reference box

stbl Sample table box

stsd | Sample description box

stts | Time to sample

stsc | Sample to chunk

stsz | Sample size

stco | Chunk offset

grco Container for groups

grup Group box

prco Container for the preset

prst Preset box

ruco Container for rules

rusc Selection rules

rumx Mixing rule box

mdat Media data container

meta Metadata

Table 1. Structure of IM AF file

This list represents the structure of the implemented file, ISO 23000-12
defines some more but they are not strictly necessary. Only one movie box
shall be in the file, and it is placed nearby the top or bottom of the file to allow
its easy location. The file type box ‘ftyp’ shall take place at the beginning of
the file; thus it defines the file type. The rest of the boxes are allocated as
proposed in [21]. Each box has a predefined structure written in the syntax
description language (SDL)[22]. This language allows the easy conversion
using C, C++ or Java . In this thesis the encoder has been programmed in C .
A presentation is formed by various files. One file stores the metadata and the
media data for the whole presentation. The other files are not needed to be
part of [21] as they contain other media data or other information. These files
are images, text or other formats and they have their own standard. In the
case of IM AF files, the supported files are JPEG 2000 described in [8] and
3GPP synchronized text described in [9]. As our goal in this thesis was not the
full implementation of the IM AF file format encoder but only a subset of it as

16

proof of concept, the latter features have not been integrated in this version.
Nevertheless, their incorporation would be very interesting for future
improvements.

The metadata is stored within the metadata folder ‘meta’; the media data is
contained in the same file (‘mdia’) or in other files. IM AF can handle tracks
allocated outside the file, i.e. online or different folders. It uses the address or
URI® to find the information needed to reproduce it. Each track has its own
label (track identifier); it identifies the track during the whole process. When
URIs are used as a track identifier, the URI must define the format and
meaning of the data. If the URI contains a domain name (it is a URL®), then it
should also contain a month-date in the form of mm/yy. This information must
match the time of the definition of the extension, and the URI must be
authorized by the owner of the domain according to the same date and
month. This avoids problems in case the domain changes owner.

Finally, IM AF allows files to be reproduced in devices that are not able to
decode several audio tracks simultaneously (backwards compatibility with
legacy devices). The flag inside track header decides whether the player is
able or not to reproduce multi-track files. If the flag is set to ‘1’, then the track
is enabled for multi-track operation. If the flag is set to ‘0’ the track is disabled.
Hence, the IM AF player decodes only tracks with flag set to ‘1°.

3.3. File structure of IM AF

This section will analyse the different boxes used in the IM AF file. It will follow
the same order as in Table 1. Section 4 describes how the boxes are
implemented.

First box is File Type Box (‘ftyp’). It specifies the brand identifier of the file.
Table 2 shows the different brands supported by IM AF files, where each one
has different characteristics. The media files may be compatible with more
than one brand. Therefore, it reserves space for compatible brands. Also, the
file type box has a minor version variable for informative use only. This
variable may allow more precise description of the main brand.

Max. # of Max.
Brands Audio | simultaneously sampling Application
decoded audio | frequency/
tracks bits

im01’ 4
im02’ 6
Smo3 8 44 1kHZ/ Mobile

MP3 16bits
im04’ 2

5 Uniform resource identifier/locator

17

im11’ 16 48 kHz/ Normal
16bits

im21’ 32 96 kHz/ High-end
24bits

Table 2. Brands for IM AF

The ‘im01‘, im02‘, ‘im03‘ and ‘im04‘ are intended for mobile applications
because they have a lower resolution (less space in memory), and they differ
in the maximum number of tracks that they allow. The ‘im11‘is intended for
normal applications because it uses a bigger sampling frequency obtaining
better quality. Finally, the ‘im21‘ is intended for High-end applications as it
uses a higher sampling frequency and resolution, the size of this files will be
much more bigger (in bytes) than the mobile applications getting the
maximum quality from the audio files.

Audio tracks are defined by samples of data. The Media Data Box contains
all those samples. In the case of IM AF files, there will be one or more tracks
stored in it. The structure of this box is very simple, it has an integer value that
indicates the size of the box and a type values set to ‘mdat’. Then, all the
samples are store byte by byte. Afterwards, the sampler table box inside the
movie box will contain all the information needed to decode the tracks.

Next box is Movie Box (‘mooV’), it is stored all the information that define the
media data. This box does not contain any variables, just the size and type of
the box. There is only one Movie Box in the file, and may include other boxes.
The layout of the movie box is as follow:

Movie Box ‘moov’
Track Box ‘trak’
(from 1 to # tracks)

Media info ‘'mdia”
Media header ‘'mdhd”
Handler media "hdlIr’

Sampler info “stbl’

Container groups ‘grco’
(from 1 to # groups)

| Group box ‘grup” |
Container presets prco’
(from 1 to # presets)

Preset box "prst

18

Container rules ‘ruco’
(from 1 to # rules)

Selection rule ‘rusc’
Mixing rule ‘rumx’
Table 3. Movie Box structure

Movie Header Box is a Full Box and it specifies the characteristics of the
entire Movie (only one movie header box in the file). The layout is:

Movie header box | Bytes
Box size 4
Type = ‘mvhd’ 4
Version 1
Flags 3
Creation time 4
Modification time 4
Time scale 4
Duration 4
Rate 4
Volume 2
Reserved 10
Matrix 36
Pre-defined 24
Next track ID 4

Table 4. Movie header box

Box size is an integer that specifies the size of the entire box; in this case the
size is 108 bytes. The version is 0 and type identifies the box and must be set
to ‘mvhd’. Creation and modification time are two integers that specify the
date in seconds. These values refer to the number of seconds since January
1%, 1904 as defined in the Coordinated Universal Time (UTC) [23]. The time
scale refers to the whole presentation and it is expressed in time units per
second. Duration declares the length of the longest track, and the units are
according to the time scale. Rate and matrix are used when encoding video
and volume indicates the main volume of the presentation. Finally, next track
ID refers to the value of the track ID that will be added to the presentation.
This value will always be the number of tracks plus one.

After describing the general characteristics of the media, it is time to specify
the particular information of each track. This information is stored in the Track
Box; there will be as many of these boxes as tracks in the file. Each track is

19

independent of the others and transports its own temporal and spatial
information. Tracks contain media data, and there shall be at least one track
in the file. Similarly as the movie box, the Track box does not contain any
variables rather than the size and type. It is used to accomodate the different
boxes needed to describe each track.

The first box inside the Track Box is Track Header Box. This box specifies
the characteristics of a single track. Exactly one Track Header box is held in a
track. The structure of the box is as follows:

Track header box | Bytes

N

Track size
Type = ‘tkhd’
Version

Flags

Creation time

Modification time
Track ID
Reserved

Duration

Reserved

Layer
Alternate Group

Volume

IS ST - N N N I NS R Y Y OUY N N

Reserved

w
»

Matrix
Track width
Track height 4
Table 5. Track Header Box

N

Track size specifies the number of bytes in the box, in this case is 92 Bytes;
the type must set to ‘tkhd’, and version to 0. Flag indicates if the track is
enable or disable. A disable track is interpreted as if it was not in the file.
Creation and modification time follows the same standard [23] as their similar
movie header, but in this case they refer to a particular track. Track ID is an
integer that identifies this track over the rest and its value must be unique.
Duration represents the sum of all the samples and the units are expressed
according to the time scale of the presentation. Volume specifies the relative
volume of the track and is fixed to 1. The rest of the values are not used in
this presentation because they refer to files with video tracks.

20

The media declaration container, or Media Box, describes and defines all the
information about the media data in a track. Media Box is a container of other
boxes such as the media type (video or audio); the media handler used to
interpret the sample data and the media information that includes all the
information related to times and samples.

The Media Header Box specifies the characteristics of the media in track, as
time scale and duration. The structure of the media header is:

Media header box | Bytes
Media size 4
Type = ‘mdhd’ 4
Version 1
Flags 3
Creation time 4
Modification time 4
Time Scale 4
Duration 4
Language 2
Pre-defined 2

Table 6. Media Header Box

The media size specifies the size of the box; in this case the size is 32 bytes.
Type must be set to ‘mdhd’ and version and flag are set to 0. Creation and
modification time declares the most recent time that the media in this track
was created following [23]. Time scale refers to this media and it is expressed
in time units per second. In this encoder, both time scales (movie and media
header) have the same value. Duration specifies the time of the media; and
language declares the code of the language for this media. It is a three
characters code defined in [24].

The Handler References Box declares the nature of the media track. For
example an audio track would be handled by an audio handler. It is a Full Box
so it includes the size, type, version and flag. The handler defines an integer
called handler type that contains the value ‘sound’, as the media tracks used
in this presentation are audio. Moreover, it includes a variable string called
Name, which gives a human readable name for the track type. It should be
noted that name has a variable size and is terminated by a null character.
Media Information Box stores other boxes that contain information related to
the media track: sound, data and sampler box. The Sound Media Header
Box includes audio information independent of the coding, and the same
header is used for all tracks in the presentation. This box is a Full Box and
has the standard variables: size, type, version and flag. The size is 16 bytes
and type is set to ‘smhd’. Version and flag are set to 0. Also, it includes a

21

balance variable that places the mono tracks into stereo; the normal value is 0
(centre), but it supports left (-1.0) and right (1.0) panorama of the track.

The Data Information Box includes objects that help the localization of the
media information of the track. The tracks can be stored in the same file or in
other parts (i.e. online). This encoder supports tracks that are in the computer,
so the data information box will only have Data References Box. This box
contains the counter of the actual entries together with the size, type, version
and flag.

The IM AF encoder stores the media data in samples. This information is
located in the media data container. In order to reproduce these data, the
encoder needs a series of tables relating time, offset and data of the media
samples. Those tables are held in boxes inside the Sample to Table Box.
The first box is the Sample Description Box, and gives detailed information
of the coding type used, bit-rate and decoder specific information. Table 7
describes the different boxes that are stored inside the Sample Description
Box.

stsd

mp4a

esds

ES Descriptor

Decoder Config Descriptor
SLConfig Descriptor

stts

Table 7. Sample Description Box

The Audio Sample Entry Box stores the technical specifications of an audio
track. The type is set to ‘mp4a’ because the audio files stored in the IM AF file
are converted to MPEG-4 Audio. This conversion is explained in Chapter 4 of
this thesis. Then, it has a channel count integer that specifies if the channel is
mono (equal to 1) or stereo (equal to 2), a sample size variable in bits that
takes the default value of 16 and sample rate. In our work sample rate is set
to 44100.

This box (‘mp4a’) contains an Elementary Stream Descriptor Box [25]. It is
a required extension to the audio sample description for MPEG-4 Audio, and
appears only when the codec type is ‘mp4a’. The ES_Descriptor transports
all information related to a particular stream. In this case Audio stream has
three parts as described next.

The first part is an integer called ES_ID that defines the elementary stream
ID. The second part is a group of optional extension descriptors that support
future extensions. Finally, the third part consists of two structures that convey
the specific parameters of the elementary stream: Decoder Configuration

22

Descriptor and Sync Layer Descriptor. The decoder configuration
descriptor supplies information about the decoder type and resources needed
for the associated elementary stream. Table 8 presents the structure of the
Decoder configuration descriptor.

Decoder Config. Desc. | Bits
Tag 8
Length 8
Object profile indication 8
Stream type 6
Up stream 1
Reserved 1
Buffer Size dB 24
Max. Bitrate 32
Average Bitrate 32

Table 8. Decoder configuration descriptor

Tag is a byte (8 bits) and it refers to the type of this box. As it is an elementary
stream, some values differ from the standard box structure. Length is the size
of the box (size in bytes). Object profile indication is an indication of the object
profile that needs to be supported by the decoder. In [25] there are all the
possible values. In this case, it gets the value 0x6B reserved for new ISO
standards as IM AF. The stream type presents the type of this stream (Audio
stream = 0x05) [25]. Upstream is zero and the Buffer size dB indicates the
size (in bytes) of the decoder’s buffer and has the value of 14000. Finally, the
decoder descriptor specifies the average bit-rate and the maximum bit-rate.
Both take the value of 128 Kbps.

The SLConfig Descriptor defines the configuration of the synchronization layer
for this stream and it is configured according to its needs. This encoder does
not use any extra packet so it is almost empty. The tag is 6 and the
predefined value is 2.

Next box in the IM AF file is the Sample Table Box ('stts’). This box
generates a table that links the decoding time with the sample number. It
stores for each entry two values: sample count and sample delta. The first
one refers to the number of frames that have the same duration and the
second value is the duration of those frames (in milliseconds). The frames of
MP3, as indicated in Section 2.3, have duration of 26ms. It also includes an
integer that defines the number of entries to the table (‘entry_count’).

Entry count 1934
(count, delta)[0] 1,0

23

(count, delta)[1] 7,26
(count, delta)[2] 1,27
(count, delta)[1933] 7,26

Table 9. Sample Table

Table 9 shows the structure of the sample table. Although theoretically the
duration of each frame is 26ms, in practice the duration is 26.125ms. This
causes that it has to add a frame of 27ms each 8 frames. Because 8 times
26.125 is 209, similarly as 7 times 26 plus 27 is 2009.

Samples within the media data are stored in frames or chunks; chunks may
have a variable size. The Sample To Chunk Box (‘stsc’) creates a table that
includes the size of each chunk and the number of chunks that have the same
size. Audio files used in the encoder have a constant bit rate. Thus, all the
frames are equally sized and the table includes one entry. This table has
three variables: the first one specifies the index of the first chunk (the first
chunk of the track has the value 1); second is the number of samples sorted
in each chunk and third is the index of samples entries. Sample Size Box
(‘stsz’) holds the number of frames in the track and a table presenting the size
in bytes of each frame (418 bytes). Table 10 shows the structure of the table.
Although the frames should have the same size, in practice it can
accommodate frames of sizes 417 and 418.

Sample count 7890
sample_size[0] 1,0
sample_size[1] 7,26

. 1,27
sample_size[32] 417
sample_size[7889] 418

Table 10. Samples size

The values presented in Table 9 and 10 are specific for an audio file (MP3)
with a constant bit-rate of 128 Kbps. These values will change if another file is
used. Finally, in order to identify the different tracks stored in the media data
container, the Chunk Offset Box (‘stco’) indicates the position of the
beginning data of each track.

Until this point, the boxes described here are common for MPEG-4. From now
on, the boxes are specific of IM AF files. Both are essential for the smooth
running of the file. The first box is the Group Container Box. It includes an
integer that specifies the number of groups hold in the file, and as many

24

Group Box as the integer required. An individual group box has: a group ID
that identifies the group, the number of elements involved in the group, and
the group activation mode that describes the activation mode of each element
inside the group. The second box is the Preset Container Box that allows
users to define one or more presets. A preset may have all the instruments
except the vocals for karaoke, or just the vocal and chorus for an acappella
preset. Each preset is stored in a Preset Box, and has the following structure:

Preset box Bits
Preset size 32
Type = ‘prst’ 32
Version 24
Flags 8
Preset ID 8
Num. preset elem. 8
Element ID 32
Preset Type 8
Global volume 8
Element volume 8
Name 14

Table 11. Preset box

Flag is an integer that defines how the preset will be displayed in the screen
and if the user will be able to edit it [1]. The preset ID assigns a unique value
to each preset; the number of elements in the preset is stored in Number
preset element and the element ID contains all the identification value of each
element of a concrete preset. There are two types of preset: static track
volume and dynamic track volume. In the first one, the volume remains
constant throughout the track; while the second, the volume of each element
changes according to a certain period of time (time variant). The global
volume indicates the volume of the whole preset, and the element volume
designates the volume of each audio track. Finally, the preset box defines a
human readable name to identify the preset.

