
 PROOF/ÉPREUVE

Tit le:
/tm p/TIFF2EPS/BOCQUETD.iso.ch /bocquet/Logo0014c.tif
Creator:
tiff2ps
Prev iew:
Thi s EPS picture was not saved
with a preview included in i t.
Comment:
Thi s EPS picture will print to a
PostScript printer, but not to
oth er types of printers .

Reference number
ISO/IEC 14496-12:2008(E)

© ISO/IEC 2008

INTERNATIONAL
STANDARD

ISO/IEC
14496-12

Draft 4th edition
2012-##-##

Information technology — Coding of
audio-visual objects —
Part 12:
ISO base media file format

Technologies de l'information — Codage des objets audiovisuels —

Partie 12: Format ISO de base pour les fichiers médias

ISO/IEC 14496-12:2008(E)

PDF disclaimer
This PDF file may contain embedded typefaces. In accordance with Adobe's licensing policy, this file may be printed or viewed but
shall not be edited unless the typefaces which are embedded are licensed to and installed on the computer performing the editing. In
downloading this file, parties accept therein the responsibility of not infringing Adobe's licensing policy. The ISO Central Secretariat
accepts no liability in this area.

Adobe is a trademark of Adobe Systems Incorporated.

Details of the software products used to create this PDF file can be found in the General Info relative to the file; the PDF-creation
parameters were optimized for printing. Every care has been taken to ensure that the file is suitable for use by ISO member bodies. In
the unlikely event that a problem relating to it is found, please inform the Central Secretariat at the address given below.

 COPYRIGHT PROTECTED DOCUMENT

© ISO/IEC 2008
All rights reserved. Unless otherwise specified, no part of this publication may be reproduced or utilized in any form or by any means,
electronic or mechanical, including photocopying and microfilm, without permission in writing from either ISO at the address below or
ISO's member body in the country of the requester.

ISO copyright office
Case postale 56 • CH-1211 Geneva 20
Tel. + 41 22 749 01 11
Fax + 41 22 749 09 47
E-mail copyright@iso.org
Web www.iso.org

Published in Switzerland

ii PROOF/ÉPREUVE © ISO/IEC 2008 – All rights reserved

ISO/IEC 14496-12:2008(E)

© ISO/IEC 2008 – All rights reserved PROOF/ÉPREUVE iii

Contents Page

Foreword ... ix	

Introduction .. xi	

1	
 Scope ... 1	

2	
 Normative references ... 1	

3	
 Definitions ... 2	

3.1	
 Terms and definitions .. 2	

3.2	
 Abbreviated terms ... 3	

4	
 Object-structured File Organization .. 4	

4.1	
 File Structure .. 4	

4.2	
 Object Structure ... 4	

4.3	
 File Type Box .. 5	

5	
 Design Considerations ... 6	

5.1	
 Usage .. 6	

5.1.1	
 Introduction ... 6	

5.1.2	
 Interchange .. 6	

5.1.3	
 Content Creation ... 6	

5.1.4	
 Preparation for streaming .. 7	

5.1.5	
 Local presentation .. 7	

5.1.6	
 Streamed presentation ... 7	

5.2	
 Design principles ... 8	

6	
 ISO Base Media File organization ... 9	

6.1	
 Presentation structure ... 9	

6.1.1	
 File Structure ... 9	

6.1.2	
 Object Structure .. 9	

6.1.3	
 Meta Data and Media Data .. 9	

6.1.4	
 Track Identifiers .. 9	

6.2	
 Metadata Structure (Objects) .. 9	

6.2.1	
 Box ... 9	

6.2.2	
 Data Types and fields ... 10	

6.2.3	
 Box Order .. 11	

6.2.4	
 URIs as type indicators .. 13	

6.3	
 Brand Identification ... 13	

7	
 Streaming Support .. 13	

7.1	
 Handling of Streaming Protocols ... 13	

7.2	
 Protocol ‘hint’ tracks ... 14	

7.3	
 Hint Track Format .. 14	

8	
 Box Structures .. 16	

8.1	
 File Structure and general boxes ... 16	

8.1.1	
 Media Data Box ... 16	

8.1.2	
 Free Space Box ... 16	

8.1.3	
 Progressive Download Information Box ... 17	

8.2	
 Movie Structure .. 17	

8.2.1	
 Movie Box .. 17	

8.2.2	
 Movie Header Box ... 18	

8.3	
 Track Structure .. 19	

8.3.1	
 Track Box ... 19	

8.3.2	
 Track Header Box ... 19	

8.3.3	
 Track Reference Box .. 21	

ISO/IEC 14496-12:2008(E)

iv PROOF/ÉPREUVE © ISO/IEC 2008 – All rights reserved

8.3.4	
 Track Group Box ... 22	

8.4	
 Track Media Structure ... 22	

8.4.1	
 Media Box .. 22	

8.4.2	
 Media Header Box ... 23	

8.4.3	
 Handler Reference Box ... 24	

8.4.4	
 Media Information Box ... 25	

8.4.5	
 Media Information Header Boxes .. 25	

8.5	
 Sample Tables .. 27	

8.5.1	
 Sample Table Box ... 27	

8.5.2	
 Sample Description Box ... 27	

8.5.3	
 Degradation Priority Box .. 33	

8.5.4	
 Sample Scale Box ... 34	

8.6	
 Track Time Structures ... 34	

8.6.1	
 Time to Sample Boxes .. 34	

8.6.2	
 Sync Sample Box .. 38	

8.6.3	
 Shadow Sync Sample Box ... 39	

8.6.4	
 Independent and Disposable Samples Box .. 40	

8.6.5	
 Edit Box .. 41	

8.6.6	
 Edit List Box .. 41	

8.7	
 Track Data Layout Structures ... 43	

8.7.1	
 Data Information Box .. 43	

8.7.2	
 Data Reference Box .. 43	

8.7.3	
 Sample Size Boxes ... 44	

8.7.4	
 Sample To Chunk Box .. 45	

8.7.5	
 Chunk Offset Box .. 46	

8.7.6	
 Padding Bits Box .. 47	

8.7.7	
 Sub-Sample Information Box ... 48	

8.7.8	
 Sample Auxiliary Information Sizes Box .. 49	

8.7.9	
 Sample Auxiliary Information Offsets Box ... 50	

8.8	
 Movie Fragments .. 51	

8.8.1	
 Movie Extends Box ... 51	

8.8.2	
 Movie Extends Header Box .. 52	

8.8.3	
 Track Extends Box .. 52	

8.8.4	
 Movie Fragment Box ... 53	

8.8.5	
 Movie Fragment Header Box .. 53	

8.8.6	
 Track Fragment Box ... 54	

8.8.7	
 Track Fragment Header Box .. 54	

8.8.8	
 Track Fragment Run Box ... 55	

8.8.9	
 Movie Fragment Random Access Box .. 56	

8.8.10	
 Track Fragment Random Access Box .. 57	

8.8.11	
 Movie Fragment Random Access Offset Box .. 58	

8.8.12	
 Track fragment decode time .. 58	

8.8.13	
 Level Assignment Box ... 59	

8.8.14	
 Sample Auxiliary Information in Movie Fragments ... 60	

8.9	
 Sample Group Structures .. 61	

8.9.1	
 Introduction ... 61	

8.9.2	
 Sample to Group Box ... 61	

8.9.3	
 Sample Group Description Box ... 62	

8.9.4	
 Representation of group structures in Movie Fragments ... 64	

8.10	
 User Data .. 65	

8.10.1	
 User Data Box ... 65	

8.10.2	
 Copyright Box ... 65	

8.10.3	
 Track Selection Box ... 66	

8.11	
 Metadata Support ... 68	

8.11.1	
 The Meta box ... 68	

8.11.2	
 XML Boxes .. 69	

8.11.3	
 The Item Location Box ... 69	

8.11.4	
 Primary Item Box .. 72	

8.11.5	
 Item Protection Box .. 72	

8.11.6	
 Item Information Box .. 72	

ISO/IEC 14496-12:2008(E)

© ISO/IEC 2008 – All rights reserved PROOF/ÉPREUVE v

8.11.7	
 Additional Metadata Container Box .. 75	

8.11.8	
 Metabox Relation Box .. 75	

8.11.9	
 URL Forms for meta boxes ... 76	

8.11.10	
 Static Metadata ... 76	

8.11.11	
 Item Data Box ... 77	

8.11.12	
 Item Reference Box .. 78	

8.11.13	
 Auxiliary video metadata ... 78	

8.12	
 Support for Protected Streams ... 78	

8.12.1	
 Protection Scheme Information Box .. 79	

8.12.2	
 Original Format Box ... 80	

8.12.3	
 IPMPInfoBox ... 80	

8.12.4	
 IPMP Control Box ... 80	

8.12.5	
 Scheme Type Box .. 81	

8.12.6	
 Scheme Information Box ... 81	

8.13	
 File Delivery Format Support .. 81	

8.13.1	
 Introduction .. 81	

8.13.2	
 FD Item Information Box .. 82	

8.13.3	
 File Partition Box .. 82	

8.13.4	
 FEC Reservoir Box ... 84	

8.13.5	
 FD Session Group Box .. 84	

8.13.6	
 Group ID to Name Box ... 85	

8.13.7	
 File Reservoir Box .. 86	

8.14	
 Sub tracks ... 86	

8.14.1	
 Introduction .. 86	

8.14.2	
 Backward compatibility ... 86	

8.14.3	
 Sub Track box ... 87	

8.14.4	
 Sub Track Information box .. 87	

8.14.5	
 Sub Track Definition box ... 88	

8.14.6	
 Sub Track Sample Group box ... 88	

8.15	
 Post-decoder requirements on media ... 89	

8.15.1	
 General .. 89	

8.15.2	
 Transformation ... 89	

8.15.3	
 Restricted Scheme Information box ... 90	

8.15.4	
 Scheme for stereoscopic video arrangements ... 90	

8.16	
 Segments .. 92	

8.16.1	
 Introduction .. 92	

8.16.2	
 Segment Type Box ... 92	

8.16.3	
 Segment Index Box .. 92	

8.16.4	
 Subsegment Index Box .. 96	

8.16.5	
 Producer Reference Time Box .. 97	

9	
 Hint Track Formats ... 98	

9.1	
 RTP and SRTP Hint Track Format .. 98	

9.1.1	
 Introduction ... 98	

9.1.2	
 Sample Description Format ... 99	

9.1.3	
 Sample Format .. 100	

9.1.4	
 SDP Information .. 103	

9.1.5	
 Statistical Information .. 103	

9.2	
 ALC/LCT and FLUTE Hint Track Format .. 104	

9.2.1	
 Introduction ... 104	

9.2.2	
 Design principles .. 105	

9.2.3	
 Sample Description Format ... 106	

9.2.4	
 Sample Format .. 107	

9.3	
 MPEG-2 Transport Hint Track Format .. 110	

9.3.1	
 Introduction ... 110	

9.3.2	
 Design Principles .. 110	

9.3.3	
 Sample Description Format ... 112	

9.3.4	
 Sample Format .. 114	

9.3.5	
 Protected MPEG 2 Transport Stream Hint Track ... 116	

9.4	
 RTP, RTCP, SRTP and SRTCP Reception Hint Tracks ... 116	

ISO/IEC 14496-12:2008(E)

vi PROOF/ÉPREUVE © ISO/IEC 2008 – All rights reserved

9.4.1	
 RTP Reception Hint Track .. 116	

9.4.2	
 RTCP Reception Hint Track ... 119	

9.4.3	
 SRTP Reception Hint Track .. 121	

9.4.4	
 SRTCP Reception Hint Tracks ... 122	

9.4.5	
 Protected RTP Reception Hint Track .. 123	

9.4.6	
 Recording Procedure .. 124	

9.4.7	
 Parsing Procedure .. 124	

10	
 Sample Groups .. 124	

10.1	
 Random Access Recovery Points .. 124	

10.2	
 Rate Share Groups ... 125	

10.2.1	
 Introduction ... 125	

10.2.2	
 Rate Share Sample Group Entry ... 126	

10.2.3	
 Relationship between tracks ... 127	

10.2.4	
 Bitrate allocation .. 128	

10.3	
 Alternative Startup Sequences ... 128	

10.3.1	
 Definition ... 128	

10.3.2	
 Syntax .. 129	

10.3.3	
 Semantics .. 129	

10.3.4	
 Examples ... 129	

10.4	
 Random Access Point (RAP) Sample Grouping ... 131	

10.4.1	
 Definition ... 131	

10.4.2	
 Syntax .. 131	

10.4.3	
 Semantics .. 131	

10.5	
 Temporal level sample grouping .. 131	

10.5.1	
 Definition ... 131	

10.5.2	
 Syntax .. 132	

10.5.3	
 Semantics .. 132	

11	
 Extensibility ... 132	

11.1	
 Objects .. 132	

11.2	
 Storage formats .. 133	

11.3	
 Derived File formats ... 133	

Annex A (informative) Overview and Introduction .. 134	

A.1	
 Section Overview ... 134	

A.2	
 Core Concepts ... 134	

A.3	
 Physical structure of the media ... 134	

A.4	
 Temporal structure of the media .. 135	

A.5	
 Interleave .. 135	

A.6	
 Composition ... 135	

A.7	
 Random access ... 136	

A.8	
 Fragmented movie files .. 136	

Annex B (informative) Patent Statements .. 138	

Annex C (informative) Guidelines on deriving from this specification ... 139	

C.1	
 Introduction .. 139	

C.2	
 General Principles ... 139	

C.2.1	
 General .. 139	

C.2.2	
 Base layer operations .. 139	

C.3	
 Boxes .. 140	

C.4	
 Brand Identifiers .. 140	

C.4.1	
 Introduction ... 140	

C.4.2	
 Usage of the Brand ... 141	

C.4.3	
 Introduction of a new brand .. 141	

C.4.4	
 Player Guideline ... 142	

C.4.5	
 Authoring Guideline ... 142	

C.4.6	
 Example ... 142	

C.5	
 Storage of new media types ... 142	

C.6	
 Use of Template fields .. 143	

C.7	
 Tracks ... 143	

ISO/IEC 14496-12:2008(E)