When an IM AF file is created, users have interactive control over the song.
The different choices that users make are filtered by the Rule Container Box.
Two rules are defined: Selection Rule Box and Mixing Rule Box. Both have
the same box structure; the first group of rules involves the selection of tracks
and the second category is associated to the audio mixing.

Rule box Bytes
Size 4
Type = ‘rusc’/rumx’ 4

25

Version 3
Flags 1

Rule ID 2
Rule Type 1
Element ID 4
Key Element 4
Rule Description 2

Table 12. Selection rule box

Rule ID identifies the kind of rule and the rule type specifies the rule type.
There are four types of selection rules: min/max rule, exclusion rule, not
mutes rule and implication rule. The min/max rule specifies the minimum and
maximum number of elements (tracks or groups) that can be reproduced
(active state). The exclusion rule designates various elements that will never
be in the active state at the same time. The not mute rule determines an
element always in the active state. The implication rule defines that the
activation of an element implies the activation of another element. On the
other hand, the mixing rule defines four types of rules: limit rule, equivalence
rule and upper and lower rule. The limit rule fixes the maximum limit of the
volume of the track. The equivalence rule defines an equivalence relationship
[1] between two volumes. The upper/lower rule applies to the volume of two
tracks. An element A will have always an upper/lower volume than B.

Element ID represents the ID of the element affected by the rule. The key
element identifies the element on which the rule is imposed. The last
parameter is the rule description. It provides a human readable description of
the rule. Last box in the file is the Meta Box; it stores descriptive or annotative
information. This box contains a handler box that defines the format of the
‘meta’ box. The metadata can be in this file or located outside (URL).

26

4. Implementation

After describing the different parts within the IM AF file, this section will
describe the code responsible of creating the encoder. Firstly, we will explain
how to use the encoder and how it works. Secondly, we will analyse in detail
the main programmed functions of the encoder. Finally, some tools that have
been useful in order to facilitate the creation of the file will be presented.

4.1. Design: How it works

The encoder that creates the IM AF file has been implemented in C. It does
not use any external library, ensuring that it will work easily in any computer.
The program is composed of two parts: the main program and the IM AF
header. The main program includes the functions to create the file and the
header defines the structure of the boxes. Both parts will be analysed in
Section 4.2. Moreover, there is a basic command line tool to let users
introduce values such as the number of tracks and their names. The program
has a static structure; meaning that the maximum number of tracks, presets
and rules are defined by a global variable. The value is 10 for each one. In
case the user would need more, it would be as easy as to change the value to
a higher one.

Right at the beginning, the encoder asks the user to introduce the number of
tracks that the IM AF file will incorporate. Then, the user writes the names of
all the tracks that there will be in the file. The encoder detects if the track
exists or not. If it does not, the program will ask again for the name. Those
names are saved in memory because the encoder will need them afterwards.
When the user has finished to introduce all the tracks, the encoder creates the
binary file that will store all the information. The first function called in by the
program is the filtetypebox. This specifies the different types supported by the
encoder. The major brand is im03’ and it allows the simultaneously decoding
of 8 audio tracks (enough for this project). The compatible brand is set to
‘isom” because the file is an ISO base media file. Once the type is clear, the
encoder transform the audio files (MP3) into MPEG-4 audio files. For doing
that, it uses all the boxes described in section 3.3.

The first step is to extract the samples of the audio file; the function in charge
of this is the media data function. It creates the media data box. This function
reads each track, in this case an MP3 track, subtracts the samples and stores
them in the binary file (Figure 9). It uses the names of the tracks introduced
previously by the user, in order to open the files one by one. This process will
be described in Section 4.2, but the idea is to find the beginning of the first
frame and read the data until it reaches the end of the file. The intention is to
avoid the ID3 header, as it does not contain useful information for our
purpose.

27

IM AF File

File type and compatibility
ftyp

MP3 File Media data container

mdat

[D-3 Header l .'\U:li:' l

Frame 1 Header I Audio [

[Teximege |

SAMPLES

{ Maovie Box ‘moay’
Frame 2 Header Vovie Bo O

l Movie header mlm:‘l

SAMPLES

[rack Box ‘trak

from | to N

Frame 3 Header
[Media Into ‘mdia |

SAMPLES

Frame N-1 Header

SAMPLES

Frame N Header

SAMPLES

Figure 9. Reading samples from MP3 into ‘mdat’

After the media data box, it is the turn of the movie box. It is the biggest box of
the file and it is split in various functions. One of the key aspects of the
success of the encoder is to work very precisely with the sizes of each box.
As there are boxes containing other boxes, the program starts to fill the lower
level of boxes. In this case it begins with the sample table box inside the track
box. However, the file needs to have a defined structure (Section 3.2), so the
encoder uses a function to write the data of the movie box in the file. This
function is called at the end of the program; it takes the structures, once they
are full, for writing them into the file in the pre-defined order.

But before that, the encoder needs to extract more information from the MP3.
The function ‘track structure’ creates the track box and all the boxes inside it,
like media information box and sample table. The sample table box is
implemented within the sample container function. The first box created in the
sample function is the sample description box; it follows the structure of
Section 3.3. Then is the turn of the sample size box. It needs to open again
the audio file (in this case the MP3) for counting the duration and size of each
frame and also the total number of frames (Figure 10). In this case, the search
for information in the MP3 file is more precise than in the media data function.
Rather than reading the whole file, it localizes the beginning and end of each
frame, extracting the information of one frame at a time. This information is

28

reused by the time to sample, sample to chunk and chunk offset boxes. After
loading all information on the sample table box, it is the turn of the rest of
boxes in the track box.

Track Box ‘trak’
from1toN

MP3 File *
Sample info ‘stbl
ID-3 Header s —
Sample description
TRy : box ‘stsd’
Frame 1 Header Size of frame — :
Length of frame lime to sample box
SAMPLES Number of samples \ ‘stts’
Duration ... Sample to chunk
Frame 2 Header Stsc’
\'\\[I)I I‘S 5;1[]1[‘]C.\'i/0
[¥y 4 3 N
‘stsz’
Frame 3 Header Chunk offset
‘stco’
L J
° .
g .

Figure 10. Sample data information

The preset container is next implemented after the track box. It creates a
static preset with a fixed value. First, it defines the number of presets that
there will be in the file. Then, it assigns the volume of each track; initially takes
the value of 100. Changing this value will modify the volume of each track in
the specific preset. The next step is to create the rules. The rule container
creates two rules: one selection rule and one mixing rule. Finally, the movie
box is created together with the movie header box. Here the encoder puts
together the sizes of all boxes within the movie box. Doing that at the end of
the code ensures that the total size of the movie box will match the sum of
each one.

4.2. Implementation

This section will explain the most relevant parts of the code, so that a first time
user will find answer to his/her doubts. The encoder is programmed in two
files: main.c and IM_AF Encoder.h. First we will analyse the header and then
the main program. Before getting into the explanation of the files, it is
necessary to address some issues that affect the entire program. It has been
written in standard C, using a Mac OS X version 10.7.4 Intel Core 2 Duo with
2.1GHz. This processor writes the data in memory backwards. Therefore, it
writes the wrong data in the file. To solve this problem, a small function has
been implemented that swaps the order of the bytes. This function is called

29

every time a value has been saved in memory. In this manner, it ensures that
the correct data is stored and written in the IM AF file in the correct order.

4.2.1. Header: IM AF Encoder

The header includes the structure of the IM AF file. It has been implemented
using the structures defined in [1] and [21]. Each box described in Section 3.2
represents a structure in the code. This type of storage allows us having a
structure inside another one and so on; therefore yielding a very useful model.
The general boxes as file type, movie box and media data box are defined as
typedef struct, the rest are just structures. There are different types of data:
integers that use 32 bytes, shorts that use 16 bytes and charts that use 8
bytes. Integers are the most used data, while charts are used to declare
arrays of characters for declaring names or descriptions that the user may
need to read.

There are some structures that will appear more than once in the IM AF file,
like Track Box and Preset Container. The number of Track Box in the file will
be less or equal than the maximum number of tracks specified by the main
brand declared in the File Type Box. On the other hand, Preset Container will
have a limit capacity specified by a global variable. It may hold a maximum of
10 items. This does not mean that the file does not support more; changing
this constant, it will increase the limit of items.

4.2.2. Main programme

The main file is segmented in various functions. Together they create the
standard file. Below we list the main functions and their type.

Type Function
int main
void filtetypebox
int mdatbox
int trackstructure
int samplecontainer
int sampledescription
int readTrack
int presetcontainer
int rulecontainer
void Moovheaderbox
void writemoovbox

Table 13. Main functions

30

The main function opens the file according to the name that the user has
written through the command line. The encoder needs to localize the tracks in
the computer. For doing that, a string containing the path directory of the
folder that stores the songs is declared. If the songs are not in this folder, the
encoder will not be able to find them. In case the user wants to use songs
from another directory, he/she will need to change the address of the path
directory in the main function and in the readTrack function. In these two
places the encoder opens the audio tracks. The name entered by the user is
stored in a structure called nametrack in order to use it again outside the main
function. The other file opened by the main function is the IM AF file.lt is a
binary file and it is created in writing mode, while in the case of the audio file it
opens the file in reading mode.

The audio tracks in this file are MP3 and have a determined structure. Once
they are opened, the encoder needs to read the information. There are two
functions where these files are analysed: mdatbox (it creates the media data
box) and readTrack (it extracts the information for the sample tables). In the
case of mdatbox, the reading is less accurate than in readTrack. The MP3 is
characterised for having a frame structure and each frame has a header
(described in Section 2.3) that is used as a reference for searching the frame.
The mdatbox receives the file pointer of the song. The task in this function is
to localize the beginning of the first frame of the MP3 and copy all the data
into the IM AF file. It uses a loop with four conditionals (‘if') for scanning the
audio file with the intention of detecting the header. The header is formed by
32 bits that have a determined value [15]. The first 4 bits are always OxFF and
the other 24 bits vary between two or three values depending on the
characteristics of the MP3. To ensure the proper functioning of the encoding,
we have taken into account all options. The loop reads the MP3 in groups of
four bytes each time. If the loop finds the header, it saves the position of it and
jumps out of the loop. If it does not find it, it moves back three bytes and
keeps reading the next four bytes. Thereby, it ensures that all the data of the
MP3 is properly read. Once the loop finds the position of the header we need
to introduce a correction, as the position is saved 4 bytes after the header. In
order to get the correct position, the encoder must subtract 4 units from the
variable that contains the position. Finally, the MP3 is read from this position
until the end of the file and the information is stored in the IM AF file just after
the size and type of the media data box.

Unlike the mdatbox, the scanning of the MP3 in readTrack is more elaborated.
It uses the same method for searching the header of the frame, but it does not
jump out the loop when the encoder finds the first header. It reads until the
end of file and searches all headers. Each time it finds one, it stores in an
array the length in bytes of the header. For this, it saves the position of one
header and the position of the next one; with this information it calculates the
length subtracting the second position from the first. This array is used to
create the sample size table. The size of this array is 9000, it supports tracks

31

duration of 3.5 min: in case the user wants to use a longer track, he/she must
increase the size of the array. In addition, it uses a counter to hold the number
of samples in the whole MP3. For generating the time to sample table, the
encoder creates a table of length equal to number of samples and stores in
each row the length in milliseconds of each frame. As mentioned in Section
2.3 the duration varies between frames (26ms and 27ms).

Each time a function uses a structure from the header, the structure is passed
as references. This means that the structure may be modified inside the
function, and the changes made there will last once the function ends. The
writemoovbox does not have the structures by references because its content
is not modified. It just reads the information. This function writes in the correct
order the structures into the IM AF file. It uses the function fwrites that
specifies the size of the variable. It allows writing the data very precisely. The
variables with size 32 or 16 bits are written straight into the file. However,
variables having sizes of 14 or 17 bits are written bit by bit, so there are no
free spaces between variables. Once the file is written with the correct
information, the encoder closes the IM AF file and let it ready to play.

4.3. Programmes that analyse files

In the process of creating the IM AF file we have used various programs that
analyse the structure of the file. Specifically programs that show the boxes of
the MPEG-4 file, or in this case they work for IM AF too. The creation of a file
like the one created here is full of little parameters that can lead to malfunction
of the file. The order of the boxes is very important, so it is the size of each
box. These programs have been an important part of the success of the
encoder. The first program used was Mp4Explore [26]. It is MS Windows base
software and shows the structure of MP4 files. Also it is free. Here there is a
screen shot of this program for analysing an IM AF file.

(2 Mp4 Explorer L’ =

4 P example_0lima Media Header Box

T BEE
a

6 oo
38 a
R

Figure 11. IM AF file in Mp4 Explorer

32

This software gives a very clear idea of how the IM AF file is structured. It
details the content of all boxes, except the ones used only in IM AF, like
preset and rules boxes. Because this software was created to work with ISO
14496 files (MPEG-4) so it does not support the new features of IM AF.
Another defect that this program has is that it does not indicate that size of
each box. Consequently, it is difficult to detect where the error is. For this
reason the MP4 Browser [27] was used. This is another free software created
for Windows with the same intention: to analyse MP4 files. But this one it does

works with IM AF.

Below we show two screen shots of the MP4 Browser software.

'fyp’, size(24)
'mdat’, size[3584432)
moov size(53428)
'mvhd', size(108)
i 'trak!, size(13213)
i 'trak!, size(13213)
1 'trak!, size(13213)
1 'trak’, size(13213)
'preo’, size(460)

Box Property

Box Type

Box Size

Box Name
major_brand
minor_version
compatible_brands[0]
compatible_brands[1]

Figure 12. IM AF file in MP4 Browser

| Walue

.ftyp.
24

File Type Box
im01"

0

im01"

isom’

Figure 12 presents the general structure of the IM AF file; more specifically, it
shows the file type box. Unlike the previous software, the MP4 Browser
presents more information: the type of the box and, more important, the size
of it. Figure 13 shows an example of the Time to sample Box.

4, MiraVid MP4 Browser V1.2.0 (C:\Users\Eugenio\Desktop\Conformance file\exam

\example_01.ima

@ ftyp!, size(24)
@ 'mdat’, size(3584432)
E]--v ‘moov', size(53428)
- @ 'mvhd, size(108)
B4 ‘trak, size(13213)
@ 'tkhd', size(92)
E- @ 'mdia’, size(13113)
“ @ 'mdhd, size(32)
e hdl, size(37)
B @ ‘minf’, size(13036)
@ 'smhd', size(16)
B9 'dinf’, size(36)
Bl @ sthl, size(12976)
Ll 'stts', size(4224)
H-@ ‘stsd', size(I6)
@ 'sts2', size[B596)
@ 'stsc’, size[28)
@ 'cobd’, size24)
=) "trak’, size(13213)
=) "trak’, size(13213)
=) "trak’, size(13213)
@ 'prco’, size(460)

Please visit www.miravid.com for more professional MPEG tools

Box Property
Box Type

Box Size

Box Name
Version

Flags
entry_count
[count, delta)[0]
[count, delta)[1]
[count, delta)[2]
[count, delta)[3]
[count, delta)[4]
[count, delta)[5]
[count, delta)[E]
[count, delta)[7]
[count, delta)[8]
[count, delta)[9]
[count, delta)[10]
[count, delta)[11]
[count, delta)[12]
[count, delta)[13]
[count, delta)[14]
[count, delta)[15]
[count, delta)[16]
[count, delta)[17]
[count, delta)[18]
[count, delta)[19]

Value

"stts'
4224

Decoding Time to Sample ...

0

0x0
526
1.0)
[7. 26)
1.27)
(7. 26)
(1.27)
(7.26)
1.27)
(7. 26)
(1.27)
(7. 26)
1.27)
[7. 26)
(1.27)
(8. 26)
(1.27)
(7. 26)
(1.27)
[7. 26)
(1.27)
(7.26)

Open | Exit |

Figure 13. ‘stts’ box in MP4 Browser

33

In this case it presents all the possible information of the box: the number of
entries and the value of each one. Like the MP4 Explorer, this software does
not show the specific boxes implemented in the IM AF standard; but at least it
indicates the size of them. This program makes the implementation of the file
easier, because when a new box is created, the file is opened using this
software and then, the engineer can check if the code is right or there is a
problem. Without this type of programs the task of building an IM AF encoder
would be much more difficult for the programmer. Both programs are very
intuitive and simple to use. We note however, that they do not allow to modify
or change any parameter of the file; they just open the file and present its
structure.

In addition to these programs, it was used the code.soundsoftware.co.uk web
page to create a project online called IMAF Encoder. This web is intended for
researcher in the audio and music community, and allows you to upload the
code into the repository (online folder) and access it from different computers.
Using a Mercurial client [29] people can consult and modified the code stored
in the repository without downloading it into his/her computer. Also, it is very
easy to upload new material for keeping the project up to date. Thereby, it
was worked during the programming stage in a very efficient way using best
practice in software development as my tutor and other colleagues could
follow my progression and add some comments.

Once the project will be finished, it will be available in the project page for
everyone how will be interested, increasing the repercussion of the project
and helping the popularization of the IM AF file.

34

5. Results and evaluation

In this chapter we will analyse the characteristics of the files created by the
encoder. Three files have been generated despite that the encoder is very
flexible regarding the way files are developed. In addition, we will describe the
efficiency and performance of the software, as well as its weaknesses.

When the user wants to create a new file, he/she introduces the information
through a command line interface. Before presenting the conformance files,
we will explain the steps for doing that task. First, the encoder welcomes the
user and asks for the number of tracks that there will be in the IM AF file.
Welcome to the IM_AF encoder

This program will allow you to create an IM_AF file.

How many tracks there will be in your IMAF file?
6

Figure 14. Creation of file — Step 1

In Figure 14 the user has selected 6 tracks. The maximum tracks that the IM
AF file supports is 8 because the major brand in the filtetypebox is ‘im03’. If
this number is not enough, this value can be modified. The maximum number
of tracks that the file can decode simultaneously (‘im11’) is 16. For avoiding
the failure of the program, the encoder checks that the number of tracks
introduced by the user is compatible with the value specified by the major
brand. Figure 15 shows what happens when the user introduces a higher
value.

Welcome to the IM_AF encoder

This program will allow you to create an IM_AF file.
How many tracks there will be in your IMAF file?

10

Sorry, for this version the number maximum ot tracks is 8
How many tracks there will be in your IMAF file:
3|
Figure 15. Checking the maximum number of tracks
in the picture “the maximum tracks is 8¢

After specifying the number of tracks, the next step for the user is to enter the
name of each track. As mentioned before, the audio files must be in the same
path as is declared in the code. The names of the tracks have to be written
together with their extension. Figure 16 shows an example.

35

How many tracks there will be in your IMAF file?
3
Name of the track number: 1

bass.mp3

Name of the track number: 2
drums.mp3

Name of the track number: 3
synth.mp3

Figure 16. Creation file — Step 2

If the user has not written correctly the name of the file, or the encoder is not
able to detect the track in the folder, it will ask again for the name. Figure 17
shows this situation.

How many tracks there will be in your IMAF file?
3

Name of the track number: 1

bass

Name does not exist. Try again:

bass.mp3

Figure 17. Checking the track’s name

When the user has finished entering all the names, the encoder creates the
preset defined previously in the code. To provide clarity on what is being
written in the file, the encoder prints on the screen the characteristics of the
preset. Figure 18 below shows how this information is presented.

Presets:

Static track volume preset: invariant volume related to each track
Preset number 1: static_track

Enter volume for bass.mp3 = 120

Enter volume for drums.mp3 100

Enter volume for synth.mp3 80

Figure 18. Creation file — Step 3

The last step is to write the rules into the file. They are also written directly in
the code rather than using the command line. The encoder shows the
different rules implemented in order to make it clear to the user what is inside
the file. Figure 19 shows how the information is presented.

Rules:

Rule 1: Not mute for channel 3
Rule 2: Upper rule between channel 1 and 2

File is created successfully, and ready to use!
Figure 19. Creation file — Step 4

36

We note that the rule is the last box. After that, the encoder writes all the
information into the file. Thereby, the only thing that remains to be done is to
inform to the user that the file is created. A file with extension IM AF ready to
play in the IM AF player has been created.

5.1 Conformance files

The objective of this thesis has been to create an encoder able to generate IM
AF files. To demonstrate its operation, three different files have been
implemented. Each time a new IM AF file is presented we supply various
examples to prove the efficiency of the encoder. For that purpose, we have
selected three different multi-track songs from [28] with different styles. The
criterion for choosing the tracks is to cover different music styles. Acoustic,
electronic and rock are the three styles selected. Each song has different
configurations of the encoder parameters. The figure below describes the
characteristics of the IM AF files chosen.

Example 1
Name: Example Acoustic.ima
Format: MP3
#Instruments 6
Presets Yes
Rules Yes (2)
Type/N° of Value of Selection Rule: Mixing Rule:
instrument Static Preset Not mute Equivalence
ID 1-Drums 40 - Element involved
ID 2 — Bass 80 - Key element
ID 3 — Voice 120 Element involved -
ID 4 — Guitar 180 - -
ID 5 — Clarinet 200 - -
ID 6 — Accordion 240 - -

Table 14. Conformance file 1

The first example has six instruments, two rules and one static preset. The
selection rule is Not mute and the element that will be always in active state is
number 3: the voice. The rest of the instruments can be mute. The mixing rule
is Equivalence, meaning that two elements will have the same volume during
the whole piece of music. In this case the elements involved are the drums
and the bass. At no time one element will sound higher than the other. The
preset defines a static volume for the instruments; the secondary elements
like the clarinet or accordion get more presence and the important ones like
the drums or voice reduce the level.

37

Example 2
Name: Example_Electro.ima
Format: MP3
#Instruments 6
Presets Yes
Rules Yes (1)
Type/N° of Value of Mixing Rule:
instrument Static Preset Upper
ID 1-Drums 120 Element involved
ID 2 — Bass 100 Key element
ID 3 — Synth 80 -
ID 4 — Guitar 60 -
ID 5-SFX 40 -
ID 6 — Loop 20 -

Table 15. Conformance file 2

The second example has six instruments, one rule and one static preset. The
Upper rule defines that the bass will have an equally or higher volume than
the drums. Thus, the bass will not be masked by the drums. The preset
defines a static volume for the instruments. In this case the lower elements
like the drums and the bass will have more presence in the song as in
electronic music the low frequencies are more important than the higher ones.

Example 3
Name: Example_Rock.ima
Format: MP3
#Instruments 5
Presets Yes
Rules Yes (2)
Type/N° of Value of Selection Rule: Mixing Rule:
instrument Static Preset Not mute Lower
ID 1-Drums 40 - -
ID 2 — Bass 80 - -
ID 3 — Voice 40 - Element involved
ID 4 — AcGtr 100 Element involved -
ID 5 — ElecGtr 104 - Key element

Table 16. Conformance file 3

38

The third example consists of five instruments, two rules and one static
preset. The lower rule defines that the voice will have an equal or lower
volume than the electric guitar. In this type of music (indie/rock) the guitars
have the same important than the vocals, differently from Pop or Acoustic
music where the voice has to be above the rest of the instruments. The other
rule is not mute and the element involved is the acoustic guitar, to ensure the
presence of this instrument during the whole track.

These three examples have been created to give an idea of what the program
developed in this thesis is capable to do. More combinations can be made,
but the three examples selected are a good representation of the possibilities
of the new IM AF encoder.

5.2. Advantages

In this thesis an IM AF encoder has been implemented that creates a new
interactive file. It is intended for all users, from a beginner that does not know
too much about programming to a professional engineer who wants to
personalize the encoder to suit his/her needs. The beginner will find the
encoder very useful and intuitive because he/she does not need to modify the
code for generating an IM AF file. There is a command line interface that
guides the newcomers through the creation of the file. This tool allows to enter
the instruments in the file. The customization of the encoder by a user is a
relatively simple task. The code is written in C, thus providing a classical
programming environment very easy to understand. On the other hand, an
experimented user working with the new encoder will find it sufficiently robust
for his/her work; thus making it easy to make of the encoder a professional
tool. Also, in case he/she would want to introduce new improvements in the
file, the program created will represent the framework of his/her work and will
be flexible enough to support the changes.

The encoder is very efficient. It is able to work with long audio files (5/6
minutes per track or more), open them, extract the information and merge it all
inside the file in less than a minute. It does not need a powerful computer
neither external libraries nor plugins. The two code files delivered with the
thesis are the only tools needed to create the IM AF file. Each time a user
introduces the name of the instrument, the encoder automatically writes the
information in the corresponding box, thereby reducing considerably the
amount of time that the user has to wait. Moreover, the lightness of the
encoder, regarding memory consumption, makes it suitable for applications
that work in low processor environments like smart phones or tablets.

The resulting file has a respectable size because it supports MP3 as the
standard audio file. The size is quite problematic in a file that works with multi
track files, as it readily increases the whole size. If the file works with four or
five instruments with a non-compress format like ‘wav’ the final size will shoot
up. Using MP3 reduces the size two or three orders of magnitude.

39

5.3. Weakness

This encoder has been created in a short period of time. Thus, there are some
aspects that could have been done differently. The command line interface is
limited; the user can introduce information related to the number and name of
the tracks. The presets and rules information must be written directly in the
code, hence making it troublesome for someone who does not know the C
language. It would have been more comfortable for the user if the interface
was an application by itself, rather than being part of the C compiler. A user
who wants to create an IM AF file must install a C editor, because the file
needs to be compiled to produce the final file. Another drawback is the
compatibility of the audio files; the encoder supports only MP3 and, therefore
the user has to convert his/her tracks to MP3. Nowadays this is not a big
problem because there are lots of free software that converts audio files into
MP3. But as the encoder developed in this thesis is a compressed file the
resulting file has a low quality. This is more evident as the MP3 must be at
128 Kbps and the recommended bit rate is 320 Kbps.

The tracks, that a user would like to add to the file, have to be in the same
folder and indicated (by the location) in the code. If for any reason a track is
moved to another folder, the file will not be able to locate it. Also, the encoder
does not support tracks stored online. All tracks must be in the computer. Due
to lack of time, it neither supports metadata as image or text, which makes he
application duller for players. These aspects can be easily incorporated in the
future.

Another weakness of the developed file format is the difficulty to find music in
multi-track format. For the time being, this encoder is intended for musicians
or professionals who have access to the recordings of the song. This standard
file hopefully would be embraced by major music labels such as EMI or SONY
for the benefit of the consumer since offers rich user experience. More
important, they will supply with their large sound library thousands of song in
multi track format. The new encoder will help in the popularization of the IM
AF interactive file format to the general public. The intention is that this file
format achieves enough popularity to be present in the recording studios as
the standard format of the future.

40

6. Conclusions and further work

The task of creating an encoder is complex, especially if the file that requires
this tool is new and very little has been written about it. This fact makes this
challenge even more interesting and exciting. As many projects, especially in
the engineering field, one needs to submit a product that meets some
requirements,(in this case they are defined by the ISO) but one should have
the freedom to develop it as considered best. The file created in this thesis is
called Interactive Music Application Format (IM AF) and is described in ISO
23000-12. There, the different parts that this file should have are explained,
like headers, space for samples and other data.

In this thesis we have first studied this standard and others for the subsequent
development and implementation of a code that creates a file compatible with
the decoder supplied by MPEG. The code is written in C and has two parts.
One generates the framework of the file (IM_AF Encoder.h) and the other fills
this framework with the data needed and writes the file. The header includes
different boxes that together form the framework of the file. Basically, a box
limits (by the size variable) a section of memory in the file, which may contain
information or other boxes. The way this storing procedure has been
implemented in the code is by using the struct structures. They have the same
behaviour when storing data and can hold another sfruct inside them.
Moreover, since it is a binary file, the struct can be directly written in the file,
thus facilitating the writing of the content. In this manner, it avoids the need for
writing the file byte by byte.

The other section of the code (main.c) is in charge of introducing the
information in the boxes and of writing them in the proper order. This part is
the most complicated and elaborated one. It must handle several types of
operations: from calculating the size of each box, to convert an MP3 into IM
AF files. The conversion and processing of MP3 files has been a fundamental
part in the success of the encoder. First, we have studied the standard that
defines the MP3. Then, the MP3 files have been opened for analysing and
understanding the real framework of the files; as each MP3 encoder varies
the way the file is conformed. Once we knew how the file works, we read the
information that is needed, and store it in the appropriate boxes. This process
must be repeated for each track/instrument that one wants to insert in the file.
| Consequently, most of the process inside the main code is part of a loop.
The management of the data has made very laborious the creation of the
encoder. The reason why C was the chosen programming language is
because it simplifies the programming tasks, as C is a complete but basic
language that does not incorporate external libraries. These libraries in most
cases are difficult to understand, as they require a high knowledge of the
subject.

41

To complete the process of developing the IM AF encoder, three examples
are presented. They prove the compatibility and the correct operation of the
encoder showing to a new user how it looks in real world applications.

When | started this project, | knew the MPEG technologies from the lectures
at the university. But | did not know how they worked in detail. | chose this
topic because | felt attracted the first time | heard about it. IM AF technologies
are a new music file format that will revolutionize the music industry. By
creating this encoder, | present a tool that will help in this task, as it is an easy
tool that many people will be able to use. This will surely contribute to the
widespread use of the IM AF file format.

This thesis has helped me to improve my programming skills. Also | have
become familiarized with a new and promising technology. However, there
have been some obstacles during this process. The first one was to
understand the file format and how | would implement it. Find the best suitable
code and programming techniques were essential steps for the success in the
development phase. The second obstacle was to eliminate artifacts produced
by the wrong manipulation of samples. At the time of writing the sample table
box, | wrote the data in the table a row after the correct position. This
generated a noise that prevented the correct listening of the song. Correcting
this and other errors was a very rewarding task as it has improved my
knowledge in this field.

Despite that the encoder created in this thesis does its task properly; time
limitations have prevented the implementation of some interesting additional
tools. The ability to store images, like the cover of the album of pictures of the
artist, and to insert synchronized text for karaoke, are two improvements that
can be introduced in future versions of the encoder. Also, it would be very
interesting to store the tracks online. This will help to create a social network
where users could share instruments without the need to have physically the
file.

On the other hand, IM AF is a new standard that creates an interactive file
that allows manipulation, in terms of volumes, of the track. But it could also
improve the file by adding more tools. The incorporation of an equalizer for
each channel would be an interesting task for future developments. In addition
to controlling the volume, the user would have the chance of manipulating the
frequencies, thus converting the file to a more complete and professional tool.
Another improvement would be to introduce a panorama for each channel,
where the user would move the instrument in the 3D space, placing each
track in a different position.

Concerning the technical part of the encoder there could also be some
improvements. The programming language chosen in this project did not
allowed to incorporate the encoder inside a mobile application, as most of the
App work with C++ or Java. For this reason, translating the code to one of
these languages will be useful for the future development of the encoder.

42

References

[1] ISO/IEC Std. 2010, Information Technology — Multimedia application
format (MPEG-A) — MPEG music player application format — Part 12:
Interactive music application format, ISO/IEC FDIS 23000-12.

[2] ISO/IEC Std. 2006, Information Technology — Multimedia application
format (MPEG-A) —Part 2: MPEG music application format, ISO/IEC
23000-2.

[3] F. Gallot, O. Lagadec, M. Desainte-Catherine, S. Marchand. iKlax: A New
Musical Audio Format for Interactive Music, Proc. ICMC (International
Computer Music Conference) 2008, August 2008.