© ISO/IEC 2008 – All rights reserved PROOF/ÉPREUVE vii

C.7.1	
 Data Location .. 143	

C.7.2	
 Time ... 143	

C.7.3	
 Media Types .. 144	

C.7.4	
 Coding Types .. 144	

C.7.5	
 Sub-sample information .. 144	

C.7.6	
 Sample Dependency .. 144	

C.7.7	
 Sample Groups ... 144	

C.7.8	
 Track-level ... 144	

C.7.9	
 Protection .. 145	

C.8	
 Construction of fragmented movies .. 145	

C.9	
 Meta-data .. 146	

C.10	
 Registration ... 146	

C.11	
 Guidelines on the use of sample groups, timed metadata tracks, and sample auxiliary

information .. 146	

Annex D (informative) Registration Authority ... 148	

D.1	
 Code points to be registered .. 148	

D.2	
 Procedure for the request of an MPEG-4 registered identifier value ... 148	

D.3	
 Responsibilities of the Registration Authority ... 149	

D.4	
 Contact information for the Registration Authority ... 149	

D.5	
 Responsibilities of Parties Requesting a RID ... 149	

D.6	
 Appeal Procedure for Denied Applications .. 150	

D.7	
 Registration Application Form ... 150	

D.7.1	
 Contact Information of organization requesting a RID ... 150	

D.7.2	
 Request for a specific RID ... 150	

D.7.3	
 Short description of RID that is in use and date system was implemented 151	

D.7.4	
 Statement of an intention to apply the assigned RID ... 151	

D.7.5	
 Date of intended implementation of the RID .. 151	

D.7.6	
 Authorized representative ... 151	

D.7.7	
 For official use of the Registration Authority .. 151	

Annex E (normative) File format brands .. 152	

E.1	
 Introduction .. 152	

E.2	
 The ‘isom’ brand ... 153	

E.3	
 The ‘avc1’ brand ... 154	

E.4	
 The ‘iso2’ brand ... 154	

E.5	
 The ‘mp71’ brand ... 155	

E.6	
 The ‘iso3’ brand ... 155	

E.7	
 The ‘iso4’ brand ... 155	

E.8	
 The ‘iso5’ brand ... 156	

E.9	
 The ‘iso6’ brand ... 156	

Annex F (informative) Document Cross-Reference .. 157	

Annex G : (informative) URI-labelled metadata forms ... 159	

G.1	
 UUID-labelled metadata .. 159	

G.2	
 ISO OID-labelled metadata ... 159	

G.3	
 SMPTE-labelled metadata .. 159	

Annex H (Informative) Processing of RTP streams and reception hint tracks 161	

H.1	
 Introduction ... 161	

H.1.1	
 Overview ... 161	

H.1.2	
 Structure ... 161	

H.1.3	
 Terms and definitions .. 161	

H.2	
 Synchronization of RTP streams ... 161	

H.3	
 Recording of RTP streams ... 162	

H.3.1	
 Introduction .. 162	

H.3.2	
 Compensation for unequal starting for position of received RTP streams 164	

H.3.3	
 Recording of SDP ... 165	

H.3.4	
 Creation of a sample within an RTP reception hint track ... 165	

H.3.5	
 Representation of RTP timestamps .. 166	

H.3.6	
 Recording operations to facilitate inter-stream synchronization in playback 169	

ISO/IEC 14496-12:2008(E)

viii PROOF/ÉPREUVE © ISO/IEC 2008 – All rights reserved

H.3.7	
 Representation of reception times ... 170	

H.3.8	
 Creation of media samples .. 171	

H.3.9	
 Creation of hint samples referring to media samples ... 171	

H.4	
 Playing of recorded RTP streams .. 171	

H.4.1	
 Introduction ... 171	

H.4.2	
 Preparation for the playback ... 172	

H.4.3	
 Decoding of a sample within an RTP reception hint track ... 172	

H.4.4	
 Lip synchronization .. 172	

H.4.5	
 Random access .. 174	

H.5	
 Re-sending recorded RTP streams .. 174	

H.5.1	
 Introduction ... 174	

H.5.2	
 Re-sending RTP packets ... 175	

H.5.3	
 RTCP Processing ... 176	

Annex I (Normative) Stream Access Points ... 177	

I.1	
 Introduction ... 177	

I.2	
 SAP properties .. 177	

I.3	
 SAP types .. 177	

Annex J (Normative) MIME Type Registration of Segments .. 179	

J.1	
 Introduction .. 179	

J.2	
 Registration .. 179	

Bibliography .. 180	

ISO/IEC 14496-12:2008(E)

© ISO/IEC 2008 – All rights reserved PROOF/ÉPREUVE ix

Foreword

ISO (the International Organization for Standardization) and IEC (the International Electrotechnical
Commission) form the specialized system for worldwide standardization. National bodies that are members of
ISO or IEC participate in the development of International Standards through technical committees
established by the respective organization to deal with particular fields of technical activity. ISO and IEC
technical committees collaborate in fields of mutual interest. Other international organizations, governmental
and non-governmental, in liaison with ISO and IEC, also take part in the work. In the field of information
technology, ISO and IEC have established a joint technical committee, ISO/IEC JTC 1.

International Standards are drafted in accordance with the rules given in the ISO/IEC Directives, Part 2.

The main task of the joint technical committee is to prepare International Standards. Draft International
Standards adopted by the joint technical committee are circulated to national bodies for voting. Publication as
an International Standard requires approval by at least 75 % of the national bodies casting a vote.

Attention is drawn to the possibility that some of the elements of this document may be the subject of patent
rights. ISO and IEC shall not be held responsible for identifying any or all such patent rights.

ISO/IEC 14496-12 was prepared by Joint Technical Committee ISO/IEC JTC 1, Information technology,
Subcommittee SC 29, Coding of audio, picture, multimedia and hypermedia information.

This fourth edition cancels and replaces the third edition (ISO/IEC 14496-12:2005) of which it constitutes a
minor revision.

ISO/IEC 14496 consists of the following parts, under the general title Information technology — Coding of
audio-visual objects:

⎯ Part 1: Systems

⎯ Part 2: Visual

⎯ Part 3: Audio

⎯ Part 4: Conformance testing

⎯ Part 5: Reference software

⎯ Part 6: Delivery Multimedia Integration Framework (DMIF)

⎯ Part 7: Optimized reference software for coding of audio-visual objects

⎯ Part 8: Carriage of ISO/IEC 14496 contents over IP networks

⎯ Part 9: Reference hardware description

⎯ Part 10: Advanced Video Coding

⎯ Part 11: Scene description and application engine

⎯ Part 12: ISO base media file format

⎯ Part 13: Intellectual Property Management and Protection (IPMP) extensions

ISO/IEC 14496-12:2008(E)

x PROOF/ÉPREUVE © ISO/IEC 2008 – All rights reserved

⎯ Part 14: MP4 file format

⎯ Part 15: Advanced Video Coding (AVC) file format

⎯ Part 16: Animation Framework eXtension (AFX)

⎯ Part 17: Streaming text format

⎯ Part 18: Font compression and streaming

⎯ Part 19: Synthesized texture stream

⎯ Part 20: Lightweight Application Scene Representation (LASeR) and Simple Aggregation Format (SAF)

⎯ Part 21: MPEG-J Graphics Framework eXtensions (GFX)

⎯ Part 22: Open Font Format

⎯ Part 23: Symbolic Music Representation

⎯ Part 24: Audio and systems interaction

⎯ Part 25: 3D Graphics Compression Model

ISO/IEC 14496-12:2008(E)

© ISO/IEC 2008 – All rights reserved PROOF/ÉPREUVE xi

Introduction

The ISO Base Media File Format is designed to contain timed media information for a presentation in a
flexible, extensible format that facilitates interchange, management, editing, and presentation of the media.
This presentation may be ‘local’ to the system containing the presentation, or may be via a network or other
stream delivery mechanism.

The file structure is object-oriented; a file can be decomposed into constituent objects very simply, and the
structure of the objects inferred directly from their type.

The file format is designed to be independent of any particular network protocol while enabling efficient
support for them in general.

The ISO Base Media File Format is a base format for media file formats.

It is intended that the ISO Base Media File Format shall be jointly maintained by WG1 and WG11.
Consequently, a subdivision of work created ISO/IEC 15444-12 and ISO/IEC 14496-12 in order to document
the ISO Base Media File Format and to facilitate the joint maintenance.

This technically identical text is published as ISO/IEC 14496-12 for MPEG-4, and as ISO/IEC 15444-12 for
JPEG 2000, and reference to this specification should be made accordingly. The recommendation is to
reference one, for example ISO/IEC 14496-12, and append to the reference a parenthetical comment
identifying the other, for example “(technically identical to ISO/IEC 15444-12)”.

INTERNATIONAL STANDARD ISO/IEC 14496-12:2008(E)

© ISO/IEC 2008 – All rights reserved PROOF/ÉPREUVE 1

Information technology — Coding of audio-visual objects —

Part 12:
ISO base media file format

1 Scope

This part of ISO/IEC 14496 specifies the ISO base media file format, which is a general format forming the
basis for a number of other more specific file formats. This format contains the timing, structure, and media
information for timed sequences of media data, such as audio-visual presentations.

This part of ISO/IEC 14496 is applicable to MPEG-4, but its technical content is identical to that of
ISO/IEC 15444-12, which is applicable to JPEG 2000.

2 Normative references

The following referenced documents are indispensable for the application of this document. For dated
references, only the edition cited applies. For undated references, the latest edition of the referenced
document (including any amendments) applies.

ISO 639-2:1998, Codes for the representation of names of languages — Part 2: Alpha-3 code

ITU-T Rec. X.667 (09/2004) | ISO/IEC 9834-8:2005, Information technology — Open Systems
Interconnection — Procedures for the operation of OSI Registration Authorities: Generation and registration of
Universally Unique Identifiers (UUIDs) and their use as ASN.1 Object Identifier components

ISO/IEC 11578:1996, Information technology — Open Systems Interconnection — Remote Procedure Call
(RPC)

ISO/IEC 14496-1:2004: Information technology — Coding of audio-visual objects — Part 1: Systems

ISO/IEC 14496-10, Information technology — Coding of audio-visual objects — Part 10: Advanced Video
Coding

ISO/IEC 14496-14, Information technology — Coding of audio-visual objects — Part 14: MP4 file format

ITU-T Rec.T.800 | ISO/IEC 15444-1, Information technology — JPEG 2000 image coding system: Core
coding system

ITU-T Rec.T.802 | ISO/IEC 15444-3, Information technology — JPEG 2000 image coding system: Motion
JPEG 2000

ISO/IEC 15938-1, Information technology — Multimedia content description interface — Part 1: Systems

ISO/IEC 23001-1, Information technology — MPEG systems technologies — Part 1: Binary MPEG format for
XML

IETF RFC 3711, “The Secure Real-time Transport Protocol (SRTP)”, BAUGHER, M. et al., March 2004

ISO/IEC 14496-12:2008(E)

2 PROOF/ÉPREUVE © ISO/IEC 2008 – All rights reserved

SMIL 1.0 “Synchronized Multimedia Integration Language (SMIL) 1.0 Specification”,
<http://www.w3.org/TR/REC-smil/>

IETF RFC 2045, Multipurpose Internet Mail Extensions (MIME) Part One: Format of Internet Message Bodies,
FREED, N. and BORENSTEIN, N., November 1996

IETF RFC 2046, Multipurpose Internet Mail Extensions (MIME) Part Two: Media Types, FREED, N. and
BORENSTEIN, N., November 1996

ITU-R Rec. TF.460-6, Standard-frequency and time-signal emissions (Annex I for the definition of UTC.)

ISO/IEC 23002-3, Information technology — MPEG video technologies — Part 3: Representation of auxiliary
video streams and supplemental information

IETF RFC 5052, Forward Error Correction (FEC) Building Block, WATSON, M. et al., August 2007

ISO 15076-1:2010, Image technology colour management -- Architecture, profile format and data structure --
Part 1: Based on ICC.1:2010

ISO/IEC 29199-2:2009, Information technology — JPEG XR image coding system —
Part 2: Image coding specification

IETF RFC 3550, RTP: A Transport Protocol for Real-Time Applications, SCHULZRINNE, H. et al., July 2003.

IETF RFC 5905, Network Time Protocol Version 4: Protocol and Algorithms Specification, MILLS, D., et al,
June 2010

3 Definitions

3.1 Terms and definitions

For the purposes of this document, the following terms and definitions apply.

3.1.1
box
object-oriented building block defined by a unique type identifier and length

NOTE Called ‘atom’ in some specifications, including the first definition of MP4.