[4] ISO/IEC Std. 2002, Information Technology — Coding of Audio-Visual
Objects — Part 1: Coding of audio-visual objects, ISO/IEC 14496-1.

[5] Microsoft Developers Network. Microsoft RIFF — WAVE. Available at:
http.//oreilly.com/www/centers/gff/formats/micriff/

[6] ISO/IEC Std. 2006, Information Technology — Coding of moving pictures
and associated audio for digital media at up to about 1,5 Mbit/s — Part 3:
Audio. ISO/IEC 11172-3.

[7] ISO/IEC Std. 1995, Information Technology — Generic coding of moving
pictures and associated audio information — Part 7: Advanced Audio
Coding (AAC). 13818-7.

[8] ISO/IEC Std. 2012, Information Technology — JPEG 2000 image coding
system — Part 12: ISO base media file format. 15444-12.

[9] ISO/IEC Std. 2002, Information Technology — Coding of Audio-Visual
Objects — Part 17: Streaming text format, ISO/IEC 14496-17.

[10] ISO/IEC Std. 2006, Information Technology — Coding of moving pictures
and associated audio for digital media at up to about 1,5 Mbit/s — Part 1:
Systems. ISO/IEC 11172-1.

[11] ISO/IEC Std. 2007, Information Technology — Generic coding of moving
pictures and associated audio information — Part 1: Systems. ISO/IEC
13818-1.

[12] J. Watkinson. MPEG-2 Chapter 4 Audio compression. Oxford. Focal
Press, 1999.

[13] T. Painter, A. Spanias. Perceptual coding of audio. Arizona State
University, 2000.

[14] K. Brandenburg, H. Popp. An introduction to MPEG Layer-3. Fraunhofer
Institut fur Integrierte Schaltungen (11S).

[15] MP3 File Structure. Available at:
http://www.multiweb.cz/twoinches/mp3inside.htm

[16] F. Pereira. MPEG-4: Why, what, how and when? Instituto de
Telecomunicacoes, Lisboa, 2002. Available at:
http://www.sciencedirect.com/science/article/pii/S0923596599000491

43

[17] F. Pereira, T. Ebrahimi. The MPEG-4 Book. New Jersey: IMSC Press,
2002.
[18] L. A. Ludovico, Key Concepts of the IEEE 1599 Standard. Laboratorio di
Informatica Musicale (LIM), Milano, 2008.
[19] Draft 0.9.1a, Interactive XMF: File Format Specification. La Habra CA.
February 18, 2008.
[20] Larry the O., G. Sanger, B. Starr. Group Report: Towards Interactive
XMF. Project BAR-B-Q 2001. The Sixth Annual Interactive Music
Conference. Available at: http://www.projectbarbg.com/bbq01/bbq01r5.htm
[21] ISO/IEC Std. 2002, Information Technology — Coding of Audio-Visual
Objects — Part 12: ISO base media file format, ISO/IEC 14496-12.
[22] A. Eleftheriadis. The MPEG-4 System and Description aguages: From
Practice To Theory. Columbia University, Ney York.
[23] ISO Std. 2004, Data elements and interchange formats — Information
interchange — Representation of dates and times, ISO 8601.
[24] ISO Std. Codes for the representation of names of languages — Part 2.
ISO 639-2.
[25] ISO Std. 1998, Information Technology — Generic coding of audio-visual
objects — Part 1: Systems section. ISO/IEC 14496-1.
[26] Mp4 Explorer. Open Source Software created by CodePlex. Available at:
http://mp4explorer.codeplex.com/
[27] MP4 Browser by MiraVid. Available at:
http://download.cnet.com/MiraVid-MP4-Browser
[28] The ‘Mixing Secrets’, Free multitrack download library. Available at:
http://www.cambridge-mt.com/ms-mtk.htm#Acoustic
[29] Easy Mercurial. Developed in the Center of Digital Music of Queen Mary.
[30] R. Stewart, P. Kudumakis, M. Sandler. Interactive Music Applications
and Standards in Exploring Music Contents. Lecture Notes in Computer
Science, Vol. 6684, Springer Berlin Heidelberg, Editors: S. Ystad, M.
Aramaki, R. Kronland-Martinet & K. Jensen. Aug. 2011

[31] I. Jang, P. Kudumakis, M. Sandler, K. Kang. The MPEG Interactive
Music Application Format Standard, IEEE Signal Processing Magazine,
pp. 150-154, Vol. 28, Issue 1, Jan. 2011.

[32] E. Onate, P.Kudumakis. Development of an IM AF encoder. Queen
Mary, London, 2012.

[33] The code with the IM AF examples can be downloaded from:

https://code.soundsoftware.ac.uk/hg/enc-imaf

44

Appendix.1 — Paper: Development of an IM AF encoder

Development of an IM AF encoder

Eugenio Onate, Panos Kudumakis
School of Electrical Engineering and Computer Science
Queen Mary University of London
Email: e0301 @eecs.qmul.ac.uk

Abstract—In this work an encoder able to create a new inter-
active file following the so-called Interactive Music Application
Format (IM AF), has been developed. A file created with the IM
AF allows users more control over the song. More specifically,
it permits to vary the volume of each instrument or choose
a predefined preset. The encoder has been programmed in C
following the standard defined by MPEG. The paper describes
first the previous file formats which have been the basis for the
development of the IM AF file . Then the main features and the
structure of the new encoder are detailed. The performance of
the encoder has been validated by creating three IM AF files
with special music features. These conformance files have been
successfully tested in the IM AF player provided by the MPEG
group.

I. INTRODUCTION

The music market is strangled with decreasing sales. Cus-
tomers need new products that attract their attention. The time
has come to innovate and create a new file format that will
change the way people listen the music. Formats like mp3
were a good revulsive for industry, but have been here since
the 90s; today it is all about interactivity between user and
technology. Nowadays technologies have led people to live in
a society where everyone is connected among themselves and
sharing all kind of information.

The music industry has been reluctant to let people interact
with the songs, basically because the technology was not
ready. Now it is the perfect time to change the concept of the
listener, making him/her participate of the musical experience.
The Moving Picture Experts Group (MPEG) defined a new
file format called Interactive Music Application Format (IM
AF) [1] as part of the Multimedia application format (MPEG-
A) [2]. IM AF is a versatile file format standard for mixing
different types of multimedia data (music, images and text).
It allows users to modify the volume of each instrument
separately or change the mixing style according to some
presets predefined by the producer.

The process for creating standardized files like MPEG-1 Layer
III (.mp3) or IM AF (.ima) is split in two sections: encoder and
decoder. In the encoder section, the file is created following
the appropriate standard; parts like headers, track information
and samples data are put together inside a binary file. The
decoder is responsible to read and understand the file so that
it will be able to reproduce it.

When a new file is defined, the file decoder is made publicly
available through ISO/IEC MPEG to let companies design
their own encoder. In this manner, they ensure compatibility
of the file no matter how it was created. Since MPEG defined

45

the standard for IM AF in 2010 no one has publicly released
an implementation of the encoder yet, although commercial
services exist.

In this work an encoder for IM AF files has been designed
,implemented and tested following the ISO 14496 Part 12: ISO
base media file format and ISO 23000 Part 12: Interactive
music application format. The new IM AF file encoder can
support a maximum of 16 simultaneously audio tracks with
a sampling frequency of 44.1kHz at 16 bits per sample. In
this version, individual music-tracks must be encoded in MP3.
Also, it is able to add different mixing presets and rules.
Presets are predefined values of the volume of each instrument
that allow the producer to create different versions of the track
.Also users can exchange and share their own mixtures. Rules
are limitations imposed by the creator of the song, usually
producers, to avoid users destroy the essence of the song. The
encoder has been programmed in C and has a simple command
line user interface for introducing the information required by
the program.

II. BACKGROUND RESEARCH

In this section we analyze some previous standards that have
contributed to create the IM AF file format. We also present
similar applications based on interactivity files.

A. MPEG-1 Layer 11l

MPEG-1 Layer III, most commonly known as MP3 [3],
was released in 1991 and soon become the most used tool
for Internet and audio delivery. It became very popular due
to its big impact on the music industry, offering good sound
quality with low bit-rate. MPEG-1 works on different sam-
pling frequencies and supports variable compression ratio. For
Layer-III the standard determines a variety of bit-rates from 8
Kbit/s to 320 Kbit/s. The most common ones are 192 Kbit/s
and 320 Kbit/s as they provide transparent quality. Bit-rate can
change from frame to frame allowing higher bit-rates for more
complex parts of the song, while less space is needed for less
complex ones.

Audio encoders may have different architectures depending on
the model. MPEG standard encoders have no restrictions for
their design. However, all files produced have to be compatible
with the corresponding decoder. A MP3 file is split into small
blocks or frames where data is stored. Each frame has 1152
samples per frame [4]. The standard sampling frequency is
44.1kHz, which means that the duration of one frame is
1152/44100 0.026 sec. Knowing the bit-rate it is possible

to calculate the size in Bytes of one frame [4]; if the bit-rate
is 128kbps the size is 417 Bytes, while if it is 192kbps the
size is 626 Bytes. At beginning and end, MP3 files may have
ID3 TAGs. Those are metadata containers with information
related to the song.

[ID3 TAG] Framel Frame2 Frame3 ... FrameN [ID3 TAG]

Each frame is structured in the same way. It has a 32-bit header
followed by the samples. The header contains information
associated to technical specifications such as MPEG version,
Layer, Bit-rate and sampling frequency. The decoder uses this
information to decode the file properly.

A. MPEG-4

MPEG-4 was an evolution of MPEG-2. Unlike its prede-

cessor, improving the compression method was not the main
task. The main difference with previous audiovisual coding
standards is the object-based representation model that helped
consolidate MPEG-4. Objects can be audio objects like multi-
channel audio content or speech, or video and movies. Trans-
mitting several audio objects with multiple tools creates an
audio composition system or soundtrack. This ability furnishes
MPEG-4 with important superiority in quality and flexibility
versus its predecessors.
The file format defined by MPEG-4 is called MP4; it is de-
scribed in ISO 14496 Part 12 Base Media File Format. It is an
important part of the IM AF file as explained in a next section.
It is intended to accommodate multi-media information in a
versatile arrangement that allows ease manipulation, correction
and display of the media.

B. Previous interactive music systems

IM AF was not the first file format to include interactive

control over the media. In this section we briefly describe
three examples of earlier formats: IEEE 1599 [5], iXMF [6],
and iKlax [7].
IEEE 1599 combines in a single file music and XML symbols,
as graphical representation of the music or performance indica-
tions. This information is integrated and synchronized within
the same framework and can be accessible individually or as
a whole. An exhaustive description of music must integrate
different types of information. IEEE 1599 has developed a
new XML encoding system to allocate this heterogeneous
information in a single file. XML organizes the information
in six different layers [5]

o General - It stores information about the piece.

o Logic - Coherent representation of score symbols.

o Structural - Classifying musical objects and the connec-
tion.

« Notational - Visual representation of the score.

o Performance - Computer-based description of musical
representation.

o Audio - Digital audio recording.

iXMF or interactive eXtensible Music Format is a file format
created by the video games industry to provide a standard

46

structured audio file format that supports cross-platform in-
terchange of advanced interactive audio tracks. An iXMF file
includes in a single file all the information needed to perform
the audio track as the artist intended. The same information
defines the structure of the file. iXMF uses a structure such
that an event can be triggered at a particular instant. The
selected event can activate a wide range of activities ,such
as the playing of an audio file or the execution of a specific
code.

iKlax technology was developed by iKlax Media company and
LaBRI in France. iKlax proposes a file format with separated
tracks and interactivity to manipulate the music piece. The
project includes a music player and a music editor. iKlax
format groups all the tracks of a song and related metadata
in a single file. It has two levels of interactivity; the first level
allows the selection of the track, where listeners can chose the
track that they want to listen. The second level is the mixing;
here listeners can modify the level of each track.

SOFTPICKS.NET

Fig 1. iKlax Player

I. DEVELOPMENT OF THE IM AF ENCODER

In this section we present the IM AF encoder developed in
this work . Also, we will analyze the different sections of the
file that are used in the new encoder. IM AF uses parts of the
MPEG-4 standard as well as new parts designed specifically
for this new interactive file.

A. Interactive music service

To ensure interoperability between different multimedia
content, the International Standard Organization (ISO) pre-
sented in 2010 IM AF. IM AF specifies how to connect
multiple tracks with related information under a well-defined
structure that facilitates the manipulation of interactive music
content. This content includes audio tracks, preset data and
rules. Audio tracks represent the instruments of the song, they
can be a single instrument or a group. Preset data is a pre-
defined information related to the volume of each track and
allows users to create different versions of the song. Those
values cannot be changed after the file is created. Hence, it
can be useful for producers to present the same track from
different points of view. Finally, IM AF files introduce rules
to avoid users destroy the initial intention of the author.

The created files are reproduced by an interactive music player

as shown in Figures 2 and 3. Users have two different
options to listen the song: preset-mix mode and user-mix
mode. In the preset mode the user choses one of the pre-
defined presets in the IM AF file, and then the tracks change
the volume according to the preset values. In the user mode,
the user selects/de-selects the tracks and controls their volume
. All the actions performed by the user need to be compatible
with the rules; otherwise the actions will not be carried out.

ETIRI @iKlax

Ci P oL x

ETRI ®iKlox

} 00:00:39/00:03:26

00:00:39/00:03:26

Prosstemix Usermix | Fikdo | Rue |

Fig 2. IM AF player. User-mix mode (left) and preset mode
(right).

A. Structure of the IM AF file

The encoder is responsible for creating the IM AF file.For
doing that it follows the standard defined in ISO 23000-12.
The framework of this file is based on the MPEG-4 ISO
based Media File Format standard; IM AF has introduced
some improvements to enable interactive control.

IM AF files consist of a series of boxes that include all
data. There are two different types of boxes; those that may
contain other boxes inside them and others that just contain
data (called FullBoxes). All boxes start with the header which
defines the size and type. FullBoxes incorporates in the header
the version and flag information. The size defines the total
size of the box, including data and, if necessary, other boxes.
It has a size of 32 bits (unsigned integer), but if the data
stored in the box is bigger than that it can use 64 bits. Type
is the identification of the box, and each box has its own
type, i.e. ftyp, moov, mdia. The version is an integer (8 bits)
and specifies the version of the box, and the flag is a 24-bit
integer and its use depends on each box.

A complete list of the boxes that form the structure is presented
below:

47

File type and compatibility
fyp'

Media data container
‘mdat’

‘ Audio |

‘ Audio |

‘ Text/ Image |

Movie Box
‘mooy’

I'rack Box ‘trak’
from 1 to ™
Media Info ‘'mdia’

Media header ‘mdhd’

Handler media *hdlr’

Sampler info ‘stbl’

Container for groups ‘groo’
from 1 to N

| Group box ‘grup’ |

Container for presets preo’
from 1 ta N

| Preset box “prst’ |

Container for rules ‘ruce’
from 1 ta N

Selection rule ‘rusc

Mixing rule ‘rumx’

Metadata ‘meta’
Data information
XML container

Fig 3. Boxes inside the IM AF file

We will not explain each box individually, further informa-
tion and description of each box can be found in [1], [8], and

[91.
I. IMPLEMENTATION

The encoder that creates the IM AF file has been imple-
mented in C. It does not use any external library, ensuring that
it will work easily in any computer. The program has two parts:
the main program and the IM AF header. The main program
includes the functions to create the file and the header defines
the structure of the boxes. There is also a basic command
line tool to let users introduce values such as the number of
tracks and their names. The program has a static structure;
meaning that the maximum number of tracks, presets and rules
are defined by a global variable.

Right at the beginning, the encoder asks the user to introduce
the number of tracks that the IM AF file will incorporate.
Then, the user writes the names of all the tracks to be stored
in the file. The encoder detects if the track exists or not. If
it does not, the program will ask again for the name. When
the user has finished to introduce all the tracks, the encoder
creates the binary file that will store all the information. The
first function called in by the program is the filtetypebox. It
specifies the different types supported by the encoder.

Once the type is clear, the encoder converts the audio files
(MP3) into MP4 files. The first step is to extract the samples

of the audio file and store them into the media data
container. The idea is to find the beginning of the first frame
and read the data until it reaches the end of the file. The
intention is to avoid the ID3 header, as it does not contain
useful information. The second step is to extract the sample
information from the frames of the MP3 and write it in the
corresponding sample box inside the Track Box. In the sample
size box stores the duration and size of each frame, as well
as the total number of frames (Figure 4). In this case the
search for information is more precise that in the media data
container. Rather than reading the whole file, it localizes the
beginning and end of each frame, extracting the information
of one frame at a time. This information is reused by the time
to sample, sample to chunk and chunk offset boxes.

Track Box ‘trak’
from1toN
.
.
MP3 File *
Sample info stbl’
ID-3 Header Sample description
PP box ‘stsd’
Frame 1 Header Size of frame T -
Length of frame = T'ime to sample box
SAMPLES Number of samples “‘—-._‘____ —
Duration .. Sample to chunk
Frame 2 Header stsc’
SAMPLES .\nmph.j size
‘stsz’
Frame 3 Header Chunk offset
‘sted’

.
. .
.
.

Fig 4. Sample data information

The preset container is next implemented after the track
box. It creates a static preset with a fixed value. First, it defines
the number of presets that there will be in the file. Then, it
assigns the volume of each track; initially takes the value of
100. Changing this value will modify the volume of each track
in the specific preset. The next step is to create the rules. The
rule container creates two rules: one selection rule and one
mixing rule. Finally, the movie box is created together with
the movie header box. Here the encoder puts together the sizes
of all boxes within the movie box. Doing that at the end of the
code ensures that the total size of the movie box will match
the sum of each one.

A. Programs that analyze the IM AF file

In the process of creating the IM AF file we have used
various programs that analyze the structure of the file. Specif-
ically programs that show the boxes of the MPEG-4 file and
programs that work for IM AF too. The creation of a file
like the one created here is full of little parameters that can
lead to ill-function of the file. The order of the boxes is very
important, so it is the size of each box. These programs have
been an important part of the success of the encoder. The MP4
Browser [10] is a free software for MS Windows. It gives a
very clear idea of how the IM AF file is structured. It details
the content, fype and size of all boxes, except the ones used
only in IM AF, like the preset and rules boxes. This software

was created to work with ISO 14496 files (MPEG-4) ,so it does
not support the new features of IM AF. Without this type of
programs the task of building an IM AF encoder would be
more difficult.

I. RESULTS

In this section we analyze the characteristics of the files
created by the encoder. When the user wants to create a new
file, he/she introduces the information through a command
line interface. Before presenting the conformance files, we
will explain the steps for doing that task. First, the encoder
welcomes the user and asks for the number of tracks to be
included in the IM AF file.

Welcome to the IM_AF encoder

This program will allow you to create an IM_AF file.
How many tracks there will be in your IMAF file?

3

Fig 5. Creation of file - Step 1

In this case the user has selected 3 tracks. The maximum
number of tracks that the IM AF file supports is limited by the
larger brand in the filtetypebox. After specifying the number
of tracks, the next step for the user is to enter the name of
each track. The audio files must be in the same folder as is
declared in the code and the names have to be written together
with their extension, as showed below.

How many tracks there will be in your IMAF file?
3
Name of the track number: 1

bass.mp3
Mame of the track number: 2
drums.mp3
Mame of the track number: 3
synth.mp3

Fig 6. Creation of file - Step 2

When the user has finished entering all the names, the
encoder creates the preset defined previously in the code. To
provide clarity on what is being written in the file, the encoder
prints on the screen the characteristics of the preset.

Presets:
Static track volume preset:

Preset number 1: static_track

Enter volume for bass.mp3 = 120
Enter volume for drums.mp3 100
Enter volume for synth.mp3 80

Fig 7. Creation of file - Step 3

The last step is to write the rules into the file. They are also
written directly in the code rather than using the command
line.

48

invariant volume related to each track

Rules:
Rule 1: Not mute for channel 3
Rule 2: Upper rule between channel 1 and 2

File is created successfully, and ready to use!

Fig 8. Creation of file - Step 4

After that, the encoder writes all the information into the
file. Hence, the only thing that remains to be done is to inform
to the user that the file is created. A file with extension IM
AF ready to play in the IM AF player has been created.

A. Conformance files

Three different files have been implemented in order to
validate the performance of the new encoder. Each time a
new IM AF file is presented we supply various examples
to prove the efficiency of the encoder. For that purpose, we
have selected three different multi-track songs from [11] with
different styles. Each song has different configurations of the
encoder parameters. Below it presents one conformance file,
the rest of the file can be found in [8].

Example 1
Name: Example_Acoustic.ima
Format: MP3
#Instruments 6
Presets Yes
Rules Yes (2)
Type/N* of Value of Selection Rule: Mixing Rule:
instrument Static Preset Not mute Equivalence
ID 1 - Drums 40 Element involved
ID 2 - Bass 80 - Key element
ID 3 - Voice 120 Element involved -
ID 4 — Guitar 180 - -
ID 5 - Clarinet 200 - -
ID 6 — Accordion 240 - -

Fig 9. Conformance file 1

This example has six instruments, two rules and one static
preset. The selection rule is Not mute and the element that will
be always in active state is number 3: the voice. The rest of
the instruments can be mute. The mixing rule is Equivalence,
meaning that two elements will have the same volume during
the whole piece of music. In this case the elements involved
are the drums and the bass. At no time one element will sound
louder than the other. The preset defines a static volume for
the instruments; the secondary elements like the clarinet or
accordion get more presence and the important ones like the
drums or voice reduce the level.

I. CONCLUDING REMARKS

In this work an IM AF encoder has been implemented that
creates a new interactive file. It is intended for all users, from
a beginner that does not know much about programming to a
professional engineer who wants to personalize the encoder to
suit his/her needs. The beginner will find the encoder useful
and intuitive as he/she does not need to modify the code for
generating an IM AF file. There is a command line interface
that guides newcomers through the creation of the file. This

49

interface allows users to enter the instruments in the file. The
customization of the encoder by a user is also a relatively
simple task.

On the other hand, an experimented user will find the encoder
sufficiently robust tool for his/her professional work. More-
over, in case a user would want to introduce new improvements
in the file, the program created will represent the framework
of his/her work and will be flexible enough to support the
changes.

This encoder has been created in a relatively short period of
time. Thus, there are some aspects that could have been done
differently. The command line interface is limited; the user can
introduce information related to the number and name of the
tracks. Also the presets and rules information must be written
directly in the code, hence making it troublesome for someone
who does not know C. Life would be more comfortable for a
user if the interface was an application by itself, rather than
being part of the C compiler. The encoder supports only MP3
files. Nowadays this is not a problem as there are lots of free
software that converts audio files into MP3.

A weakness for the immediate application of the IM AF file
format developed is the difficulty to find music in multi-
track format. For the time being, this encoder is intended for
musicians or professionals who have access to the recordings
of the song. This standard file hopefully would soon be
embraced by major music labels such as EMI or SONY via
their huge sound library. In this manner, the new encoder will
help in the popularization of the IM AF interactive file format
to the general public. The intention is that this file format
achieves enough popularity to be present in the recording
studios as the standard format of the future.

Future extensions of the decoder will include the ability to
store images, like the cover of the album of pictures of
the artist, and the possibility to insert synchronized text for
karaoke. Also, it would be interesting to store the tracks online.
This will help to create a social network where users could
share instruments without the need to have physically the file.
We note that IM AF is a new standard that creates an interac-
tive file that allows the manipulation of the track volume. This
file can be improved by adding more tools such as an equalizer
for each channel . In this manner, users would have the chance
of manipulating the frequencies in addition to controlling the
volume, thus converting the file into a more complete and
professional tool. Another improvement would be to introduce
a panorama for each channel, where users could move the
instrument in the 3D space, placing each track in a different
position. We finally point out that the programming language
chosen did not allow to incorporate the encoder inside a mobile
application. Thus, translating the code to C++ or Java will be
useful for the future development and implementation of the
encoder in Apps.

REFERENCES
[1] ISO/IEC Std. 2010, Information Technology —Multimedia application

format (MPEG-A) MPEG music player application format Part 12:
Interactive music application format, ISO/IEC FDIS 23000-12.

[2]

3

[4

ISO/IEC Std. 2006, Information Technology Multimedia application
format (MPEG-A) Part 2: MPEG music application format, ISO/IEC
23000-2.

ISO/IEC Std. 2006, Information Technology Coding of moving pictures
and associated audio for digital media at up to about 1,5 Mbit/s Part
3: Audio, ISO/IEC 11172-3.

MP3 File Structure Available at:
http://www.multiweb.cz/twoinches/mp3inside.htm

L. A. Ludovico, Key Concepts of the IEEE 1599 Standard, Laboratorio
di Informatica Musicale (LIM), Milano, 2008.

Draft 0.9.1a, Interactive XMF: File Format Specification. La Habra CA,
February 18, 2008.

F. Gallot, O. Lagadec, M. Desainte-Catherine, S. Marchand, iKlax: A New
Musical Audio Format for Interactive Music. Proc. ICMC (International
Computer Music Conference) 2008, August 2008.

E. Onate, Development an IM AF encoder MSc Digital Music Processing
Final Report, Queen Mary, 2012.

ISO/IEC Std. 2002, Information Technology Coding of Audio-Visual
Objects Part 12: ISO base media file format, ISO/IEC 14496-12.

[10] MP4 Browser by MiraVid. Available at:

http://download.cnet.com/MiraVid-MP4-Browser

[11] The Mixing Secrets, Free multitrack download library. Available at:

http://www.cambridge-mt.com/ms-mtk.htm#Acoustic

50

Aendix.2 - Listening of the IM AF encoder program

Main.c

// main.c

// IM_AM Enco§er

//

// Created by Eugenio Ofiate Hospital on 14/06/12.
// Copyright (c) 2012 QM. All rights reserved.

//

//File input/output

#include <stdio.h>

//Standard library: numeric conversion, memory allocation...
#include <stdlib.h>

//0perations with strings

#include <string.h>

//Get the creation time: clock

#include <time.h>

#include "IM_AF Encoder.h"

/*Prototypex/

void filetypebx(FileTypeBox xftyp);

int mdatbox(MediaDataBox s*mdat, int, FILE ximf, FILE *song, int);

void moovheaderbox(MovieBox *moov, int, int, int, int, int, int);

int trackstructure(MovieBox *moov, int, int, int, int, char name[20]);
int samplecontainer(MovieBox *moov, int, int, char name[20]);

int sampledescription(MovieBox xmoov, int);

int presetcontainer(MovieBox xmoov, int,nametrack namet);

int rulescontainer(MovieBox *moov);

void writemoovbox(MovieBox moov, int numtrack,int totaltracks, FILE ximf);
int readTrack(MovieBox xmoov, int, char name[20]);

int byterevers(int);

Main function

int main ()

{
//variables
FileTypeBox ftyp;
MediaDataBox mdat;
MovieBox moov;

// MetaBox meta;
nametrack namet;

FILE *imf;
int numtrack,totaltracks, sizemdat, durationTrack;

/* Obtain current time as seconds elapsed since the Epoch. */
time_t clock = time(NULL);

printf("\nWelcome to the IM_AF encoder\n");
printf("This program will allow you to create an IM_AF file.\n");
printf("How many tracks there will be in your IMAF file?\n");
scanf("%d",&totaltracks);
fflush(stdin);
while (totaltracks > maxtracks) {
printf("Sorry, for this version the number maximum ot tracks is
%d\n",maxtracks);
printf("How many tracks there will be in your IMAF file:\n");
scanf("%d",&totaltracks);

//Create the file
imf = fopen ("/Users/eugin/Desktop/IM_AF Encoder/IM_AM
Encoder/Example_Rock.ima","wb");
if (imf == NULL) {
printf("Error opening input file\n");
system("pause");
exit(1);
}

51

//Define the File Type Box
filetypebx(&ftyp);
fwrite(&ftyp, sizeof(FileTypeBox),1, imf);

//Media Data Box — Contains the audio

FILE *song;

char nametrack([20];

//Specify the path directory where there are the songs.

//If change folder, change the path here (3 times) and in readTrack function!!!
char pathdir[60] ="/Users/eugin/Desktop/IM_AF Encoder/Rock/";

int numtr, ex = 0;

for (numtr=0; numtr<totaltracks; numtr++) {

printf("Name of the track number: S%d\n", numtr+l);
fflush(stdin);

scanf("%s", nametrack);

strcpy(pathdir, "/Users/eugin/Desktop/IM_AF Encoder/Rock/");
strcat(pathdir, nametrack);

ex = 0;
//Check if the track exist and then open it.
while (ex == 0){

song = fopen(pathdir, "rb");

if((song)==NULL) {
printf("Name does not exist. Try again:\n");
fflush(stdin);
scanf("%s", nametrack);
strcpy(pathdir, "/Users/eugin/Desktop/IM_AF Encoder/Rock/");
strcat(pathdir, nametrack);

Yelse{
ex = 1;

¥

}

strcpy(namet [numtr].title, nametrack);

//Extract the samples from the audio file
sizemdat = mdatbox(&mdat, totaltracks, imf, song, numtr);

//Close the audio file
fclose(song);

b

//For each track write track information
u32 sizeTRAK = 0;

char name[20];

durationTrack = (sizemdat*8)/128;

for (numtrack = @; numtrack < totaltracks; numtrack++) {
strcpy(name, namet [numtrack].title);
sizeTRAK = trackstructure(&moov, numtrack, clock, durationTrack,sizemdat,
name)+ sizeTRAK;

b

//Presets

u32 sizePRCO;

sizePRCO = presetcontainer(&moov, totaltracks, namet); // Creates the preset,
returns the size of the box.

//Rules

u32 sizeRUCO;

sizeRUCO = rulescontainer(&moov); // Creates the rules, returns the size of the
box.