3.1.2
chunk
contiguous set of samples for one track

3.1.3
container box
box whose sole purpose is to contain and group a set of related boxes

3.1.4
hint track
special track which does not contain media data, but instead contains instructions for packaging one or more
tracks into a streaming channel

3.1.5
hinter
tool that is run on a file containing only media, to add one or more hint tracks to the file and so facilitate
streaming

ISO/IEC 14496-12:2008(E)

© ISO/IEC 2008 – All rights reserved PROOF/ÉPREUVE 3

3.1.6
movie box
container box whose sub-boxes define the metadata for a presentation (‘moov’)

3.1.7
media data box
box which can hold the actual media data for a presentation (‘mdat’)

3.1.8
ISO Base Media File
name of the files conforming to the file format described in this specification

3.1.9
presentation
one or more motion sequences, possibly combined with audio

3.1.10
sample
all the data associated with a single timestamp

NOTE 1 No two samples within a track can share the same time-stamp.

NOTE 2 In non-hint tracks, a sample is, for example, an individual frame of video, a series of video frames in decoding
order, or a compressed section of audio in decoding order; in hint tracks, a sample defines the formation of one or more
streaming packets).

3.1.11
sample description
structure which defines and describes the format of some number of samples in a track

3.1.12
sample table
packed directory for the timing and physical layout of the samples in a track

3.1.13
track
timed sequence of related samples (q.v.) in an ISO base media file

NOTE For media data, a track corresponds to a sequence of images or sampled audio; for hint tracks, a track
corresponds to a streaming channel.

3.1.14
segment
portion of an ISO base media file format file, consisting of either (a) a movie box, with its associated media
data (if any) and other associated boxes or (b) one or more movie fragment boxes, with their associated
media data, and other associated boxes

3.1.15
subsegment
time interval of a segment formed from movie fragment boxes, that is also a valid segment

3.1.16
leaf subsegment
subsegment that does not contain any indexing information that would enable its further division into
subsegments;

3.2 Abbreviated terms

For the purposes of this International Standard, the following abbreviated terms apply.

ISO/IEC 14496-12:2008(E)

4 PROOF/ÉPREUVE © ISO/IEC 2008 – All rights reserved

ALC Asynchronous Layered Coding
FD File Delivery
FDT File Delivery Table
FEC Forward Error Correction
FLUTE File Delivery over Unidirectional Transport
IANA Internet Assigned Numbers Authority
LCT Layered Coding Transport
MBMS Multimedia Broadcast/Multicast Service

4 Object-structured File Organization

4.1 File Structure

Files are formed as a series of objects, called boxes in this specification. All data is contained in boxes; there
is no other data within the file. This includes any initial signature required by the specific file format.

All object-structured files conformant to this section of this specification (all Object-Structured files) shall
contain a File Type Box.

4.2 Object Structure

An object in this terminology is a box.

Boxes start with a header which gives both size and type. The header permits compact or extended size (32
or 64 bits) and compact or extended types (32 bits or full Universal Unique IDentifiers, i.e. UUIDs). The
standard boxes all use compact types (32-bit) and most boxes will use the compact (32-bit) size. Typically
only the Media Data Box(es) need the 64-bit size.

The size is the entire size of the box, including the size and type header, fields, and all contained boxes. This
facilitates general parsing of the file.

The definitions of boxes are given in the syntax description language (SDL) defined in MPEG-4 (see reference
in clause 2). Comments in the code fragments in this specification indicate informative material.

The fields in the objects are stored with the most significant byte first, commonly known as network byte order
or big-endian format. When fields smaller than a byte are defined, or fields span a byte boundary, the bits are
assigned from the most significant bits in each byte to the least significant. For example, a field of two bits
followed by a field of six bits has the two bits in the high order bits of the byte.

aligned(8) class Box (unsigned int(32) boxtype,
 optional unsigned int(8)[16] extended_type) {
 unsigned int(32) size;
 unsigned int(32) type = boxtype;
 if (size==1) {
 unsigned int(64) largesize;
 } else if (size==0) {
 // box extends to end of file
 }
 if (boxtype==‘uuid’) {
 unsigned int(8)[16] usertype = extended_type;
 }
}

The semantics of these two fields are:

ISO/IEC 14496-12:2008(E)

© ISO/IEC 2008 – All rights reserved PROOF/ÉPREUVE 5

size is an integer that specifies the number of bytes in this box, including all its fields and contained
boxes; if size is 1 then the actual size is in the field largesize; if size is 0, then this box is the last
one in the file, and its contents extend to the end of the file (normally only used for a Media Data Box)

type identifies the box type; standard boxes use a compact type, which is normally four printable
characters, to permit ease of identification, and is shown so in the boxes below. User extensions use
an extended type; in this case, the type field is set to ‘uuid’.

Boxes with an unrecognized type shall be ignored and skipped.

Many objects also contain a version number and flags field:

aligned(8) class FullBox(unsigned int(32) boxtype, unsigned int(8) v, bit(24) f)
 extends Box(boxtype) {
 unsigned int(8) version = v;
 bit(24) flags = f;
}

The semantics of these two fields are:

version is an integer that specifies the version of this format of the box.
flags is a map of flags

Boxes with an unrecognized version shall be ignored and skipped.

4.3 File Type Box

4.3.1 Definition

Box Type: `ftyp’
Container: File
Mandatory: Yes
Quantity: Exactly one (but see below)

Files written to this version of this specification must contain a file-type box. For compatibility with an earlier
version of this specification, files may be conformant to this specification and not contain a file-type box. Files
with no file-type box should be read as if they contained an FTYP box with Major_brand='mp41',
minor_version=0, and the single compatible brand 'mp41'.

A media-file structured to this part of this specification may be compatible with more than one detailed
specification, and it is therefore not always possible to speak of a single ‘type’ or ‘brand’ for the file. This
means that the utility of the file name extension and Multipurpose Internet Mail Extension (MIME) type are
somewhat reduced.

This box must be placed as early as possible in the file (e.g. after any obligatory signature, but before any
significant variable-size boxes such as a Movie Box, Media Data Box, or Free Space). It identifies which
specification is the ‘best use’ of the file, and a minor version of that specification; and also a set of other
specifications to which the file complies. Readers implementing this format should attempt to read files that
are marked as compatible with any of the specifications that the reader implements. Any incompatible change
in a specification should therefore register a new ‘brand’ identifier to identify files conformant to the new
specification.

The minor version is informative only. It does not appear for compatible-brands, and must not be used to
determine the conformance of a file to a standard. It may allow more precise identification of the major
specification, for inspection, debugging, or improved decoding.

Files would normally be externally identified (e.g. with a file extension or mime type) that identifies the ‘best
use’ (major brand), or the brand that the author believes will provide the greatest compatibility.

ISO/IEC 14496-12:2008(E)

6 PROOF/ÉPREUVE © ISO/IEC 2008 – All rights reserved

This section of this specification does not define any brands. However, see subclause 6.3 below for brands for
files conformant to the whole specification and not just this section. All file format brands defined in this
specification are included in Annex E with a summary of which features they require.

4.3.2 Syntax

aligned(8) class FileTypeBox
 extends Box(‘ftyp’) {
 unsigned int(32) major_brand;
 unsigned int(32) minor_version;
 unsigned int(32) compatible_brands[]; // to end of the box
}

4.3.3 Semantics

This box identifies the specifications to which this file complies.

Each brand is a printable four-character code, registered with ISO, that identifies a precise specification.

major_brand – is a brand identifier
minor_version – is an informative integer for the minor version of the major brand
compatible_brands – is a list, to the end of the box, of brands

5 Design Considerations

5.1 Usage

5.1.1 Introduction

The file format is intended to serve as a basis for a number of operations. In these various roles, it may be
used in different ways, and different aspects of the overall design exercised.

5.1.2 Interchange

When used as an interchange format, the files would normally be self-contained (not referencing media in
other files), contain only the media data actually used in the presentation, and not contain any information
related to streaming. This will result in a small, protocol-independent, self-contained file, which contains the
core media data and the information needed to operate on it.

The following diagram gives an example of a simple interchange file, containing two streams.

 ISO file

moov
 …other boxes

mdat

Interleaved, time-ordered, video
and audio framestrak (audio)

trak (video)

Figure 1 — Simple interchange file

5.1.3 Content Creation

During content creation, a number of areas of the format can be exercised to useful effect, particularly:

ISO/IEC 14496-12:2008(E)

© ISO/IEC 2008 – All rights reserved PROOF/ÉPREUVE 7

• the ability to store each elementary stream separately (not interleaved), possibly in separate files.

• the ability to work in a single presentation that contains media data and other streams (e.g. editing
the audio track in the uncompressed format, to align with an already-prepared video track).

These characteristics mean that presentations may be prepared, edits applied, and content developed and
integrated without either iteratively re-writing the presentation on disc – which would be necessary if interleave
was required and unused data had to be deleted; and also without iteratively decoding and re-encoding the
data – which would be necessary if the data must be stored in an encoded state.

In the following diagram, a set of files being used in the process of content creation is shown.

media file
 video frames, possibly
 un-ordered with other
 unused data

ISO File

 …other boxes (inc. moov)

mdat
 Video and Audio frames
 possibly
 un-ordered with other
 unused data

ISO file

moov
 …other boxes

trak (audio)

trak (video)

Figure 2 — Content Creation File

5.1.4 Preparation for streaming

When prepared for streaming, the file must contain information to direct the streaming server in the process of
sending the information. In addition, it is helpful if these instructions and the media data are interleaved so that
excessive seeking can be avoided when serving the presentation. It is also important that the original media
data be retained unscathed, so that the files may be verified, or re-edited or otherwise re-used. Finally, it is
helpful if a single file can be prepared for more than one protocol, so differing servers may use it over
disparate protocols.

5.1.5 Local presentation

‘Locally’ viewing a presentation (i.e. directly from the file, not over a streamed interconnect) is an important
application; it is used when a presentation is distributed (e.g. on CD or DVD ROM), during the process of
development, and when verifying the content on streaming servers. Such local viewing must be supported,
with full random access. If the presentation is on CD or DVD ROM, interleave is important as seeking may be
slow.

5.1.6 Streamed presentation

When a server operates from the file to make a stream, the resulting stream must be conformant with the
specifications for the protocol(s) used, and should contain no trace of the file-format information in the file itself.
The server needs to be able to random access the presentation. It can be useful to re-use server content (e.g.
to make excerpts) by referencing the same media data from multiple presentations; it can also assist

ISO/IEC 14496-12:2008(E)

8 PROOF/ÉPREUVE © ISO/IEC 2008 – All rights reserved

streaming if the media data can be on read-only media (e.g. CD) and not copied, merely augmented, when
prepared for streaming.

The following diagram shows a presentation prepared for streaming over a multiplexing protocol, only one hint
track is required.

ISO file

moov
 …other boxes

mdat

Interleaved, time-ordered, video
and audio frames, and hint
instructions

trak (video)

trak (audio)

trak (hint)

Figure 3 — Hinted Presentation for Streaming

5.2 Design principles

The file structure is object-oriented; a file can be decomposed into constituent objects very simply, and the
structure of the objects inferred directly from their type.

Media-data is not ‘framed’ by the file format; the file format declarations that give the size, type and position of
media data units are not physically contiguous with the media data. This makes it possible to subset the
media-data, and to use it in its natural state, without requiring it to be copied to make space for framing. The
metadata is used to describe the media data by reference, not by inclusion.

Similarly the protocol information for a particular streaming protocol does not frame the media data; the
protocol headers are not physically contiguous with the media data. Instead, the media data can be included
by reference. This makes it possible to represent media data in its natural state, not favouring any protocol. It
also makes it possible for the same set of media data to serve for local presentation, and for multiple protocols.

The protocol information is built in such a way that the streaming servers need to know only about the protocol
and the way it should be sent; the protocol information abstracts knowledge of the media so that the servers
are, to a large extent, media-type agnostic. Similarly the media-data, stored as it is in a protocol-unaware
fashion, enables the media tools to be protocol-agnostic.

The file format does not require that a single presentation be in a single file. This enables both sub-setting and
re-use of content. When combined with the non-framing approach, it also makes it possible to include media
data in files not formatted to this specification (e.g. ‘raw’ files containing only media data and no declarative
information, or file formats already in use in the media or computer industries).

The file format is based on a common set of designs and a rich set of possible structures and usages. The
same format serves all usages; translation is not required. However, when used in a particular way (e.g. for
local presentation), the file may need structuring in certain ways for optimal behaviour (e.g. time-ordering of
the data). No normative structuring rules are defined by this specification, unless a restricted profile is used.

ISO/IEC 14496-12:2008(E)

© ISO/IEC 2008 – All rights reserved PROOF/ÉPREUVE 9

6 ISO Base Media File organization

6.1 Presentation structure

6.1.1 File Structure

A presentation may be contained in several files. One file contains the metadata for the whole presentation,
and is formatted to this specification. This file may also contain all the media data, whereupon the
presentation is self-contained. The other files, if used, are not required to be formatted to this specification;
they are used to contain media data, and may also contain unused media data, or other information. This
specification concerns the structure of the presentation file only. The format of the media-data files is
constrained by this specification only in that the media-data in the media files must be capable of description
by the metadata defined here.

These other files may be ISO files, image files, or other formats. Only the media data itself, such as
JPEG 2000 images, is stored in these other files; all timing and framing (position and size) information is in the
ISO base media file, so the ancillary files are essentially free-format.