//Movie Header — Overall declarations
moovheaderbox(&moov, clock, sizeTRAK, sizePRCO, totaltracks, durationTrack,
sizeRUCO);

//Writes the movie box into the file
writemoovbox(moov,numtrack, totaltracks, imf);

//Close File
fclose(imf);

printf("\nFile is created successfully, and ready to use!\n");

52

return 0;

b

File Type box
void filetypebx(FileTypeBox *ftyp){
int swap;

swap = byterevers (24);

ftyp->size = swap;

swap = byterevers ('ftyp');

ftyp—>type = swap;

swap = byterevers ('im@3');

ftyp—>major_brand = swap;

ftyp—>minor_version = 0;

swap = byterevers ('im@3');

ftyp—>compatible_brands[0] = swap;

swap = byterevers ('isom');

ftyp—>compatible_brands[1] = swap;
}

Media data box

int mdatbox(MediaDataBox xmdat, int totaltracks, FILE ximf, FILE xsong, int numtr){

int d, cnt, j, find = 0;
int dat = 0, datl = 0, dat2 = 0, dat3 = 0;
u32 size = @, swap, sizeMDAT =0;
//Positonate the pointer at the end of the file to know the size of it
fseek(song, @, SEEK_END);
size = ftell(song);
//Positionate the pointer at first
fseek(song, @, SEEK_SET);
d=0;
cnt = 0;
//Find the header of the first frame (the beginning), when find it d=1 and jump
out the loop.
// The header is 32 bytes. We find in groups of 8 bytes
// Contemplate all possible options of headers
while (d == 0) {
find = 0;
fread(&dat, sizeof(unsigned char), 1, song);
cnt++;

if (dat == OxFF) {
cnt++; // cnt : stores the
position of the pointer.
fread(&datl, sizeof(unsigned char), 1, song);
cnt++;
fread(&dat2, sizeof(unsigned char), 1, song);
cnt++;
fread(&dat3, sizeof(unsigned char), 1, song);
if (datl == OxFB && dat2 == 146 && dat3 == 64) {
find = 1; // find: if the header
is found
d=1; // d: jump out the
loop

}

if (datl == OxFB && dat2 == 146 && dat3 == 96) {
d=1;
find

1;

if (datl
find
d=1;

= OxFB && dat2 == 144 && dat3 == 64) {
1;

if (datl
find
d=1;

= OxFB && dat2 == 144 && dat3 == 96) {
1;

if (datl
d=1;
find = 1;

= OxFB && dat2 == 146 && dat3 == 100) {

if (datl == OxFB && dat2 == 144 && dat3 == 100) {

53

find = 1;
d=1;
}
if (datl == OxFA && dat2 == 146 && dat3 == 64) {
find = 1;
d=1;
}
if (datl == OxFA && dat2 == 146 && dat3 == 96) {
d=1;
find = 1;
}
if (datl == OxFA && dat2 == 144 && dat3 == 64) {
find = 1;
d=1;
}
if (datl == OxFA && dat2 == 144 && dat3 == 96) {
find = 1;
d=1;
}
if (datl == OxFA && dat2 == 146 && dat3 == 100) {
d=1;
find = 1;
}
if (datl == OxFA && dat2 == 144 && dat3 == 100) {
find = 1;
d=1;
}
if (find == 0) {
fseek(song, -3, SEEK_CUR);
cnt = ¢cnt - 3;
}
}
if (cnt == size) {
d =1;
}
}
size = size - (cnt - 4); // Calculate the size of the samples. size = pos.

end of file - pos. first header.
if (numtr == 0) {
sizeMDAT = sizextotaltracks + 8; // size of the whole media box
swap = byterevers(sizeMDAT);
fwrite(&swap, sizeof(u32), 1, imf);
swap = byterevers('mdat');
mdat->type = swap;
fwrite(&mdat->type, sizeof(u32), 1, imf);

}
fseek(song, cnt — 4, SEEK_SET);
for (j=0; j<size; j++) { //read all the samples of one track and

writes them in the IM AF file
fread(&mdat->data, sizeof(char), 1, song);
fwrite(&mdat->data, sizeof(char), 1, imf);
¥

fclose(song);

return size;

b

Sample Container
int samplecontainer(MovieBox sxmoov, int numtrack, int sizemdat, char name[20]){

u32 sizeSTSD, sizeSTSZ, swap, num_samples, dat=0;

//Sample Description Box//
sizeSTSD = sampledescription(moov, numtrack);

//Sample size box//

swap = byterevers('stsz');

moov—->TrackBox [numtrack].MediaBox.MediaInformationBox.SampleTableBox.
SampleSizeBox.type = swap;

moov—->TrackBox [numtrack].MediaBox.MediaInformationBox.SampleTableBox.
SampleSizeBox.version = 0;

//Read Track: Frame size and Decoder Times

num_samples = readTrack(moov, numtrack, name);

$1zeSTSZ = num_samples*x4 + 20;

54

swap = byterevers(sizeSTSZ);
moov—->TrackBox [numtrack].MediaBox.MediaInformationBox.SampleTableBox.
SampleSizeBox.size = swap;

//Time To Sample Box//

u32 sizetime, sizeSTTS;

sizetime = byterevers(moov->TrackBox[numtrack].MediaBox.MediaInformationBox.
SampleTableBox.TimeToSampleBox.entry_count);

sizeSTTS = 16 + sizetimex4x2;

swap = byterevers(sizeSTTS);

moov—->TrackBox [numtrack].MediaBox.MediaInformationBox.SampleTableBox.

TimeToSampleBox.size = swap;

swap = byterevers('stts');

moov—->TrackBox [numtrack].MediaBox.MediaInformationBox.SampleTableBox.

TimeToSampleBox.type = swap;

moov—->TrackBox [numtrack].MediaBox.MediaInformationBox.SampleTableBox.

TimeToSampleBox.version = 0;

//Sample To Chunk//
u32 sizeSTSC = 28;
swap = byterevers(sizeSTSC);
moov—->TrackBox [numtrack].MediaBox.MediaInformationBox.SampleTableBox.
SampleToChunk.size = swap;
swap = byterevers('stsc');
moov—->TrackBox [numtrack].MediaBox.MediaInformationBox.SampleTableBox.
SampleToChunk.type = swap;
moov—->TrackBox [numtrack].MediaBox.MediaInformationBox.SampleTableBox.
SampleToChunk.version = 0;
swap = byterevers(1);
moov—->TrackBox [numtrack].MediaBox.MediaInformationBox.SampleTableBox.
SampleToChunk.entry_count = swap;
swap = byterevers(1);
moov—->TrackBox [numtrack].MediaBox.MediaInformationBox.SampleTableBox.
SampleToChunk.first_chunk = swap;
moov—->TrackBox [numtrack].MediaBox.MediaInformationBox.SampleTableBox.
SampleToChunk.samples_per_chunk = moov—
>TrackBox [numtrack].MediaBox.MediaInformationBox.SampleTableBox.SampleSizeBox.sample_c
ount;
swap = byterevers(1);
moov—->TrackBox [numtrack].MediaBox.MediaInformationBox.SampleTableBox.
SampleToChunk.sample_description_index = swap;

//Chunk Offset Box//

u32 sizeSTCO = 20;

swap = byterevers(sizeSTCO);

moov—->TrackBox [numtrack].MediaBox.MediaInformationBox.SampleTableBox.
ChunkOffsetBox.size = swap;

swap = byterevers('stco');

moov—->TrackBox [numtrack].MediaBox.MediaInformationBox.SampleTableBox.
ChunkOffsetBox.type = swap;

moov—->TrackBox [numtrack].MediaBox.MediaInformationBox.SampleTableBox.
ChunkOffsetBox.version = 0;

swap = byterevers(1);

moov—->TrackBox [numtrack].MediaBox.MediaInformationBox.SampleTableBox.
ChunkOffsetBox.entry_count = swap;

dat = 32 + sizemdatxnumtrack;

swap = byterevers(dat);

moov—->TrackBox [numtrack].MediaBox.MediaInformationBox.SampleTableBox.
ChunkOffsetBox.chunk_offset[numtrack] = swap;

//Sample Table Box //

u32 sizeSTBL = 8 + sizeSTSD + sizeSTSZ + sizeSTSC + sizeSTCO + sizeSTTS;

swap = byterevers(sizeSTBL);

moov—>TrackBox [numtrack].MediaBox.MediaInformationBox.SampleTableBox.size = swap;
swap = byterevers('stbl');

moov—>TrackBox [numtrack].MediaBox.MediaInformationBox.SampleTableBox.type =swap;

return sizeSTBL;

b

Sample description

int sampledescription(MovieBox *moov, int numtrack){
u32 swap, sizeESD = 35;
swap = byterevers(sizeESD);

55

moov—->TrackBox [numtrack].MediaBox.MediaInformationBox.SampleTableBox.
SampleDescriptionBox.AudioSampleEntry.ESbox.size = swap;

swap = byterevers('esds');

moov—->TrackBox [numtrack].MediaBox.MediaInformationBox.SampleTableBox.
SampleDescriptionBox.AudioSampleEntry.ESbox.type = swap;
moov—->TrackBox [numtrack].MediaBox.MediaInformationBox.SampleTableBox.
SampleDescriptionBox.AudioSampleEntry.ESbox.version = 0;

//ES Descriptor//

moov—->TrackBox [numtrack].MediaBox.MediaInformationBox.SampleTableBox.
SampleDescriptionBox.AudioSampleEntry.ESbox.ES_Descriptor.tag = 3;
moov—->TrackBox [numtrack].MediaBox.MediaInformationBox.SampleTableBox.
SampleDescriptionBox.AudioSampleEntry.ESbox.ES_Descriptor.length = 21;
moov—->TrackBox [numtrack].MediaBox.MediaInformationBox.SampleTableBox.
SampleDescriptionBox.AudioSampleEntry.ESbox.ES_Descriptor.ES_ID = 0;
moov—->TrackBox [numtrack].MediaBox.MediaInformationBox.SampleTableBox.
SampleDescriptionBox.AudioSampleEntry.ESbox.ES_Descriptor.mix = 0;

//Decoder config descriptor//

moov—->TrackBox [numtrack].MediaBox.MediaInformationBox.SampleTableBox.
SampleDescriptionBox.AudioSampleEntry.ESbox.ES_Descriptor.
DecoderConfigDescriptor.tag = 4;

moov—->TrackBox [numtrack].MediaBox.MediaInformationBox.SampleTableBox.
SampleDescriptionBox.AudioSampleEntry.ESbox.ES_Descriptor.
DecoderConfigDescriptor.length = 13;

moov—->TrackBox [numtrack].MediaBox.MediaInformationBox.SampleTableBox.
SampleDescriptionBox.AudioSampleEntry.ESbox.ES_Descriptor.
DecoderConfigDescriptor.objectProfileInd = 0x6B;

swap = byterevers(0x150036B0) ;

moov—->TrackBox [numtrack].MediaBox.MediaInformationBox.SampleTableBox.
SampleDescriptionBox.AudioSampleEntry.ESbox.ES_Descriptor.
DecoderConfigDescriptor.mix = swap;

swap = byterevers(128);

moov—->TrackBox [numtrack].MediaBox.MediaInformationBox.SampleTableBox.
SampleDescriptionBox.AudioSampleEntry.ESbox.ES_Descriptor.
DecoderConfigDescriptor.maxBitRate = swap;

swap = byterevers(128);

moov—->TrackBox [numtrack].MediaBox.MediaInformationBox.SampleTableBox.
SampleDescriptionBox.AudioSampleEntry.ESbox.ES_Descriptor.
DecoderConfigDescriptor.avgBitrate = swap;

//SLConfig Descriptor//

moov—->TrackBox [numtrack].MediaBox.MediaInformationBox.SampleTableBox.
SampleDescriptionBox.AudioSampleEntry.ESbox.ES_Descriptor.
SLConfigDescriptor.tag = 6;

moov—->TrackBox [numtrack].MediaBox.MediaInformationBox.SampleTableBox.
SampleDescriptionBox.AudioSampleEntry.ESbox.ES_Descriptor.
SLConfigDescriptor.length = 1;

moov—->TrackBox [numtrack].MediaBox.MediaInformationBox.SampleTableBox.
SampleDescriptionBox.AudioSampleEntry.ESbox.ES_Descriptor.
SLConfigDescriptor.predifined = 2;

//Audio Sample Entry//

u32 sizeMP4a = 36 + sizeESD;

swap = byterevers(sizeMP4a);

moov—->TrackBox [numtrack].MediaBox.MediaInformationBox.SampleTableBox.
SampleDescriptionBox.AudioSampleEntry.size = swap;

swap = byterevers('mp4a');

moov—->TrackBox [numtrack].MediaBox.MediaInformationBox.SampleTableBox.
SampleDescriptionBox.AudioSampleEntry.type =swap;

moov—->TrackBox [numtrack].MediaBox.MediaInformationBox.SampleTableBox.
SampleDescriptionBox.AudioSampleEntry.reserved[0] = 0;

moov—->TrackBox [numtrack].MediaBox.MediaInformationBox.SampleTableBox.
SampleDescriptionBox.AudioSampleEntry.reserved[1] = 0;

moov—->TrackBox [numtrack].MediaBox.MediaInformationBox.SampleTableBox.
SampleDescriptionBox.AudioSampleEntry.reserved[2] = 0;

moov—->TrackBox [numtrack].MediaBox.MediaInformationBox.SampleTableBox.
SampleDescriptionBox.AudioSampleEntry.reserved[3] = 0;

moov—->TrackBox [numtrack].MediaBox.MediaInformationBox.SampleTableBox.
SampleDescriptionBox.AudioSampleEntry.reserved[4] = 0;

moov->TrackBox [numtrack].MediaBox.MediaInformationBox.SampleTableBox.
SampleDescriptionBox.AudioSampleEntry.reserved[5] = 0;

moov—->TrackBox [numtrack].MediaBox.MediaInformationBox.SampleTableBox.
SampleDescriptionBox.AudioSampleEntry.data_reference_index = 256;

56

moov—->TrackBox [numtrack].MediaBox.MediaInformationBox.SampleTableBox.
SampleDescriptionBox.AudioSampleEntry.reserved2[0] = 0;
moov—->TrackBox [numtrack].MediaBox.MediaInformationBox.SampleTableBox.
SampleDescriptionBox.AudioSampleEntry.reserved2[1] = 0;
moov—->TrackBox [numtrack].MediaBox.MediaInformationBox.SampleTableBox.
SampleDescriptionBox.AudioSampleEntry.channelcount = 512;
moov—->TrackBox [numtrack].MediaBox.MediaInformationBox.SampleTableBox.
SampleDescriptionBox.AudioSampleEntry.samplesize = 4096; // 16 bits
moov—->TrackBox [numtrack].MediaBox.MediaInformationBox.SampleTableBox.
SampleDescriptionBox.AudioSampleEntry.reserved3 = 0;

swap = 44100 << 16;

swap = byterevers(swap);

moov—->TrackBox [numtrack].MediaBox.MediaInformationBox.SampleTableBox.
SampleDescriptionBox.AudioSampleEntry.samplerate = swap;

//Sample description box //

u32 sizeSTSD = 16 + sizeMP4a;

swap = byterevers(sizeSTSD);

moov—->TrackBox [numtrack].MediaBox.MediaInformationBox.SampleTableBox.
SampleDescriptionBox.size = swap;

swap = byterevers('stsd');

moov—->TrackBox [numtrack].MediaBox.MediaInformationBox.SampleTableBox.
SampleDescriptionBox.type = swap;

moov—->TrackBox [numtrack].MediaBox.MediaInformationBox.SampleTableBox.
SampleDescriptionBox.version = 0;

swap = byterevers(1);

moov—->TrackBox [numtrack].MediaBox.MediaInformationBox.SampleTableBox.
SampleDescriptionBox.entry_count = swap;

return sizeSTSD;

}
Read Track

int readTrack (MovieBox xmoov, int numtrack, char name[20]){

FILE *song;
int d=0, cnt = 0, i=0, j=0, cnt2 = @0, find = 0, swap, num_entr = 0;
int dat = 0, datl = 0, dat2 = 0, dat3 = @, num_frame = 0, end =0, pos = 0;
u32 size[9000];
//Change path directory here
char pathdir[60] = "/Users/eugin/Desktop/IM_AF Encoder/Rock/";
strcat(pathdir, name);
//0pen the audio file with the name introduced by the user
song = fopen (pathdir,"rb");
if (song == NULL) {
printf("Error opening input file\n");
system("pause");
exit(1);

//Calculate the size of the track
fseek(song, @, SEEK_END);
end = ftell(song);
fseek(song, @, SEEK_SET);
d=0, i=0;
//Search for each frame one by one, and extratcs the information
while (d == 0) {
find = 0;
fread(&dat, sizeof(unsigned char), 1, song);
cnt++;

if (dat == OxFF) {

cnt++;

fread(&datl, sizeof(unsigned char), 1, song);
cnt++;

fread(&dat2, sizeof(unsigned char), 1, song);
cnt++;

fread(&dat3, sizeof(unsigned char), 1, song);

if (datl == OxFB && dat2 == 146 && dat3 == 64) {

pos = cnt - 4; //Pos of the beginning of the
frame

size[num_frame] = pos - cnt2; //Size of one frame

cnt2 = pos; //Pos of the next frame

find = 1;

num_frame ++; //Number of frames

57

if

if

if

if

if

if

if

if

if

(datl == OxFB &&
pos = cnt - 4;
size[num_frame]
cnt2 = pos;
find = 1;
num_frame ++;