If an ISO file contains hint tracks, the media tracks that reference the media data from which the hints were
built shall remain in the file, even if the data within them is not directly referenced by the hint tracks; after
deleting all hint tracks, the entire un-hinted presentation shall remain. Note that the media tracks may,
however, refer to external files for their media data.

Annex A provides an informative introduction, which may be of assistance to first-time readers.

6.1.2 Object Structure

The file is structured as a sequence of objects; some of these objects may contain other objects. The
sequence of objects in the file shall contain exactly one presentation metadata wrapper (the Movie Box). It is
usually close to the beginning or end of the file, to permit its easy location. The other objects found at this level
may be a File-Type box, Free Space Boxes, Movie Fragments, Meta-data, or Media Data Boxes.

6.1.3 Meta Data and Media Data

The metadata is contained within the metadata wrapper (the Movie Box); the media data is contained either in
the same file, within Media Data Box(es), or in other files. The media data is composed of images or audio
data; the media data objects, or media data files, may contain other un-referenced information.

6.1.4 Track Identifiers

The track identifiers used in an ISO file are unique within that file; no two tracks shall use the same identifier.

The next track identifier value stored in next_track_ID in the Movie Header Box generally contains a value
one greater than the largest track identifier value found in the file. This enables easy generation of a track
identifier under most circumstances. However, if this value is equal to ones (32-bit unsigned maxint), then a
search for an unused track identifier is needed for all additions.

6.2 Metadata Structure (Objects)

6.2.1 Box

Type fields not defined here are reserved. Private extensions shall be achieved through the ‘uuid’ type. In
addition, the following types are not and will not be used, or used only in their existing sense, in future
versions of this specification, to avoid conflict with existing content using earlier pre-standard versions of this
format:

ISO/IEC 14496-12:2008(E)

10 PROOF/ÉPREUVE © ISO/IEC 2008 – All rights reserved

clip, crgn, matt, kmat, pnot, ctab, load, imap;
these track reference types (as found in the reference_type of a Track Reference Box): tmcd, chap,
sync, scpt, ssrc.

A number of boxes contain index values into sequences in other boxes. These indexes start with the value 1
(1 is the first entry in the sequence).

6.2.2 Data Types and fields

In a number of boxes in this specification, there are two variant forms: version 0 using 32-bit fields, and
version 1 using 64-bit sizes for those same fields. In general, if a version 0 box (32-bit field sizes) can be used,
it should be; version 1 boxes should be used only when the 64-bit field sizes they permit, are required. Values
for counters, offsets, times, durations etc. in this format do not ‘wrap’ to 0 when the maximum value that can
be stored in their field is reached; appropriately large fields must be used for all values.

For convenience during content creation there are creation and modification times stored in the file. These can
be 32-bit or 64-bit numbers, counting seconds since midnight, Jan. 1, 1904, which is a convenient date for
leap-year calculations. 32 bits are sufficient until approximately year 2040. These times shall be expressed in
Universal Time Coordinated (UTC), and therefore may need adjustment to local time if displayed.

Fixed-point numbers are signed or unsigned values resulting from dividing an integer by an appropriate power
of 2. For example, a 30.2 fixed-point number is formed by dividing a 32-bit integer by 4.

Fields shown as “template” in the box descriptions are optional in the specifications that use this
specification. If the field is used in another specification, that use must be conformant with its definition here,
and the specification must define whether the use is optional or mandatory. Similarly, fields marked “pre-
defined” were used in an earlier version of this specification. For both kinds of fields, if a field of that kind is not
used in a specification, then it should be set to the indicated default value. If the field is not used it must be
copied un-inspected when boxes are copied, and ignored on reading.

Matrix values which occur in the headers specify a transformation of video images for presentation. Not all
derived specifications use matrices; if they are not used, they shall be set to the identity matrix. If a matrix is
used, the point (p,q) is transformed into (p', q') using the matrix as follows:

(p q 1) * | a b u | = (m n z)
 | c d v |
 | x y w |

m = ap + cq + x; n = bp + dq + y; z = up + vq + w;

p' = m/z; q' = n/z

The coordinates {p,q} are on the decompressed frame, and {p’, q’} are at the rendering output. Therefore, for
example, the matrix {2,0,0, 0,2,0, 0,0,1} exactly doubles the pixel dimension of an image. The co-ordinates
transformed by the matrix are not normalized in any way, and represent actual sample locations. Therefore
{x,y} can, for example, be considered a translation vector for the image.

The co-ordinate origin is located at the upper left corner, and X values increase to the right, and Y values
increase downwards. {p,q} and {p’,q’} are to be taken as absolute pixel locations relative to the upper left hand
corner of the original image (after scaling to the size determined by the track header's width and height) and
the transformed (rendering) surface, respectively.

Each track is composed using its matrix as specified into an overall image; this is then transformed and
composed according to the matrix at the movie level in the MovieHeaderBox. It is application-dependent
whether the resulting image is ‘clipped’ to eliminate pixels, which have no display, to a vertical rectangular
region within a window, for example. So for example, if only one video track is displayed and it has a
translation to {20,30}, and a unity matrix is in the MovieHeaderBox, an application may choose not to display
the empty “L” shaped region between the image and the origin.

ISO/IEC 14496-12:2008(E)

© ISO/IEC 2008 – All rights reserved PROOF/ÉPREUVE 11

All the values in a matrix are stored as 16.16 fixed-point values, except for u, v and w, which are stored as
2.30 fixed-point values.

The values in the matrix are stored in the order {a,b,u, c,d,v, x,y,w}.

6.2.3 Box Order

An overall view of the normal encapsulation structure is provided in the following table.

The table shows those boxes that may occur at the top-level in the left-most column; indentation is used to
show possible containment. Thus, for example, a Track Header Box (tkhd) is found in a Track Box (trak),
which is found in a Movie Box (moov). Not all boxes need to be used in all files; the mandatory boxes are
marked with an asterisk (*). See the description of the individual boxes for a discussion of what must be
assumed if the optional boxes are not present.

User data objects shall be placed only in Movie or Track Boxes, and objects using an extended type may be
placed in a wide variety of containers, not just the top level.

In order to improve interoperability and utility of the files, the following rules and guidelines shall be followed
for the order of boxes:

1) The file type box ‘ftyp’ shall occur before any variable-length box (e.g. movie, free space, media
data). Only a fixed-size box such as a file signature, if required, may precede it.

2) It is strongly recommended that all header boxes be placed first in their container: these boxes are
the Movie Header, Track Header, Media Header, and the specific media headers inside the Media
Information Box (e.g. the Video Media Header).

3) Any Movie Fragment Boxes shall be in sequence order (see subclause 8.8.5).

4) It is recommended that the boxes within the Sample Table Box be in the following order: Sample
Description, Time to Sample, Sample to Chunk, Sample Size, Chunk Offset.

5) It is strongly recommended that the Track Reference Box and Edit List (if any) should precede the
Media Box, and the Handler Reference Box should precede the Media Information Box, and the Data
Information Box should precede the Sample Table Box.

6) It is recommended that user Data Boxes be placed last in their container, which is either the Movie
Box or Track Box.

7) It is recommended that the Movie Fragment Random Access Box, if present, be last in the file.

8) It is recommended that the progressive download information box be placed as early as possible in
files, for maximum utility.

Table 1 — Box types, structure, and cross-reference

ftyp * 4.3 file type and compatibility
pdin 8.1.3 progressive download information
moov * 8.2.1 container for all the metadata
 mvhd * 8.2.2 movie header, overall declarations
 trak * 8.3.1 container for an individual track or stream
 tkhd * 8.3.2 track header, overall information about the track
 tref 8.3.3 track reference container
 trgr 8.3.4 track grouping indication
 edts 8.6.4 edit list container
 elst 8.6.6 an edit list
 mdia * 8.4 container for the media information in a track
 mdhd * 8.4.2 media header, overall information about the media
 hdlr * 8.4.3 handler, declares the media (handler) type

ISO/IEC 14496-12:2008(E)

12 PROOF/ÉPREUVE © ISO/IEC 2008 – All rights reserved

 minf * 8.4.4 media information container
 vmhd 8.4.5.2 video media header, overall information (video

track only)
 smhd 8.4.5.3 sound media header, overall information (sound

track only)
 hmhd 8.4.5.4 hint media header, overall information (hint track

only)
 nmhd 8.4.5.5 Null media header, overall information (some

tracks only)
 dinf * 8.5 data information box, container
 dref * 8.7.2 data reference box, declares source(s) of media

data in track
 stbl * 8.5 sample table box, container for the time/space

map
 stsd * 8.5.2 sample descriptions (codec types, initialization

etc.)
 stts * 8.6.1.2 (decoding) time-to-sample
 ctts 8.6.1.3 (composition) time to sample
 cslg 8.6.1.4 composition to decode timeline mapping
 stsc * 8.7.4 sample-to-chunk, partial data-offset information
 stsz 8.7.3.2 sample sizes (framing)
 stz2 8.7.3.3 compact sample sizes (framing)
 stco * 8.7.5 chunk offset, partial data-offset information
 co64 8.7.5 64-bit chunk offset
 stss 8.6.2 sync sample table (random access points)
 stsh 8.6.3 shadow sync sample table
 padb 8.7.6 sample padding bits
 stdp 8.7.6 sample degradation priority
 sdtp 8.6.4 independent and disposable samples
 sbgp 8.9.2 sample-to-group
 sgpd 8.9.3 sample group description
 subs 8.7.7 sub-sample information
 saiz 8.7.8 sample auxiliary information sizes
 saio 8.7.9 sample auxiliary information offsets
 udta 8.10.1 user-data
 mvex 8.8.1 movie extends box
 mehd 8.8.2 movie extends header box
 trex * 8.8.3 track extends defaults
 leva 8.8.13 level assignment
moof 8.8.4 movie fragment
 mfhd * 8.8.5 movie fragment header
 traf 8.8.6 track fragment
 tfhd * 8.8.7 track fragment header
 trun 8.8.8 track fragment run
 sbgp 8.9.2 sample-to-group
 sgpd 8.9.3 sample group description
 subs 8.7.7 sub-sample information
 saiz 8.7.8 sample auxiliary information sizes
 saio 8.7.9 sample auxiliary information offsets
 tfdt 8.8.12 track fragment decode time
mfra 8.8.9 movie fragment random access
 tfra 8.8.10 track fragment random access
 mfro * 8.8.11 movie fragment random access offset
mdat 8.2.2 media data container
free 8.1.2 free space
skip 8.1.2 free space
 udta 8.10.1 user-data

Table 1 (continued)

 cprt 8.10.2 copyright etc.
 tsel 8.10.3 track selection box
 strk 8.14.3 sub track box
 stri 8.14.4 sub track information box
 strd 8.14.5 sub track definition box

ISO/IEC 14496-12:2008(E)

© ISO/IEC 2008 – All rights reserved PROOF/ÉPREUVE 13

meta 8.11.1 metadata
 hdlr * 8.4.3 handler, declares the metadata (handler) type
 dinf 8.5 data information box, container
 dref 8.7.2 data reference box, declares source(s) of

metadata items
 iloc 8.11.3 item location
 ipro 8.11.5 item protection
 sinf 8.12.1 protection scheme information box
 frma 8.12.2 original format box
 schm 8.12.5 scheme type box
 schi 8.12.6 scheme information box
 iinf 8.11.6 item information
 xml 8.11.2 XML container
 bxml 8.11.2 binary XML container
 pitm 8.11.4 primary item reference
 fiin 8.13.2 file delivery item information
 paen 8.13.2 partition entry
 fire 8.13.7 file reservoir
 fpar 8.13.3 file partition
 fecr 8.13.4 FEC reservoir
 segr 8.13.5 file delivery session group
 gitn 8.13.6 group id to name
 idat 8.11.11 item data
 iref 8.11.12 item reference
meco 8.11.7 additional metadata container
 mere 8.11.8 metabox relation
styp 8.16.2 segment type
sidx 8.16.3 segment index
ssix 8.16.4 subsegment index
prft 8.16.5 producer reference time

6.2.4 URIs as type indicators

When URIs are used as a type indicator (e.g. in a sample entry or for un-timed meta-data), the URI must be
absolute, not relative and the format and meaning of the data must be defined by the URI in question. This
identification may be hierarchical, in that an initial sub-string of the URI might identify the overall nature or
family of the data (e.g. urn:oid: identifies that the metadata is labelled by an ISO-standard object identifier).

The URI should be, but is not required to be, de-referencable. It may be string compared by readers with the
set of URI types it knows and recognizes. URIs provide a large non-colliding non-registered space for type
identifiers.

If the URI contains a domain name (e.g. it is a URL), then it should also contain a month-date in the form
mmyyyy. That date must be near the time of the definition of the extension, and it must be true that the URI
was defined in a way authorized by the owner of the domain name at that date. (This avoids problems when
domain names change ownership).

6.3 Brand Identification

The definitions of the brands that that apply to the file format are found in Annex E.

7 Streaming Support
7.1 Handling of Streaming Protocols

The file format supports streaming of media data over a network as well as local playback. The process of
sending protocol data units is time-based, just like the display of time-based data, and is therefore suitably
described by a time-based format. A file or ‘movie’ that supports streaming includes information about the data
units to stream. This information is included in additional tracks of the file called “hint” tracks. Hint tracks may

ISO/IEC 14496-12:2008(E)

14 PROOF/ÉPREUVE © ISO/IEC 2008 – All rights reserved

also be used to record a stream; these are called Reception Hint Tracks, to differentiate them from plain (or
server, or transmission) hint tracks.