(datl == OxFB &&
pos = cnt - 4;
size[num_frame]
cnt2 = pos;
find = 1;
num_frame ++;

(datl == OxFB &&
pos = cnt - 4;
size[num_frame]
cnt2 = pos;
find = 1;
num_frame ++;

(datl == OxFB &&
pos = cnt - 4;
size[num_frame]
cnt2 = pos;
find = 1;
num_frame ++;

(datl == OxFB &&
pos = cnt - 4;
size[num_frame]
cnt2 = pos;
find = 1;
num_frame ++;

(datl == OxFA &&
pos = cnt - 4;
size[num_frame]
cnt2 = pos;
find = 1;
num_frame ++;

(datl == OxFA &&
pos = cnt - 4;
size[num_frame]
cnt2 = pos;
find = 1;
num_frame ++;

(datl == OxFA &&
pos = cnt - 4;
size[num_frame]
cnt2 = pos;
find = 1;
num_frame ++;

(datl == OxFA &&
pos = cnt - 4;
size[num_frame]
cnt2 = pos;
find = 1;
num_frame ++;

(datl == OxFA &&
pos = cnt - 4;
size[num_frame]
cnt2 = pos;
find = 1;
num_frame ++;

(datl == OxFA &&
pos = cnt - 4;
size[num_frame]

dat2 ==

= pos -

dat2 ==

= pos -

dat2 ==

= pos -

dat2 ==

= pos -

dat2 ==

= pos -

dat2 ==

= pos -

dat2 ==

= pos -

dat2 ==

= pos -

dat2 ==

= pos -

dat2 ==

= pos -

dat2 ==

= pos -

146 &&

cnt2;

144 &&

cnt2;

144 &&

cnt2;

146 &&

cnt2;

144 &&

cnt2;

146 &&

cnt2;

146 &&

cnt2;

144 &&

cnt2;

144 &&

cnt2;

146 &&

cnt2;

144 &&

cnt2;

58

dat3

dat3

dat3

dat3

dat3

dat3

dat3

dat3

dat3

dat3

dat3

96) {

64) {

96) {

100) {

100) {

64) {

96) {

64) {

96) {

100) {

100) {

cnt2 pos;
find 1;
num_frame ++;

}
if (find == @) { //In case it does not find the header.
//I1t keeps reading next data without jump any position
fseek(song, -3, SEEK_CUR);
cnt = ¢cnt - 3;

¥
}
if (cnt == end) {
pos = cnt;
size[num_frame] = pos - cnt2;
d =1;
}

b

//Save Samples size//

swap = byterevers(num_frame);

moov—->TrackBox [numtrack].MediaBox.MediaInformationBox.SampleTableBox.
SampleSizeBox.sample_count = swap;

moov—->TrackBox [numtrack].MediaBox.MediaInformationBox.SampleTableBox.
SampleSizeBox.sample_size = 0;

for (i=0; i< num_frame; i++) {
swap = byterevers(size[i+1]);
moov—>TrackBox [numtrack] .MediaBox.MediaInformationBox.SampleTableBox.
SampleSizeBox.entry_size[i]l = swap;

b

//Save Decoding Times//

//Writes manually the duration of each frame.

//Follows the following structure:

// 7 frames of 26 ms

// 1 frame of 27 ms

// vas

// And each 13 rows it writes

// 8 frames of 26 ms

// 1 frame of 27 ms

//It is done for adjusting the different durations of each frame.
// as they vary between 26.125 ms and 26.075 ms

swap = byterevers(1);
moov—->TrackBox [numtrack].MediaBox.MediaInformationBox.SampleTableBox.
TimeToSampleBox.sample_count[@] = swap;
moov—->TrackBox [numtrack].MediaBox.MediaInformationBox.SampleTableBox.
TimeToSampleBox.sample_delta[0] =0;
int t=0,k=1, 1 =0;
num_entr = 1;
i=0;
for (i = 1; i< num_frame; i++) {
if (j ==8&& 1 ==10) {
swap = byterevers(7);
moov—>TrackBox [numtrack] .MediaBox.MediaInformationBox.SampleTableBox.
TimeToSampleBox.sample_count [num_entr] = swap;
swap = byterevers(26);
moov—>TrackBox [numtrack] .MediaBox.MediaInformationBox.SampleTableBox.
TimeToSampleBox.sample_delta[num_entr] =swap;
num_entr ++;

swap = byterevers(1);

moov—>TrackBox [numtrack].MediaBox.MediaInformationBox.SampleTableBox.
TimeToSampleBox.sample_count [num_entr] = swap;

swap = byterevers(27);

moov—>TrackBox [numtrack] .MediaBox.MediaInformationBox.SampleTableBox.
TimeToSampleBox.sample_delta[num_entr] =swap;

num_entr++;

j=0;

dat = i;

if (k ==6 && t == 0) {
1=1;
t=1;
k = 1;

59

if (k == & t ==1) {
1;
1;

if (j ==96&& 1 ==1) {

swap = byterevers(8);

moov—>TrackBox [numtrack] .MediaBox.MediaInformationBox.SampleTableBox.
TimeToSampleBox.sample_count [num_entr] = swap;

swap = byterevers(26);

moov—>TrackBox [numtrack] .MediaBox.MediaInformationBox.SampleTableBox.
TimeToSampleBox.sample_delta[num_entr] =swap;

num_entr ++;

swap = byterevers(1);

moov—>TrackBox [numtrack].MediaBox.MediaInformationBox.SampleTableBox.
TimeToSampleBox.sample_count [num_entr] = swap;

swap = byterevers(27);

moov—>TrackBox [numtrack].MediaBox.MediaInformationBox.SampleTableBox.
TimeToSampleBox.sample_delta[num_entr] =swap;

num_entr++;

j=0;
dat = i;
1=0;

b

j++;

dat = num_frame - dat;

swap = byterevers(dat);

moov—->TrackBox [numtrack].MediaBox.MediaInformationBox.SampleTableBox.
TimeToSampleBox.sample_count [num_entr] = swap;

swap = byterevers(26);

moov—->TrackBox [numtrack].MediaBox.MediaInformationBox.SampleTableBox.
TimeToSampleBox.sample_deltal[num_entr] =swap;

num_entr++;

swap = byterevers(num_entr);

moov—->TrackBox [numtrack].MediaBox.MediaInformationBox.SampleTableBox.
TimeToSampleBox.entry_count = swap;

fclose(song);
return num_frame;

b

Track Structure
int trackstructure (MovieBox *moov, int numtrack, int clock,
int durationTrack, int sizemdat, char namel[20]1){

int swap;

//Sample Table Box
int sizeSTBL = 0;
sizeSTBL = samplecontainer(moov, numtrack,sizemdat, name);

//Data Entry Url Box

u32 sizeURL = 12;

swap = byterevers(sizeURL);

moov—>TrackBox [numtrack].MediaBox.MediaInformationBox.DataInformationBox.

DataReferenceBox.DataEntryUrlBox.size = swap;

swap = byterevers('url ');

moov—>TrackBox [numtrack].MediaBox.MediaInformationBox.DataInformationBox.

DataReferenceBox.DataEntryUrlBox.type = swap;

swap = byterevers(1);

moov—>TrackBox [numtrack].MediaBox.MediaInformationBox.DataInformationBox.

DataReferenceBox.DataEntryUrlBox.flags = swap; // =1 Track in same file as movie
atom.

//Data Reference
u32 sizeDREF = sizeURL+ 16;

60

swap = byterevers(sizeDREF);

moov—>TrackBox [numtrack].MediaBox.MediaInformationBox.DataInformationBox.
DataReferenceBox.size = swap;

swap = byterevers('dref');

moov—>TrackBox [numtrack].MediaBox.MediaInformationBox.DataInformationBox.
DataReferenceBox.type = swap;

moov—>TrackBox [numtrack].MediaBox.MediaInformationBox.DataInformationBox.
DataReferenceBox.flags = 0;

swap = byterevers(1);

moov—>TrackBox [numtrack].MediaBox.MediaInformationBox.DataInformationBox.
DataReferenceBox.entry_count = swap;

//Data information Box//

u32 sizeDINF = sizeDREF + 8;

swap = byterevers(sizeDINF);

moov—>TrackBox [numtrack].MediaBox.MediaInformationBox.DataInformationBox.size =
swap;

swap = byterevers('dinf');

moov—>TrackBox [numtrack].MediaBox.MediaInformationBox.DataInformationBox.type
swap;

//Sound Header Box //

u32 sizeSMHD = 16;

swap = byterevers(sizeSMHD);

moov—>TrackBox [numtrack].MediaBox.MediaInformationBox.SoundMediaHeaderBox.size
swap;

swap = byterevers('smhd');

moov—>TrackBox [numtrack].MediaBox.MediaInformationBox.SoundMediaHeaderBox.type
swap;
moov—>TrackBox [numtrack].MediaBox.MediaInformationBox.SoundMediaHeaderBox.version
=0;
moov—>TrackBox [numtrack] .MediaBox.MediaInformationBox.SoundMediaHeaderBox.balance

= 0,
moov—>TrackBox [numtrack] .MediaBox.MediaInformationBox.SoundMediaHeaderBox. reserved
= 0;

//Media Information Box//

u32 sizeMINF = sizeDINF + sizeSMHD + sizeSTBL + 8;

swap = byterevers(sizeMINF);

moov—>TrackBox [numtrack] .MediaBox.MediaInformationBox.size = swap;
swap = byterevers('minf');

moov—>TrackBox [numtrack] .MediaBox.MediaInformationBox.type = swap;

//Handler Box//

u32 sizeHDLR = 37;

swap = byterevers(sizeHDLR);
moov—>TrackBox [numtrack] .MediaBox.HandlerBox.size = swap;
swap = byterevers('hdlr');
moov—>TrackBox [numtrack] .MediaBox.HandlerBox.type = swap;
moov—>TrackBox [numtrack].MediaBox.HandlerBox.version = 0;
moov—>TrackBox [numtrack].MediaBox.HandlerBox.pre_defined = 0;
swap = byterevers('soun');

moov—->TrackBox [numtrack] .MediaBox.HandlerBox.handler_type = swap;
moov—>TrackBox [numtrack] .MediaBox.HandlerBox.reserved[0] ;
moov—>TrackBox [numtrack] .MediaBox.HandlerBox.reserved[1]
moov—>TrackBox [numtrack] .MediaBox.HandlerBox.reserved[2]
//swap = byterevers('soun');
//moov—>TrackBox [numtrack] .MediaBox.HandlerBox.data = sw

n
[SESKS]

moov—>TrackBox [numtrack].MediaBox.HandlerBox.datal[0]
moov—>TrackBox [numtrack] .MediaBox.HandlerBox.datal[1]
moov—>TrackBox [numtrack].MediaBox.HandlerBox.datal[2]
moov—>TrackBox [numtrack] .MediaBox.HandlerBox.datal[3]
moov—>TrackBox [numtrack] .MediaBox.HandlerBox.datal[4]

//Media Header Box//

u32 sizeMDHD = 32;

swap = byterevers(sizeMDHD);

moov—>TrackBox [numtrack].MediaBox.MediaHeaderBox.size
swap = byterevers('mdhd');

moov—->TrackBox [numtrack].MediaBox.MediaHeaderBox.type = swap;
moov—>TrackBox [numtrack].MediaBox.MediaHeaderBox.version = 0;

swap = byterevers(clock);

moov—->TrackBox [numtrack].MediaBox.MediaHeaderBox.creation_time = swap;
moov—->TrackBox [numtrack] .MediaBox.MediaHeaderBox.modification_time = swap;

swap;

61

b

swap = byterevers(1000);

moov—->TrackBox [numtrack] .MediaBox.MediaHeaderBox.timescale = swap;
swap = byterevers(durationTrack);

moov—->TrackBox [numtrack].MediaBox.MediaHeaderBox.duration = swap;
moov—->TrackBox [numtrack] .MediaBox.MediaHeaderBox. language = @xC455;
moov—>TrackBox [numtrack].MediaBox.MediaHeaderBox.pre_defined = 0;

//Media Box//
u32 sizeMDIA = sizeMDHD + sizeHDLR + sizeMINF + 8;
swap = byterevers(sizeMDIA);

moov—>TrackBox [numtrack].MediaBox.size = swap;
swap = byterevers('mdia');
moov—->TrackBox [numtrack].MediaBox.type

swap;

//Track Header//

u32 sizeTKHD = 92;

swap = byterevers (sizeTKHD);

moov—->TrackBox [numtrack].TrackHeaderBox.size = swap;

swap = byterevers ('tkhd');

moov—->TrackBox [numtrack].TrackHeaderBox.type = swap ;

swap = byterevers (0x00000006);

moov—->TrackBox [numtrack].TrackHeaderBox.version = swap;

swap = byterevers (clock);

moov—->TrackBox [numtrack].TrackHeaderBox.creation_time = swap;
moov—->TrackBox [numtrack].TrackHeaderBox.modification_time = swap;
swap = byterevers (numtrack+1);

moov—->TrackBox [numtrack].TrackHeaderBox.track_ID = swap; //From 0x00000001 -
Ox7FFFFFFF (dec 2147483647)

moov—>TrackBox [numtrack].TrackHeaderBox.reserved
swap = byterevers (durationTrack);
moov—->TrackBox [numtrack].TrackHeaderBox.duration = swap;
moov—>TrackBox [numtrack].TrackHeaderBox.reserved2[0] = 0;
moov—>TrackBox [numtrack].TrackHeaderBox.reserved2[1] = 0;
moov—->TrackBox [numtrack].TrackHeaderBox. layer = 0;
moov—->TrackBox [numtrack].TrackHeaderBox.alternate_group = 0;
moov—>TrackBox [numtrack].TrackHeaderBox.volume = 0x1;
moov—>TrackBox [numtrack].TrackHeaderBox.reserved3 = 0;

swap = byterevers (0x00010000);

0;

moov—>TrackBox [numtrack].TrackHeaderBox.matrix[@] = swap;
moov—>TrackBox [numtrack].TrackHeaderBox.matrix[1] = 0;
moov—>TrackBox [numtrack].TrackHeaderBox.matrix[2] = 0;
moov—>TrackBox [numtrack].TrackHeaderBox.matrix[3] = 0;
moov—>TrackBox [numtrack].TrackHeaderBox.matrix[4] = swap;
moov—>TrackBox [numtrack].TrackHeaderBox.matrix[5] = 0;
moov—>TrackBox [numtrack].TrackHeaderBox.matrix[6] = 0;
moov—>TrackBox [numtrack].TrackHeaderBox.matrix[7] = 0;
swap = byterevers(0x40000000) ;

moov—>TrackBox [numtrack].TrackHeaderBox.matrix[8] = swap;

moov—>TrackBox [numtrack].TrackHeaderBox.width = @; //just for video
moov—>TrackBox [numtrack].TrackHeaderBox.height = @; //just for video

//Track container

u32 sizeTRAK = sizeTKHD + sizeMDIA + 8;

swap = byterevers (sizeTRAK); // Size of one track
moov—>TrackBox [numtrack].size = swap;

swap = byterevers ('trak');

moov—->TrackBox [numtrack].type = swap;

return sizeTRAK;

Preset Container

int presetcontainer(MovieBox x*moov, int totaltracks, nametrack namet){

int swap, i,j,flag, vol=0;

unsigned char numpres=0, prestype=0,defaultPreset;
char namepres1[14] = "static_track "; // 13

u32 sizePRST = 0;

printf("\nPresets:\n");

printf("Static track volume preset: invariant volume related to each
printf(" \n");
numpres = 1;