Transmission or server hint tracks contain instructions to assist a streaming server in the formation of packets
for transmission. These instructions may contain immediate data for the server to send (e.g. header
information) or reference segments of the media data. These instructions are encoded in the file in the same
way that editing or presentation information is encoded in a file for local playback. Instead of editing or
presentation information, information is provided which allows a server to packetize the media data in a
manner suitable for streaming using a specific network transport.

The same media data is used in a file that contains hints, whether it is for local playback, or streaming over a
number of different protocols. Separate ‘hint’ tracks for different protocols may be included within the same file
and the media will play over all such protocols without making any additional copies of the media itself. In
addition, existing media can be easily made streamable by the addition of appropriate hint tracks for specific
protocols. The media data itself need not be recast or reformatted in any way.

This approach to streaming and recording is more space efficient than an approach that requires that the
media information be partitioned into the actual data units that will be transmitted for a given transport and
media format. Under such an approach, local playback requires either re-assembling the media from the
packets, or having two copies of the media — one for local playback and one for streaming. Similarly,
streaming such media over multiple protocols using this approach requires multiple copies of the media data
for each transport. This is inefficient with space, unless the media data has been heavily transformed for
streaming (e.g. by the application of error-correcting coding techniques, or by encryption).

Reception hint tracks may be used when one or more packet streams of data are recorded. Reception hint
tracks indicate the order, reception timing, and contents of the received packets among other things.

NOTE 1: Players may reproduce the packet stream that was received based on the reception hint tracks and process
the reproduced packet stream as if it was newly received.

7.2 Protocol ‘hint’ tracks

Support for streaming is based upon the following three design parameters:

• The media data is represented as a set of network-independent standard tracks, which may
be played, edited, and so on, as normal;

• There is a common declaration and base structure for hint tracks; this common format is
protocol independent, but contains the declarations of which protocol(s) are described in the
hint track(s);

• There is a specific design of the hint tracks for each protocol that may be transmitted; all
these designs use the same basic structure. For example, there may be designs for RTP (for
the Internet) and MPEG-2 transport (for broadcast), or for new standard or vendor-specific
protocols.

The resulting streams, sent by the servers under the direction of the server hint tracks or reconstructed from
the reception hint tracks, need contain no trace of file-specific information. This design does not require that
the file structures or declaration style, be used either in the data on the wire or in the decoding station. For
example, a file using ITU-T H.261 video and DVI audio, streamed under RTP, results in a packet stream that
is fully compliant with the IETF specifications for packing those codings into RTP.

7.3 Hint Track Format

Hint tracks are used to describe elementary stream data in the file. Each protocol or each family of related
protocols has its own hint track format. A server hint track format and a reception hint track format for the
same protocol are distinguishable from the associated four-character code of the sample description entry. In
other words, a different four-character code is used for a server hint track and a reception hint track of the
same protocol. The syntax of the server hint track format and the reception hint track format for the same
protocol should be the same or compatible so that a reception hint track can be used for re-sending of the

ISO/IEC 14496-12:2008(E)

© ISO/IEC 2008 – All rights reserved PROOF/ÉPREUVE 15

stream provided that the potential degradations of the received streams are handled appropriately. Most
protocols will need only one sample description format for each track.

Servers find their hint tracks by first finding all hint tracks, and then looking within that set for server hint tracks
using their protocol (sample description format). If there are choices at this point, then the server chooses on
the basis of preferred protocol or by comparing features in the hint track header or other protocol-specific
information in the sample descriptions. Particularly in the absence of server hint tracks, servers may also use
reception hint tracks of their protocol. However, servers should handle potential degradations of the received
stream described by the used reception hint track appropriately.

Tracks having the track_in_movie flag set are candidates for playback, regardless of whether they are media
tracks or reception hint tracks.

Hint tracks construct streams by pulling data out of other tracks by reference. These other tracks may be hint
tracks or elementary stream tracks. The exact form of these pointers is defined by the sample format for the
protocol, but in general they consist of four pieces of information: a track reference index, a sample number,
an offset, and a length. Some of these may be implicit for a particular protocol. These ‘pointers’ always point
to the actual source of the data. If a hint track is built ‘on top’ of another hint track, then the second hint track
must have direct references to the media track(s) used by the first where data from those media tracks is
placed in the stream.

All hint tracks use a common set of declarations and structures.

• Hint tracks are linked to the elementary stream tracks they carry, by track references of type
‘hint’

• They use a handler-type of ‘hint’ in the Handler Reference Box

• They use a Hint Media Header Box

• They use a hint sample entry in the sample description, with a name and format unique to the
protocol they represent.

Server hint tracks are usually marked as disabled for local playback, with their track header
track_in_movie and track_in_preview flags set to 0.

Hint tracks may be created by an authoring tool, or may be added to an existing presentation by a hinting tool.
Such a tool serves as a ‘bridge’ between the media and the protocol, since it intimately understands both. This
permits authoring tools to understand the media format, but not protocols, and for servers to understand
protocols (and their hint tracks) but not the details of media data.

Hint tracks do not use separate composition times; the ‘ctts’ table is not present in hint tracks. The process
of hinting computes transmission times correctly as the decoding time.

NOTE 1: Servers using reception hint tracks as hints for sending of the received streams should handle the potential
degradations of the received streams, such as transmission delay jitter and packet losses, gracefully and
ensure that the constraints of the protocols and contained data formats are obeyed regardless of the
potential degradations of the received streams.

NOTE 2: Conversion of received streams to media tracks allows existing players compliant with earlier versions of
the ISO base media file format to process recorded files as long as the media formats are supported.
However, most media coding standards only specify the decoding of error-free streams, and consequently
it should be ensured that the content in media tracks can be correctly decoded. Players may utilize
reception hint tracks for handling of degradations caused by the transmission, i.e., content that may not be
correctly decoded is located only within reception hint tracks. The need for having a duplicate of the correct
media samples in both a media track and a reception hint track can be avoided by including data from the
media track by reference into the reception hint track.

ISO/IEC 14496-12:2008(E)

16 PROOF/ÉPREUVE © ISO/IEC 2008 – All rights reserved

8 Box Structures

8.1 File Structure and general boxes

8.1.1 Media Data Box

8.1.1.1 Definition

Box Type: ‘mdat’
Container: File
Mandatory: No
Quantity: Zero or more

This box contains the media data. In video tracks, this box would contain video frames. A presentation may
contain zero or more Media Data Boxes. The actual media data follows the type field; its structure is described
by the metadata (see particularly the sample table, subclause 8.5, and the item location box, subclause
8.11.3).

In large presentations, it may be desirable to have more data in this box than a 32-bit size would permit. In this
case, the large variant of the size field, above in subclause 6.2, is used.

There may be any number of these boxes in the file (including zero, if all the media data is in other files). The
metadata refers to media data by its absolute offset within the file (see subclause 8.7.5, the Chunk Offset
Box); so Media Data Box headers and free space may easily be skipped, and files without any box structure
may also be referenced and used.

8.1.1.2 Syntax

aligned(8) class MediaDataBox extends Box(‘mdat’) {
 bit(8) data[];
}

8.1.1.3 Semantics

data is the contained media data

8.1.2 Free Space Box

8.1.2.1 Definition

Box Types: ‘free’, ‘skip’
Container: File or other box
Mandatory: No
Quantity: Zero or more

The contents of a free-space box are irrelevant and may be ignored, or the object deleted, without affecting
the presentation. (Care should be exercised when deleting the object, as this may invalidate the offsets used
in the sample table, unless this object is after all the media data).

8.1.2.2 Syntax

aligned(8) class FreeSpaceBox extends Box(free_type) {
 unsigned int(8) data[];
}

ISO/IEC 14496-12:2008(E)

© ISO/IEC 2008 – All rights reserved PROOF/ÉPREUVE 17

8.1.2.3 Semantics

free_type may be ‘free’ or ‘skip’.

8.1.3 Progressive Download Information Box

8.1.3.1 Definition

Box Types: ‘pdin’
Container: File
Mandatory: No
Quantity: Zero or One

The Progressive download information box aids the progressive download of an ISO file. The box contains
pairs of numbers (to the end of the box) specifying combinations of effective file download bitrate in units of
bytes/sec and a suggested initial playback delay in units of milliseconds.

A receiving party can estimate the download rate it is experiencing, and from that obtain an upper estimate for
a suitable initial delay by linear interpolation between pairs, or by extrapolation from the first or last entry.

It is recommended that the progressive download information box be placed as early as possible in files, for
maximum utility.

8.1.3.2 Syntax

aligned(8) class ProgressiveDownloadInfoBox
 extends FullBox(‘pdin’, version = 0, 0) {
 for (i=0; ; i++) { // to end of box
 unsigned int(32) rate;
 unsigned int(32) initial_delay;
 }
}

8.1.3.3 Semantics

rate is a download rate expressed in bytes/second
initial_delay is the suggested delay to use when playing the file, such that if download continues at

the given rate, all data within the file will arrive in time for its use and playback should not need to stall.

8.2 Movie Structure

8.2.1 Movie Box

8.2.1.1 Definition

Box Type: ‘moov’
Container: File
Mandatory: Yes
Quantity: Exactly one

The metadata for a presentation is stored in the single Movie Box which occurs at the top-level of a file.
Normally this box is close to the beginning or end of the file, though this is not required.

8.2.1.2 Syntax

aligned(8) class MovieBox extends Box(‘moov’){
}

ISO/IEC 14496-12:2008(E)

18 PROOF/ÉPREUVE © ISO/IEC 2008 – All rights reserved

8.2.2 Movie Header Box

8.2.2.1 Definition

Box Type: ‘mvhd’
Container: Movie Box (‘moov’)
Mandatory: Yes
Quantity: Exactly one

This box defines overall information which is media-independent, and relevant to the entire presentation
considered as a whole.

8.2.2.2 Syntax

aligned(8) class MovieHeaderBox extends FullBox(‘mvhd’, version, 0) {
 if (version==1) {
 unsigned int(64) creation_time;
 unsigned int(64) modification_time;
 unsigned int(32) timescale;
 unsigned int(64) duration;
 } else { // version==0
 unsigned int(32) creation_time;
 unsigned int(32) modification_time;
 unsigned int(32) timescale;
 unsigned int(32) duration;
 }
 template int(32) rate = 0x00010000; // typically 1.0
 template int(16) volume = 0x0100; // typically, full volume
 const bit(16) reserved = 0;
 const unsigned int(32)[2] reserved = 0;
 template int(32)[9] matrix =
 { 0x00010000,0,0,0,0x00010000,0,0,0,0x40000000 };
 // Unity matrix
 bit(32)[6] pre_defined = 0;
 unsigned int(32) next_track_ID;
}

8.2.2.3 Semantics

version is an integer that specifies the version of this box (0 or 1 in this specification)
creation_time is an integer that declares the creation time of the presentation (in seconds since

midnight, Jan. 1, 1904, in UTC time)
modification_time is an integer that declares the most recent time the presentation was modified (in

seconds since midnight, Jan. 1, 1904, in UTC time)
timescale is an integer that specifies the time-scale for the entire presentation; this is the number of

time units that pass in one second. For example, a time coordinate system that measures time in
sixtieths of a second has a time scale of 60.

duration is an integer that declares length of the presentation (in the indicated timescale). This property
is derived from the presentation’s tracks: the value of this field corresponds to the duration of the
longest track in the presentation. If the duration cannot be determined then duration is set to all 1s.

rate is a fixed point 16.16 number that indicates the preferred rate to play the presentation; 1.0
(0x00010000) is normal forward playback

volume is a fixed point 8.8 number that indicates the preferred playback volume. 1.0 (0x0100) is full
volume.

matrix provides a transformation matrix for the video; (u,v,w) are restricted here to (0,0,1), hex values
(0,0,0x40000000).

next_track_ID is a non-zero integer that indicates a value to use for the track ID of the next track to be
added to this presentation. Zero is not a valid track ID value. The value of next_track_ID shall be
larger than the largest track-ID in use. If this value is equal to all 1s (32-bit maxint), and a new media
track is to be added, then a search must be made in the file for an unused track identifier.

ISO/IEC 14496-12:2008(E)

© ISO/IEC 2008 – All rights reserved PROOF/ÉPREUVE 19

8.3 Track Structure

8.3.1 Track Box

8.3.1.1 Definition

Box Type: ‘trak’
Container: Movie Box (‘moov’)
Mandatory: Yes
Quantity: One or more

This is a container box for a single track of a presentation. A presentation consists of one or more tracks.
Each track is independent of the other tracks in the presentation and carries its own temporal and spatial
information. Each track will contain its associated Media Box.

Tracks are used for two purposes: (a) to contain media data (media tracks) and (b) to contain packetization
information for streaming protocols (hint tracks).

There shall be at least one media track within an ISO file, and all the media tracks that contributed to the hint
tracks shall remain in the file, even if the media data within them is not referenced by the hint tracks; after
deleting all hint tracks, the entire un-hinted presentation shall remain.

8.3.1.2 Syntax

aligned(8) class TrackBox extends Box(‘trak’) {
}

8.3.2 Track Header Box

8.3.2.1 Definition

Box Type: ‘tkhd’
Container: Track Box (‘trak’)
Mandatory: Yes
Quantity: Exactly one

This box specifies the characteristics of a single track. Exactly one Track Header Box is contained in a track.

In the absence of an edit list, the presentation of a track starts at the beginning of the overall presentation. An
empty edit is used to offset the start time of a track.

The default value of the track header flags for media tracks is 7 (track_enabled, track_in_movie,
track_in_preview). If in a presentation all tracks have neither track_in_movie nor track_in_preview set, then all
tracks shall be treated as if both flags were set on all tracks. Server hint tracks should have the
track_in_movie and track_in_preview set to 0, so that they are ignored for local playback and preview.

Under the ‘iso3’ brand or brands that share its requirements, the width and height in the track header are
measured on a notional 'square' (uniform) grid. Track video data is normalized to these dimensions (logically)
before any transformation or placement caused by a layup or composition system. Track (and movie) matrices,
if used, also operate in this uniformly-scaled space.

ISO/IEC 14496-12:2008(E)

20 PROOF/ÉPREUVE © ISO/IEC 2008 – All rights reserved

8.3.2.2 Syntax

aligned(8) class TrackHeaderBox
 extends FullBox(‘tkhd’, version, flags){
 if (version==1) {
 unsigned int(64) creation_time;
 unsigned int(64) modification_time;
 unsigned int(32) track_ID;
 const unsigned int(32) reserved = 0;
 unsigned int(64) duration;
 } else { // version==0
 unsigned int(32) creation_time;
 unsigned int(32) modification_time;
 unsigned int(32) track_ID;
 const unsigned int(32) reserved = 0;
 unsigned int(32) duration;
 }
 const unsigned int(32)[2] reserved = 0;
 template int(16) layer = 0;
 template int(16) alternate_group = 0;
 template int(16) volume = {if track_is_audio 0x0100 else 0};
 const unsigned int(16) reserved = 0;
 template int(32)[9] matrix=
 { 0x00010000,0,0,0,0x00010000,0,0,0,0x40000000 };
 // unity matrix
 unsigned int(32) width;
 unsigned int(32) height;
}

8.3.2.3 Semantics

version is an integer that specifies the version of this box (0 or 1 in this specification)
flags is a 24-bit integer with flags; the following values are defined:

Track_enabled: Indicates that the track is enabled. Flag value is 0x000001. A disabled track (the low
bit is zero) is treated as if it were not present.

Track_in_movie: Indicates that the track is used in the presentation. Flag value is 0x000002.
Track_in_preview: Indicates that the track is used when previewing the presentation. Flag value is

0x000004.
creation_time is an integer that declares the creation time of this track (in seconds since midnight,

Jan. 1, 1904, in UTC time)
modification_time is an integer that declares the most recent time the track was modified (in

seconds since midnight, Jan. 1, 1904, in UTC time)
track_ID is an integer that uniquely identifies this track over the entire life-time of this presentation.

Track IDs are never re-used and cannot be zero.
duration is an integer that indicates the duration of this track (in the timescale indicated in the Movie

Header Box). The value of this field is equal to the sum of the durations of all of the track’s edits. If
there is no edit list, then the duration is the sum of the sample durations, converted into the timescale
in the Movie Header Box. If the duration of this track cannot be determined then duration is set to all
1s.

layer specifies the front-to-back ordering of video tracks; tracks with lower numbers are closer to the
viewer. 0 is the normal value, and -1 would be in front of track 0, and so on.

alternate_group is an integer that specifies a group or collection of tracks. If this field is 0 there is no
information on possible relations to other tracks. If this field is not 0, it should be the same for tracks
that contain alternate data for one another and different for tracks belonging to different such groups.
Only one track within an alternate group should be played or streamed at any one time, and must be
distinguishable from other tracks in the group via attributes such as bitrate, codec, language, packet
size etc. A group may have only one member.

volume is a fixed 8.8 value specifying the track's relative audio volume. Full volume is 1.0 (0x0100) and
is the normal value. Its value is irrelevant for a purely visual track. Tracks may be composed by
combining them according to their volume, and then using the overall Movie Header Box volume
setting; or more complex audio composition (e.g. MPEG-4 BIFS) may be used.

ISO/IEC 14496-12:2008(E)

© ISO/IEC 2008 – All rights reserved PROOF/ÉPREUVE 21

matrix provides a transformation matrix for the video; (u,v,w) are restricted here to (0,0,1), hex
(0,0,0x40000000).

width and height specify the track's visual presentation size as fixed-point 16.16 values. These need
not be the same as the pixel dimensions of the images, which is documented in the sample
description(s); all images in the sequence are scaled to this size, before any overall transformation of
the track represented by the matrix. The pixel dimensions of the images are the default values.

8.3.3 Track Reference Box

8.3.3.1 Definition

Box Type: `tref’
Container: Track Box (‘trak’)
Mandatory: No
Quantity: Zero or one

This box provides a reference from the containing track to another track in the presentation. These references
are typed. A ‘hint’ reference links from the containing hint track to the media data that it hints. A content
description reference ‘cdsc’ links a descriptive or metadata track to the content which it describes. The
‘hind’ dependency indicates that the referenced track(s) may contain media data required for decoding of
the track containing the track reference. The referenced tracks shall be hint tracks. The ‘hind’ dependency
can, for example, be used for indicating the dependencies between hint tracks documenting layered IP
multicast over RTP.

Exactly one Track Reference Box can be contained within the Track Box.

If this box is not present, the track is not referencing any other track in any way. The reference array is sized
to fill the reference type box.

8.3.3.2 Syntax

aligned(8) class TrackReferenceBox extends Box(‘tref’) {
}

aligned(8) class TrackReferenceTypeBox (unsigned int(32) reference_type) extends
Box(reference_type) {
 unsigned int(32) track_IDs[];
}

8.3.3.3 Semantics

The Track Reference Box contains track reference type boxes.

track_ID is an integer that provides a reference from the containing track to another track in the
presentation. track_IDs are never re-used and cannot be equal to zero.

The reference_type shall be set to one of the following values, or a value registered or from a derived
specification or registration:
• ‘hint’ the referenced track(s) contain the original media for this hint track
• ‘cdsc‘ this track describes the referenced track.
• ‘hind‘ this track depends on the referenced hint track, i.e., it should only be used if the

referenced hint track is used.
• ‘vdep’ this track contains auxiliary depth video information for the referenced video track
• ‘vplx’ this track contains auxiliary parallax video information for the referenced video track

ISO/IEC 14496-12:2008(E)

22 PROOF/ÉPREUVE © ISO/IEC 2008 – All rights reserved

8.3.4 Track Group Box

8.3.4.1 Definition

Box Type: ‘trgr’
Container: Track Box (‘trak’)
Mandatory: No
Quantity: Zero or one

This box enables indication of groups of tracks, where each group shares a particular characteristic or the
tracks within a group have a particular relationship. The box contains zero or more boxes, and the particular
characteristic or the relationship is indicated by the box type of the contained boxes. The contained boxes
include an identifier, which can be used to conclude the tracks belonging to the same track group. The tracks
that contain the same type of a contained box within the Track Group Box and have the same identifier value
within these contained boxes belong to the same track group.

Track groups shall not be used to indicate dependency relationships between tracks. Instead, the Track
Reference Box is used for such purposes.

8.3.4.2 Syntax

aligned(8) class TrackGroupBox('trgr') {
}

aligned(8) class TrackGroupTypeBox(unsigned int(32) track_group_type) extends
FullBox(track_group_type, version = 0, flags = 0)
{
 unsigned int(32) track_group_id;
 // the remaining data may be specified for a particular track_group_type
}

8.3.4.3 Semantics

track_group_type indicates the grouping type and shall be set to one of the following values, or a value
registered, or a value from a derived specification or registration:

• 'msrc' indicates that this track belongs to a multi-source presentation. The tracks that
have the same value of track_group_id within a Group Type Box of
track_group_type 'msrc' are mapped as being originated from the same source. For
example, a recording of a video telephony call may have both audio and video for both
participants, and the value of track_group_id associated with the audio track and the
video track of one participant differs from value of track_group_id associated with the
tracks of the other participant.

The pair of track_group_id and track_group_type identifies a track group within the file. The tracks
that contain a particular track group type box having the same value of track_group_id belong to the same
track group.

8.4 Track Media Structure

8.4.1 Media Box

8.4.1.1 Definition

Box Type: ‘mdia’
Container: Track Box (‘trak’)
Mandatory: Yes
Quantity: Exactly one

The media declaration container contains all the objects that declare information about the media data within a
track.

ISO/IEC 14496-12:2008(E)

© ISO/IEC 2008 – All rights reserved PROOF/ÉPREUVE 23

8.4.1.2 Syntax

aligned(8) class MediaBox extends Box(‘mdia’) {
}

8.4.2 Media Header Box

8.4.2.1 Definition

Box Type: ‘mdhd’
Container: Media Box (‘mdia’)
Mandatory: Yes
Quantity: Exactly one

The media header declares overall information that is media-independent, and relevant to characteristics of
the media in a track.

8.4.2.2 Syntax

aligned(8) class MediaHeaderBox extends FullBox(‘mdhd’, version, 0) {
 if (version==1) {
 unsigned int(64) creation_time;
 unsigned int(64) modification_time;
 unsigned int(32) timescale;
 unsigned int(64) duration;
 } else { // version==0
 unsigned int(32) creation_time;
 unsigned int(32) modification_time;
 unsigned int(32) timescale;
 unsigned int(32) duration;
 }
 bit(1) pad = 0;
 unsigned int(5)[3] language; // ISO-639-2/T language code
 unsigned int(16) pre_defined = 0;
}

8.4.2.3 Semantics

version is an integer that specifies the version of this box (0 or 1)
creation_time is an integer that declares the creation time of the media in this track (in seconds since

midnight, Jan. 1, 1904, in UTC time)
modification_time is an integer that declares the most recent time the media in this track was

modified (in seconds since midnight, Jan. 1, 1904, in UTC time)
timescale is an integer that specifies the time-scale for this media; this is the number of time units that

pass in one second. For example, a time coordinate system that measures time in sixtieths of a
second has a time scale of 60.

duration is an integer that declares the duration of this media (in the scale of the timescale). If the
duration cannot be determined then duration is set to all 1s.

language declares the language code for this media. See ISO 639-2/T for the set of three character
codes. Each character is packed as the difference between its ASCII value and 0x60. Since the code
is confined to being three lower-case letters, these values are strictly positive.

ISO/IEC 14496-12:2008(E)

24 PROOF/ÉPREUVE © ISO/IEC 2008 – All rights reserved

8.4.3 Handler Reference Box

8.4.3.1 Definition

Box Type: ‘hdlr’
Container: Media Box (‘mdia’) or Meta Box (‘meta’)
Mandatory: Yes
Quantity: Exactly one

This box within a Media Box declares the process by which the media-data in the track is presented, and thus,
the nature of the media in a track. For example, a video track would be handled by a video handler.

This box when present within a Meta Box, declares the structure or format of the 'meta' box contents.

There is a general handler for metadata streams of any type; the specific format is identified by the sample
entry, as for video or audio, for example. If they are in text, then a MIME format is supplied to document their
format; if in XML, each sample is a complete XML document, and the namespace of the XML is also supplied.

An auxiliary video track is coded the same as a video track, but uses this different handler type, and is not
intended to be visually displayed (e.g. it contains depth information, or other monochrome or color two-
dimensional information). Auxiliary video tracks are usually linked to a video track by an appropriate track
reference.

NOTE MPEG-7 streams, which are a specific kind of metadata stream, have their own handler
declared, documented in the MP4 file format [ISO/IEC 14496-14].

NOTE metadata tracks are linked to the track they describe using a track-reference of type
‘cdsc’. Metadata tracks use a null media header (‘nmhd’), as defined in subclause 8.4.5.5.

8.4.3.2 Syntax

aligned(8) class HandlerBox extends FullBox(‘hdlr’, version = 0, 0) {
 unsigned int(32) pre_defined = 0;
 unsigned int(32) handler_type;
 const unsigned int(32)[3] reserved = 0;
 string name;
}

8.4.3.3 Semantics

version is an integer that specifies the version of this box
handler_type when present in a media box, is an integer containing one of the following values, or a

value from a derived specification:
‘vide’ Video track
‘soun’ Audio track
‘hint’ Hint track
‘meta’ Timed Metadata track
‘auxv’ Auxiliary Video track

handler_type when present in a meta box, contains an appropriate value to indicate the format of the
meta box contents. The value ‘null’ can be used in the primary meta box to indicate that it is
merely being used to hold resources.

name is a null-terminated string in UTF-8 characters which gives a human-readable name for the track
type (for debugging and inspection purposes).

ISO/IEC 14496-12:2008(E)

© ISO/IEC 2008 – All rights reserved PROOF/ÉPREUVE 25

8.4.4 Media Information Box

8.4.4.1 Definition

Box Type: ‘minf’
Container: Media Box (‘mdia’)
Mandatory: Yes
Quantity: Exactly one

This box contains all the objects that declare characteristic information of the media in the track.

8.4.4.2 Syntax

aligned(8) class MediaInformationBox extends Box(‘minf’) {
}

8.4.5 Media Information Header Boxes

8.4.5.1 Definition

Box Types: ‘vmhd’, ‘smhd’, ’hmhd’, ‘nmhd’
Container: Media Information Box (‘minf’)
Mandatory: Yes
Quantity: Exactly one specific media header shall be present

There is a different media information header for each track type (corresponding to the media handler-type);
the matching header shall be present, which may be one of those defined here, or one defined in a derived
specification.