62

track \n");

//Preset Box//
for (i=0; i<numpres; i++) {

swap;

/%

>PresetContainerBox.PresetBox[i].presVolumElem[j].preset_volume_element = vol; //%0.02

*/

20;

40;

20;

50;

52;

b

printf("Preset number %d: %s\n",i+1,namepresl);
strcpy(moov—>PresetContainerBox.PresetBox[i]l.preset_name, namepresl);
sizePRST = 16 + 14 + 4xtotaltracks + totaltracks;

swap = byterevers(sizePRST);
moov—>PresetContainerBox.PresetBox[i]l.size = swap;

prestype = 0;

moov—>PresetContainerBox.PresetBox[il.num_preset_elements = totaltracks;
swap = byterevers('prst');
moov—>PresetContainerBox.PresetBox[i].type = swap;

flag = 0x02; // Display Enable Edit Disable
swap = byterevers(flag);
moov—>PresetContainerBox.PresetBox[i].flags = swap;

moov->PresetContainerBox.PresetBox[i]l.preset_ID = i+1;

moov—>PresetContainerBox.PresetBox[i].preset_type = prestype;
moov—>PresetContainerBox.PresetBox[i].preset_global_volume = 100;

for (j=0; j<totaltracks; j++) {
swap = byterevers(j+1);
moov—>PresetContainerBox.PresetBox[i]l.presElemId[j].preset_element_ID =

}
//Enter values (two options):
// In loop
for (j=0; j<totaltracks; j++) {

vol = 70 — 10%(j+1);
// vol = 20%(j+1);

printf("Enter volume for %s = %d\n",namet[jl.title,volx2);
// scanf("%d",&vol);
// printf("Vol: %d\n",vol);

moov—

}

// Or one by one
moov—>PresetContainerBox.PresetBox[i].presVolumElem[@].preset_volume_element

printf("Enter volume for %s = %d\n",namet[j].title,moov->PresetContainerBox.
PresetBox[i].presVolumElem[@].preset_volume_element*2);
moov—>PresetContainerBox.PresetBox[i].presVolumElem[1].preset_volume_element

printf("Enter volume for %s = %d\n",namet[j].title,moov->PresetContainerBox.
PresetBox[i].presVolumElem[1].preset_volume_element*2);
moov—>PresetContainerBox.PresetBox[i].presVolumElem[2].preset_volume_element

printf("Enter volume for %s = %d\n",namet[j].title,moov->PresetContainerBox.
PresetBox[i].presVolumElem[2].preset_volume_element*2);
moov—>PresetContainerBox.PresetBox[i].presVolumElem[3].preset_volume_element

printf("Enter volume for %s = %d\n",namet[j].title,moov->PresetContainerBox.
PresetBox[i].presVolumElem[3].preset_volume_element*2);
moov—>PresetContainerBox.PresetBox[i].presVolumElem[4].preset_volume_element

printf("Enter volume for %s = %d\n",namet[j].title,moov->PresetContainerBox.
PresetBox[i].presVolumElem[4].preset_volume_element*2);

//Preset Container//

u32 sizePRCO = sizePRST + 10;

swap = byterevers(sizePRCO);

moov—>PresetContainerBox.size = swap;

swap = byterevers('prco');

moov—>PresetContainerBox.type = swap;

defaultPreset = 1;

moov—>PresetContainerBox.default_preset_ID = defaultPreset; // Indicates initial
preset activated.

moov—>PresetContainerBox.num_preset = numpres;

return sizePRCO;

63

b

Rules Container
int rulescontainer(MovieBox *moov){
int swap;
u32 sizeRUSC, elementID, key_elem, sizeRUMX;

moov—>RulesContainer.num_selection_rules = 256; //ul6 invert
// moov—->RulesContainer.num_selection_rules = 0;
moov—>RulesContainer.num_mixing_rules = 256; //ul6 invert

//Selection Rules
sizeRUSC = 19 + 14;

// sizeRUSC = 0;
swap = byterevers(sizeRUSC);
moov—>RulesContainer.SelectionRules.size = swap;
swap = byterevers('rusc');
moov—>RulesContainer.SelectionRules.type = swap;
moov—>RulesContainer.SelectionRules.version = 0;
moov—>RulesContainer.SelectionRules.selection_rule_ID = 256;
moov—>RulesContainer.SelectionRules.selection_rule_type = 2;
elementID = 4;
swap = byterevers(elementID);
moov—>RulesContainer.SelectionRules.element_ID = swap;
strcpy(moov—>RulesContainer.SelectionRules.rule_description,"Not mute rule");
printf("\nRules:\n");
printf("Rule 1: Not mute for channel %d\n",elementID);

//Mixing Rule

sizeRUMX = 23 + 17;

swap = byterevers(sizeRUMX);

moov—>RulesContainer.MixingRules.size = swap;

swap = byterevers('rumx');

moov—>RulesContainer.MixingRules.type = swap;

moov—>RulesContainer.MixingRules.version = 0;

moov—>RulesContainer.MixingRules.mixing_rule_ID = 512;
// moov—>RulesContainer.MixingRules.mixing_type = @; // Equivalence rule

moov—>RulesContainer.MixingRules.mixing_type = 2; // Upper rule

elementID = 5;

swap = byterevers(elementID);

moov—>RulesContainer.MixingRules.element_ID = swap;

key_elem = 3;

swap = byterevers(key_elem);

moov—>RulesContainer.MixingRules.key_elem_ID = swap;

strcpy(moov—>RulesContainer.MixingRules.mix_description, "Lower rule");

printf("Rule 2: Lower rule between channel %d and %d\n",elementID, key_elem);
// strcpy(moov—>RulesContainer.MixingRules.mix_description, "Equivalence rule");
// printf("Rule 2: Equivalence rule\n");

//Rule container

u32 sizeRUCO = 12 + sizeRUSC + sizeRUMX;
swap = byterevers(sizeRUCO);
moov—>RulesContainer.size = swap;

swap = byterevers('ruco');
moov—>RulesContainer.type = swap;

return sizeRUCO;

b

Movie header box
void moovheaderbox (MovieBox sxmoov,int clock, int sizeTRAK, int sizePRCO, int
totaltracks, int durationTrack, int sizeRUCO){

int swap;

//MovieHeader

u32 sizeMVHD = 108;

swap = byterevers (sizeMVHD);
moov—>MovieHeaderBox.size = swap;

swap = byterevers ('mvhd');
moov—>MovieHeaderBox.type = swap;
moov—>MovieHeaderBox.version = 0;

swap = byterevers (clock);
moov—>MovieHeaderBox.creation_time = swap;
moov—>MovieHeaderBox.modification_time = swap;

64

swap = byterevers (1000);
moov—>MovieHeaderBox.timescale = swap;
swap = byterevers (durationTrack);
moov—>MovieHeaderBox.duration = swap;
swap = byterevers (0x00010000);
moov—>MovieHeaderBox.rate = swap;

swap = byterevers (1);
moov—>MovieHeaderBox.volume = 1;
moov—>MovieHeaderBox.reserved=0;

moov—>MovieHeaderBox.reserved2[0] = 0;
moov—>MovieHeaderBox.reserved2[1] = 0;
swap = byterevers (0x00010000);
moov—->MovieHeaderBox.matrix[0] = swap;
moov—->MovieHeaderBox.matrix[1] = 0;
moov—->MovieHeaderBox.matrix[2] = 0;
moov—->MovieHeaderBox.matrix[3] = 0;
moov->MovieHeaderBox.matrix[4] = swap;
moov—->MovieHeaderBox.matrix[5] = 0;
moov—->MovieHeaderBox.matrix[6] = 0;
moov—->MovieHeaderBox.matrix[7] = 0;

swap = byterevers (0x40000000);

moov—>MovieHeaderBox.matrix[8] = 0x40000000;
moov—>MovieHeaderBox.pre_defined[@]
moov—->MovieHeaderBox.pre_defined[1]
moov—->MovieHeaderBox.pre_defined[2]
moov—->MovieHeaderBox.pre_defined[3]
moov—->MovieHeaderBox.pre_defined[4]
moov—->MovieHeaderBox.pre_defined[5]
swap = byterevers (totaltracks + 1);
moov—>MovieHeaderBox.next_track_ID = swap;

[SESESESESES]

//MovieBox

u32 sizeMOOV = sizeMVHD + sizeTRAK + sizePRCO + sizeRUCO + 8;

swap = byterevers (sizeMOOV); //Size movie: Taking into account number tracks
moov->size = swap;

swap = byterevers ('moov');

moov->type = swap;

65

IM AF encoder.h

// IM_AF Encoder.h
// IM_AM Encoder

// Created by Eugenio Ofiate Hospital on 14/06/12.
// Copyright (c) 2012 SAE. All rights reserved.

#ifndef IM_AM_Encoder_IM_AF_Encoder_h
#define IM_AM_Encoder_IM_AF_Encoder_h

/* for FILE typedef, x/
#include <stdio.h>

#define maxtracks 8
#define maxpreset 10
#define maxrules 10

typedef long long u64;
typedef unsigned int u32;
typedef unsigned short ul6;

typedef struct nametrack { // Stores the different titles of the tracks
char titlel[20];
Ynametrack[maxtracks];

typedef struct FileTypeBox
{

u32 size;
u32 type; // ftyp
u32 major_brand; // brand identifier
u32 minor_version; // informative integer for the mirror version
u32 compatible_brands([2]; //list of brands
}FileTypeBox;

typedef struct MoiveBox //extends Box('moov')

u32 size;
u32 type; // moov
struct MovieHeaderBox
{
u32 size;
u32 type; // mvhd
u32 version; // version + flag
u32 creation_time;
u32 modification_time;
u32 timescale; // specifies the time-scale
u32 duration;
u32 rate; // typically 1.0
uleé volume; // typically full volume
ulé reserved; // =0
u32 reserved2[2]; //=0
u32 matrix[9]; // information matrix for video (u,v,w)
u32 pre_defined[6]; // =0
u32 next_track_ID; //non zero value for the next track ID
}MovieHeaderBox;

struct TrackBox
{
u32 size;
u32 type;
struct TrackHeaderBox
{
u32 size;
u32 type;
u32 version; // version + flag
u32 creation_time;
u32 modification_time;
u32 track_ID;
u32 reserved; // =0
u32 duration;
u32 reserved2[2]; // =0

66

ulée layer; // =0 // for video
ulé alternate_group; // =0
ulé volume; // full volume is 1 = 0x0100
ulé reserved3;// =0
u32 matrix[9]; // for video
u32 width; // video
u32 height; // video
}TrackHeaderBox;

struct MediaBox // extends Box('mdia')
{
u32 size;
u32 type;
struct MediaHeaderBox // extends FullBox('mdhd', version,@)

u32 size;
u32 type;
u32 version; // version + flag
u32 creation_time;
u32 modification_time;
u32 timescale;
u32 duration;
ul6 language; // [pad,5x3] = 16 bits and pad = 0
ulé pre_defined; // =0
}MediaHeaderBox;
struct HandlerBox
{
u32 size;
u32 type;
u32 version; // version = @ + flag
u32 pre_defined; // =0
u32 handler_type; // = 'soun' for audio track, text or hint
u32 reserved([3]; // =0
unsigned char datal[5]; // Does not work! only 4 bytes

}HandlerBox;
struct MediaInformationBox //extends Box('minf')
{

u32 size;

u32 type;

// smhd in sound track only!!

struct SoundMediaHeaderBox

{
u32 size;
u32 type;
u32 version;
ulé balance; // =0 place mono tracks in stereo. @ is center
ulé reserved; // =0
}SoundMediaHeaderBox;

struct DataInformationBox //extends Box('dinf')

{
u32 size;
u32 type;
struct DataReferenceBox
{
u32 size;
u32 type;
u32 flags;
u32 entry_count; // counts the actual entries.
struct DataEntryUrlBox //extends FullBox('url', version=0,
flags)
{
u32 size;
u32 type;
u32 flags;
}YDataEntryUrlBox;
}DataReferenceBox;
}DataInformationBox;
struct SampleTableBox // extends Box('stbl')
{
u32 size;
u32 type;

struct TimeToSampleBox{

67

u32
u32
u32
u32
u32
u32

size;

type;

version;
entry_count;
sample_count[3000];
sample_delta[3000];

}TimeToSampleBox;
struct SampleDescriptionBox // stsd

{
u32
u32
u32
u32

size;

type;

version;

entry_count; // = 1 number of entries

// unsigned char esds[88];
struct AudioSampleEntry{

//

u32 size;
u32 type; //mpéda
char reserved[6];
ulé data_reference_index; // =1
u32 reserved2[2];
ulé channelcount; // = 2
ul6e samplesize; // = 16
u32 reserved3;
u32 samplerate; // 44100 << 16
unsigned char esds[81];
struct ESbox{
u32 size;
u32 type;
u32 version;
struct ES_Descriptor{
unsigned char tag;
unsigned char length;
ul6 ES_ID;
unsigned char mix;
struct DecoderConfigDescriptor{
unsigned char tag;
unsigned char length;
unsigned char objectProfileInd;
u32 mix;
u32 maxBitRate;
u32 avgBitrate;

/% struct DecoderSpecificInfoq{
unsigned char tag;
unsigned length;

// unsigned char decSpecificInfosize;
unsigned char decSpecificInfoDatal2];
}DecoderSpecificInfo;

*/ }DecoderConfigDescriptor;
struct SLConfigDescriptor{
unsigned char tag;

unsigned char length;
unsigned char predifined;
}SLConfigDescriptor;
}ES_Descriptor;
}ESbox;

YAudioSampleEntry;
}SampleDescriptionBox;
struct SampleSizeBox{

u32
u32
u32
u32
u32
u32

size;

type;

version;
sample_size; // =0
sample_count;
entry_size[9000];

}SampleSizeBox;
struct SampleToChunk{

u32
u32
u32
u32
u32
u32
u32

size;

type;

version;

entry_count;

first_chunk;
samples_per_chunk;
sample_description_index;

}SampleToChunk;

68

struct ChunkOffsetBox{
u32 size;
u32 type;
u32 version;
u32 entry_count;
u32 chunk_offset[maxtracks];
}ChunkOffsetBox;
}SampleTableBox;
IMediaInformationBox;
}MediaBox;
YTrackBox[maxtracks]; // max 1@ tracks
struct PresetContainerBox // extends Box('prco')
{
u32 size;
u32 type;
unsigned char num_preset;
unsigned char default_preset_ID;
struct PresetBox //extends FullBox('prst',version=0,flags)
{
u32 size;
u32 type;
u32 flags;
unsigned char preset_ID;
unsigned char num_preset_elements;
struct presElemId{
u32 preset_element_ID;
YpresElemId[maxtracks];
unsigned char preset_type;
unsigned char preset_global_volume;
//IF preset_type == 1
struct presVolumElem{
unsigned char preset_volume_element;
YpresVolumElem[maxtracks];
char preset_name[14];
}PresetBox [maxpreset];
}PresetContainerBox;

struct RulesContainer{
u32 size;
u32 type;
ul6 num_selection_rules;
ulé num_mixing_rules;
struct SelectionRules{
u32 size;
u32 type;
u32 version;
ule selection_rule_ID;
unsigned char selection_rule_type;
u32 element_ID;
char rule_description[14];
}SelectionRules;
struct MixingRules{
u32 size;
u32 type;
u32 version;
ule mixing_rule_ID;
unsigned char mixing_type;
u32 element_ID;
u32 key_elem_ID;
char mix_description[17];
IMixingRules;
}RulesContainer;
IMovieBox;
typedef struct MediaDataBox // extends Box('mdat')
{

u32 size;

u32 type;

unsigned char data;
}MediaDataBox;
#endif

69