8.4.5.2 Video Media Header Box

The video media header contains general presentation information, independent of the coding, for video
media. Note that the flags field has the value 1.

8.4.5.2.1 Syntax

aligned(8) class VideoMediaHeaderBox
 extends FullBox(‘vmhd’, version = 0, 1) {
 template unsigned int(16) graphicsmode = 0; // copy, see below
 template unsigned int(16)[3] opcolor = {0, 0, 0};
}

8.4.5.2.2 Semantics

version is an integer that specifies the version of this box
graphicsmode specifies a composition mode for this video track, from the following enumerated set,

which may be extended by derived specifications:
copy = 0 copy over the existing image

opcolor is a set of 3 colour values (red, green, blue) available for use by graphics modes

8.4.5.3 Sound Media Header Box

The sound media header contains general presentation information, independent of the coding, for audio
media. This header is used for all tracks containing audio.

ISO/IEC 14496-12:2008(E)

26 PROOF/ÉPREUVE © ISO/IEC 2008 – All rights reserved

8.4.5.3.1 Syntax

aligned(8) class SoundMediaHeaderBox
 extends FullBox(‘smhd’, version = 0, 0) {
 template int(16) balance = 0;
 const unsigned int(16) reserved = 0;
}

8.4.5.3.2 Semantics

version is an integer that specifies the version of this box
balance is a fixed-point 8.8 number that places mono audio tracks in a stereo space; 0 is centre (the

normal value); full left is -1.0 and full right is 1.0.

8.4.5.4 Hint Media Header Box

The hint media header contains general information, independent of the protocol, for hint tracks. (A PDU is a
Protocol Data Unit.)

8.4.5.4.1 Syntax

aligned(8) class HintMediaHeaderBox
 extends FullBox(‘hmhd’, version = 0, 0) {
 unsigned int(16) maxPDUsize;
 unsigned int(16) avgPDUsize;
 unsigned int(32) maxbitrate;
 unsigned int(32) avgbitrate;
 unsigned int(32) reserved = 0;
}

8.4.5.4.2 Semantics

version is an integer that specifies the version of this box
maxPDUsize gives the size in bytes of the largest PDU in this (hint) stream
avgPDUsize gives the average size of a PDU over the entire presentation
maxbitrate gives the maximum rate in bits/second over any window of one second
avgbitrate gives the average rate in bits/second over the entire presentation

8.4.5.5 Null Media Header Box

Streams other than visual and audio (e.g., timed metadata streams) may use a null Media Header Box, as
defined here.

8.4.5.5.1 Syntax

aligned(8) class NullMediaHeaderBox
 extends FullBox(’nmhd’, version = 0, flags) {
 }

8.4.5.5.2 Semantics

version - is an integer that specifies the version of this box.
flags - is a 24-bit integer with flags (currently all zero).

ISO/IEC 14496-12:2008(E)

© ISO/IEC 2008 – All rights reserved PROOF/ÉPREUVE 27

8.5 Sample Tables

8.5.1 Sample Table Box

8.5.1.1 Definition

Box Type: ‘stbl’
Container: Media Information Box (‘minf’)
Mandatory: Yes
Quantity: Exactly one

The sample table contains all the time and data indexing of the media samples in a track. Using the tables
here, it is possible to locate samples in time, determine their type (e.g. I-frame or not), and determine their
size, container, and offset into that container.

If the track that contains the Sample Table Box references no data, then the Sample Table Box does not need
to contain any sub-boxes (this is not a very useful media track).

If the track that the Sample Table Box is contained in does reference data, then the following sub-boxes are
required: Sample Description, Sample Size, Sample To Chunk, and Chunk Offset. Further, the Sample
Description Box shall contain at least one entry. A Sample Description Box is required because it contains the
data reference index field which indicates which Data Reference Box to use to retrieve the media samples.
Without the Sample Description, it is not possible to determine where the media samples are stored. The Sync
Sample Box is optional. If the Sync Sample Box is not present, all samples are sync samples.

Annex A provides a narrative description of random access using the structures defined in the Sample Table
Box.

8.5.1.2 Syntax

aligned(8) class SampleTableBox extends Box(‘stbl’) {
}

8.5.2 Sample Description Box

8.5.2.1 Definition

Box Types: ‘stsd’
Container: Sample Table Box (‘stbl’)
Mandatory: Yes
Quantity: Exactly one

The sample description table gives detailed information about the coding type used, and any initialization
information needed for that coding.

The information stored in the sample description box after the entry-count is both track-type specific as
documented here, and can also have variants within a track type (e.g. different codings may use different
specific information after some common fields, even within a video track).

For video tracks, a VisualSampleEntry is used, for audio tracks, an AudioSampleEntry and for metadata
tracks, a MetaDataSampleEntry. Hint tracks use an entry format specific to their protocol, with an appropriate
name.

For hint tracks, the sample description contains appropriate declarative data for the streaming protocol being
used, and the format of the hint track. The definition of the sample description is specific to the protocol.

Multiple descriptions may be used within a track.

ISO/IEC 14496-12:2008(E)

28 PROOF/ÉPREUVE © ISO/IEC 2008 – All rights reserved

The ‘protocol’ and ‘codingname’ fields are registered identifiers that uniquely identify the streaming protocol or
compression format decoder to be used. A given protocol or codingname may have optional or required
extensions to the sample description (e.g. codec initialization parameters). All such extensions shall be within
boxes; these boxes occur after the required fields. Unrecognized boxes shall be ignored.

If the ‘format’ field of a SampleEntry is unrecognized, neither the sample description itself, nor the associated
media samples, shall be decoded.

Note: the definition of sample entries specifies boxes in a particular order, and this is usually also
followed in derived specifications. For maximum compatibility, writers should construct files respecting the
order both within specifications and as implied by the inheritance, whereas readers should be prepared to
accept any box order.

The samplerate, samplesize and channelcount fields document the default audio output playback format for
this media. The timescale for an audio track should be chosen to match the sampling rate, or be an integer
multiple of it, to enable sample-accurate timing. ChannelCount is a value greater than zero that indicates the
maximum number of channels that the audio could deliver. A ChannelCount of 1 indicates mono audio, and
2 indicates stereo (left/right). When values greater than 2 are used, the codec configuration should identify the
channel assignment.

In video tracks, the frame_count field must be 1 unless the specification for the media format explicitly
documents this template field and permits larger values. That specification must document both how the
individual frames of video are found (their size information) and their timing established. That timing might be
as simple as dividing the sample duration by the frame count to establish the frame duration.

NOTE though the count is 32 bits, the number of items is usually much fewer, and is restricted by the fact
that the reference index in the sample table is only 16 bits

An optional BitRateBox may be present at the end of any MetaDataSampleEntry to signal the bit rate
information of a stream. This can be used for buffer configuration. In case of XML metadata it can be used to
choose the appropriate memory representation format (DOM, STX).

The width and height in the video sample entry document the pixel counts that the codec will deliver; this
enables the allocation of buffers. Since these are counts they do not take into account pixel aspect ratio.

The pixel aspect ratio and clean aperture of the video may be specified using the ‘pasp’ and ‘clap’
sample entry boxes, respectively. These are both optional; if present, they over-ride the declarations (if any) in
structures specific to the video codec, which structures should be examined if these boxes are absent. For
maximum compatibility, these boxes should follow, not precede, any boxes defined in or required by derived
specifications.

In the PixelAspectRatioBox, hSpacing and vSpacing have the same units, but those units are unspecified:
only the ratio matters. hSpacing and vSpacing may or may not be in reduced terms, and they may reduce
to 1/1. Both of them must be positive.

They are defined as the aspect ratio of a pixel, in arbitrary units. If a pixel appears H wide and V tall, then
hSpacing/vSpacing is equal to H/V. This means that a square on the display that is n pixels tall needs to be
n*vSpacing/hSpacing pixels wide to appear square.

NOTE When adjusting pixel aspect ratio, normally, the horizontal dimension of the video is scaled, if needed
(i.e. if the final display system has a different pixel aspect ratio from the video source).

NOTE It is recommended that the original pixels, and the composed transform, be carried through the
pipeline as far as possible. If the transformation resulting from ‘correcting’ pixel aspect ratio to a square grid,
normalizing to the track dimensions, composition or placement (e.g. track and/or movie matrix), and normalizing
to the display characteristics, is a unity matrix, then no re-sampling need be done. In particular, video should not
be re-sampled more than once in the process of rendering, if at all possible.

There are notionally four values in the CleanApertureBox. These parameters are represented as a fraction
N/D. The fraction may or may not be in reduced terms. We refer to the pair of parameters fooN and fooD as

ISO/IEC 14496-12:2008(E)

© ISO/IEC 2008 – All rights reserved PROOF/ÉPREUVE 29

foo. For horizOff and vertOff, D must be positive and N may be positive or negative. For
cleanApertureWidth and cleanApertureHeight, both N and D must be positive.

NOTE These are fractional numbers for several reasons. First, in some systems the exact width after pixel
aspect ratio correction is integral, not the pixel count before that correction. Second, if video is resized in the full
aperture, the exact expression for the clean aperture may not be integral. Finally, because this is represented
using centre and offset, a division by two is needed, and so half-values can occur.

Considering the pixel dimensions as defined by the VisualSampleEntry width and height. If picture centre of
the image is at pcX and pcY, then horizOff and vertOff are defined as follows:

pcX = horizOff + (width - 1)/2
pcY = vertOff + (height - 1)/2;

Typically, horizOff and vertOff are zero, so the image is centred about the picture centre.

The leftmost/rightmost pixel and the topmost/bottommost line of the clean aperture fall at:

pcX ± (cleanApertureWidth - 1)/2
pcY ± (cleanApertureHeight - 1)/2;

The audio output format (samplerate, samplesize and channelcount fields) in the sample entry should be
considered definitive only for codecs that do not record their own output configuration. If the audio codec has
definitive information about the output format, it shall be taken as definitive; in this case the samplerate,
samplesize and channelcount fields in the sample entry may be ignored, though sensible values should be
chosen (for example, the highest possible sampling rate).

The URIMetaSampleEntry entry contains, in a box, the URI defining the form of the metadata, and optional
initialization data. The format of both the samples and of the initialization data is defined by all or part of the
URI form.

An optional bitrate box may be used in the URIMetaSampleEntry entry, as usual.

It may be the case that the URI identifies a format of metadata that allows there to be more than one ‘stated
fact’ within each sample. However, all metadata samples in this format are effectively ‘I frames’, defining the
entire set of metadata for the time interval they cover. This means that the complete set of metadata at any
instant, for a given track, is contained in (a) the time-aligned samples of the track(s) (if any) describing that
track, plus (b) the track metadata (if any), the movie metadata (if any) and the file metadata (if any).

If incrementally-changed metadata is needed, the MPEG-7 framework provides that capability.

Information on URI forms for some metadata systems can be found in Annex G.

Colour information may be supplied in one or more ColourInformationBoxes placed in a VisualSampleEntry.
These should be placed in order in the sample entry starting with the most accurate (and potentially the most
difficult to process), in progression to the least. These are advisory and concern rendering and colour
conversion, and there is no normative behaviour associated with them; a reader may choose to use the most
suitable. A ColourInformationBox with an unknown colour type may be ignored.

If used, an ICC profile may be a restricted one, under the code ‘rICC’, which permits simpler processing.
That profile shall be of either the Monochrome or Three-Component Matrix-Based class of input profiles, as
defined by ISO 15076-1. If the profile is of another class, then the ‘prof’ indicator must be used.

If colour information is supplied in both this box, and also in the video bitstream, this box takes precedence,
and over-rides the information in the bitstream.

NOTE When an ICC profile is specified, SMPTE RP 177 “Derivation of Basic Television Color Equations” may be of
assistance if there is a need to form the Y'CbCr to R'G'B' conversion matrix for the color primaries described by the ICC
profile.

ISO/IEC 14496-12:2008(E)

30 PROOF/ÉPREUVE © ISO/IEC 2008 – All rights reserved

8.5.2.2 Syntax

aligned(8) abstract class SampleEntry (unsigned int(32) format)
 extends Box(format){
 const unsigned int(8)[6] reserved = 0;
 unsigned int(16) data_reference_index;
}

class HintSampleEntry() extends SampleEntry (protocol) {
 unsigned int(8) data [];
}

class BitRateBox extends Box(‘btrt’){
 unsigned int(32) bufferSizeDB;
 unsigned int(32) maxBitrate;
 unsigned int(32) avgBitrate;
}

class MetaDataSampleEntry(codingname) extends SampleEntry (codingname) {
}

class XMLMetaDataSampleEntry() extends MetaDataSampleEntry (’metx‘) {
 string content_encoding; // optional
 string namespace;
 string schema_location; // optional
 BitRateBox (); // optional
}

class TextMetaDataSampleEntry() extends MetaDataSampleEntry (‘mett’) {
 string content_encoding; // optional
 string mime_format;
 BitRateBox (); // optional
}

aligned(8) class URIBox
 extends FullBox(‘uri ’, version = 0, 0) {
 string theURI;
}

aligned(8) class URIInitBox
 extends FullBox(‘uriI’, version = 0, 0) {
 unsigned int(8) uri_initialization_data[];
}

class URIMetaSampleEntry() extends MetaDataSampleEntry (’urim‘) {
 URIbox the_label;
 URIInitBox init; // optional
 MPEG4BitRateBox (); // optional
}

ISO/IEC 14496-12:2008(E)

© ISO/IEC 2008 – All rights reserved PROOF/ÉPREUVE 31

 // Visual Sequences

class PixelAspectRatioBox extends Box(‘pasp’){
 unsigned int(32) hSpacing;
 unsigned int(32) vSpacing;
}

class CleanApertureBox extends Box(‘clap’){
 unsigned int(32) cleanApertureWidthN;
 unsigned int(32) cleanApertureWidthD;

 unsigned int(32) cleanApertureHeightN;
 unsigned int(32) cleanApertureHeightD;

 unsigned int(32) horizOffN;
 unsigned int(32) horizOffD;

 unsigned int(32) vertOffN;
 unsigned int(32) vertOffD;

}

class ColourInformationBox extends Box(‘colr’){
 unsigned int(32) colour_type;
 if (colour_type == ‘nclx’) /* on-screen colours */
 {
 unsigned int(16) colour_primaries;
 unsigned int(16) transfer_characteristics;
 unsigned int(16) matrix_coefficients;
 unsigned int(1) full_range_flag;
 unsigned int(7) reserved = 0;
 }
 else if (colour_type == ‘rICC’)
 {
 ICC_profile; // restricted ICC profile
 }
 else if (colour_type == ‘prof’)
 {
 ICC_profile; // unrestricted ICC profile
 }
}

ISO/IEC 14496-12:2008(E)

32 PROOF/ÉPREUVE © ISO/IEC 2008 – All rights reserved

class VisualSampleEntry(codingname) extends SampleEntry (codingname){
 unsigned int(16) pre_defined = 0;
 const unsigned int(16) reserved = 0;
 unsigned int(32)[3] pre_defined = 0;
 unsigned int(16) width;
 unsigned int(16) height;
 template unsigned int(32) horizresolution = 0x00480000; // 72 dpi
 template unsigned int(32) vertresolution = 0x00480000; // 72 dpi
 const unsigned int(32) reserved = 0;
 template unsigned int(16) frame_count = 1;
 string[32] compressorname;
 template unsigned int(16) depth = 0x0018;
 int(16) pre_defined = -1;
 // other boxes from derived specifications
 CleanApertureBox clap; // optional
 PixelAspectRatioBox pasp; // optional
}

 // Audio Sequences

class AudioSampleEntry(codingname) extends SampleEntry (codingname){
 const unsigned int(32)[2] reserved = 0;
 template unsigned int(16) channelcount = 2;
 template unsigned int(16) samplesize = 16;
 unsigned int(16) pre_defined = 0;
 const unsigned int(16) reserved = 0 ;
 template unsigned int(32) samplerate = { default samplerate of media}<<16;
}

aligned(8) class SampleDescriptionBox (unsigned int(32) handler_type)
 extends FullBox('stsd', 0, 0){
 int i ;
 unsigned int(32) entry_count;
 for (i = 1 ; i <= entry_count ; i++){
 switch (handler_type){
 case ‘soun’: // for audio tracks
 AudioSampleEntry();
 break;
 case ‘vide’: // for video tracks
 VisualSampleEntry();
 break;
 case ‘hint’: // Hint track
 HintSampleEntry();
 break;
 case ‘meta’: // Metadata track
 MetadataSampleEntry();
 break; }
 }
 }
}

8.5.2.3 Semantics

version is an integer that specifies the version of this box
entry_count is an integer that gives the number of entries in the following table
SampleEntry is the appropriate sample entry.
data_reference_index is an integer that contains the index of the data reference to use to retrieve

data associated with samples that use this sample description. Data references are stored in Data
Reference Boxes. The index ranges from 1 to the number of data references.

ChannelCount is the number of channels such as 1 (mono) or 2 (stereo)

ISO/IEC 14496-12:2008(E)

© ISO/IEC 2008 – All rights reserved PROOF/ÉPREUVE 33

SampleSize is in bits, and takes the default value of 16
SampleRate is the sampling rate expressed as a 16.16 fixed-point number (hi.lo)
resolution fields give the resolution of the image in pixels-per-inch, as a fixed 16.16 number
frame_count indicates how many frames of compressed video are stored in each sample. The default is

1, for one frame per sample; it may be more than 1 for multiple frames per sample
Compressorname is a name, for informative purposes. It is formatted in a fixed 32-byte field, with the first

byte set to the number of bytes to be displayed, followed by that number of bytes of displayable data,
and then padding to complete 32 bytes total (including the size byte). The field may be set to 0.

depth takes one of the following values
0x0018 – images are in colour with no alpha

width and height are the maximum visual width and height of the stream described by this sample
description, in pixels

hSpacing, vSpacing: define the relative width and height of a pixel;
cleanApertureWidthN, cleanApertureWidthD: a fractional number which defines the exact clean

aperture width, in counted pixels, of the video image
cleanApertureHeightN, cleanApertureHeightD: a fractional number which defines the exact

clean aperture height, in counted pixels, of the video image
horizOffN, horizOffD: a fractional number which defines the horizontal offset of clean aperture

centre minus (width-1)/2. Typically 0.
vertOffN, vertOffD: a fractional number which defines the vertical offset of clean aperture centre

minus (height-1)/2. Typically 0.
content_encoding - is a null-terminated string in UTF-8 characters, and provides a MIME type which

identifies the content encoding of the timed metadata. It is defined in the same way as for an
ItemInfoEntry in this specification. If not present (an empty string is supplied) the timed metadata is
not encoded. An example for this field is ‘application/zip’. Note that no MIME types for BiM
[ISO/IEC 23001-1] and TeM [ISO/IEC 15938-1] currently exist. Thus the experimental MIME types
‘application/x-BiM’ and ‘text/x-TeM’ shall be used to identify these encoding mechanisms.

namespace - gives the namespace of the schema for the timed XML metadata. This is needed for
identifying the type of metadata, e.g. gBSD or AQoS [MPEG-21-7] and for decoding using XML aware
encoding mechanisms such as BiM.

schema_location - optionally provides an URL to find the schema corresponding to the namespace.
This is needed for decoding of the timed metadata by XML aware encoding mechanisms such as BiM.

mime_format - provides a MIME type which identifies the content format of the timed metadata.
Examples for this field are ‘text/html’ and ‘text/plain’.

bufferSizeDB gives the size of the decoding buffer for the elementary stream in bytes.
maxBitrate gives the maximum rate in bits/second over any window of one second.
avgBitrate gives the average rate in bits/second over the entire presentation.
theURI is a URI formatted according to the rules in 6.2.4;
uri_initialization_data is opaque data whose form is defined in the documentation of the URI

form.
colour_type: an indication of the type of colour information supplied. For colour_type ‘nclx’:

these fields are exactly the four bytes defined for PTM_COLOR_INFO() in A.7.2 of ISO/IEC 29199-2
but note that the full range flag is here in a different bit position

ICC_profile: an ICC profile as defined in ISO 15076-1 or ICC.1:2010 is supplied.

8.5.3 Degradation Priority Box

8.5.3.1 Definition

Box Type: ‘stdp’
Container: Sample Table Box (‘stbl’).
Mandatory: No.
Quantity: Zero or one.

This box contains the degradation priority of each sample. The values are stored in the table, one for each
sample. The size of the table, sample_count is taken from the sample_count in the Sample Size Box
('stsz'). Specifications derived from this define the exact meaning and acceptable range of the priority field.

ISO/IEC 14496-12:2008(E)

34 PROOF/ÉPREUVE © ISO/IEC 2008 – All rights reserved

8.5.3.2 Syntax

aligned(8) class DegradationPriorityBox
 extends FullBox(‘stdp’, version = 0, 0) {
 int i;
 for (i=0; i < sample_count; i++) {
 unsigned int(16) priority;
 }
}

8.5.3.3 Semantics

version - is an integer that specifies the version of this box.
priority - is integer specifying the degradation priority for each sample.

8.5.4 Sample Scale Box

(empty sub-clause)

8.6 Track Time Structures

8.6.1 Time to Sample Boxes

8.6.1.1 Definition

The composition times (CT) and decoding times (DT) of samples are derived from the Time to Sample Boxes,
of which there are two types. The decoding time is defined in the Decoding Time to Sample Box, giving time
deltas between successive decoding times. The composition times are derived in the Composition Time to
Sample Box as composition time offsets from decoding time. If the composition times and decoding times are
identical for every sample in the track, then only the Decoding Time to Sample Box is required; the
composition time to sample box must not be present.

The time to sample boxes must give non-zero durations for all samples with the possible exception of the last
one. Durations in the ‘stts’ box are strictly positive (non-zero), except for the very last entry, which may be
zero. This rule derives from the rule that no two time-stamps in a stream may be the same. Great care must
be taken when adding samples to a stream, that the sample that was previously last may need to have a non-
zero duration established, in order to observe this rule. If the duration of the last sample is indeterminate, use
an arbitrary small value and a ‘dwell’ edit.

In the following example, there is a sequence of I, P, and B frames, each with a decoding time delta of 10. The
samples are stored as follows, with the indicated values for their decoding time deltas and composition time
offsets (the actual CT and DT are given for reference). The re-ordering occurs because the predicted P
frames must be decoded before the bi-directionally predicted B frames. The value of DT for a sample is
always the sum of the deltas of the preceding samples. Note that the total of the decoding deltas is the
duration of the media in this track.

Table 2 — Closed GOP Example

GOP /-- --- --- --- --- --- --\ /-- --- --- --- --- --- --\

 I1 P4 B2 B3 P7 B5 B6 I8 P11 B9 B10 P14 B12 B13

DT 0 10 20 30 40 50 60 70 80 90 100 110 120 130

CT 10 40 20 30 70 50 60 80 110 90 100 140 120 130

Decode delta 10 10 10 10 10 10 10 10 10 10 10 10 10 10

ISO/IEC 14496-12:2008(E)

© ISO/IEC 2008 – All rights reserved PROOF/ÉPREUVE 35

Composition
offset

10 30 0 0 30 0 0 10 30 0 0 30 0 0

Table 3 — Open GOP Example

GOP /-- -- -- -- -- --\ /- -- -- -- --- --\
 I3 B1 B2 P6 B4 B5 I9 B7 B8 P12 B10 B11
DT 0 10 20 30 40 50 60 70 80 90 100 110
CT 30 10 20 60 40 50 90 70 80 120 100 110
Decode Delta 10 10 10 10 10 10 10 10 10 10 10 10
Composition
offset

30 0 0 30 0 0 30 0 0 30 0 0

8.6.1.2 Decoding Time to Sample Box

8.6.1.2.1 Definition

Box Type: ‘stts’
Container: Sample Table Box (‘stbl’)
Mandatory: Yes
Quantity: Exactly one

This box contains a compact version of a table that allows indexing from decoding time to sample number.
Other tables give sample sizes and pointers, from the sample number. Each entry in the table gives the
number of consecutive samples with the same time delta, and the delta of those samples. By adding the
deltas a complete time-to-sample map may be built.

The Decoding Time to Sample Box contains decode time delta's: DT(n+1) = DT(n) + STTS(n) where STTS(n)
is the (uncompressed) table entry for sample n.

The sample entries are ordered by decoding time stamps; therefore the deltas are all non-negative.

The DT axis has a zero origin; DT(i) = SUM(for j=0 to i-1 of delta(j)), and the sum of all deltas gives the length
of the media in the track (not mapped to the overall timescale, and not considering any edit list).

The Edit List Box provides the initial CT value if it is non-empty (non-zero).

8.6.1.2.2 Syntax

aligned(8) class TimeToSampleBox
 extends FullBox(’stts’, version = 0, 0) {
 unsigned int(32) entry_count;
 int i;
 for (i=0; i < entry_count; i++) {
 unsigned int(32) sample_count;
 unsigned int(32) sample_delta;
 }
}

For example with Table 2, the entry would be:

Sample count Sample-delta

14 10

ISO/IEC 14496-12:2008(E)

36 PROOF/ÉPREUVE © ISO/IEC 2008 – All rights reserved

8.6.1.2.3 Semantics

version - is an integer that specifies the version of this box.
entry_count - is an integer that gives the number of entries in the following table.
sample_count - is an integer that counts the number of consecutive samples that have the given

duration.
sample_delta - is an integer that gives the delta of these samples in the time-scale of the media.

8.6.1.3 Composition Time to Sample Box

8.6.1.3.1 Definition

Box Type: ‘ctts’
Container: Sample Table Box (‘stbl’)
Mandatory: No
Quantity: Zero or one

This box provides the offset between decoding time and composition time. In version 0 of this box the
decoding time must be less than the composition time, and the offsets are expressed as unsigned numbers
such that CT(n) = DT(n) + CTTS(n) where CTTS(n) is the (uncompressed) table entry for sample n. In version
1 of this box, the composition timeline and the decoding timeline are still derived from each other, but the
offsets are signed. It is recommended that for the computed composition timestamps, there is exactly one with
the value 0 (zero).

For either version of the box, each sample must have a unique composition timestamp value, that is, the
timestamp for two samples shall never be the same.

It may be true that there is no frame to compose at time 0; the handling of this is unspecified (systems might
display the first frame for longer, or a suitable fill colour).

When version 1 of this box is used, the CompositionToDecodeBox may also be present in the sample table to
relate the composition and decoding timelines. When backwards-compatibility or compatibility with an
unknown set of readers is desired, version 0 of this box should be used when possible. In either version of
this box, but particularly under version 0, if it is desired that the media start at track time 0, and the first media
sample does not have a composition time of 0, an edit list may be used to ‘shift’ the media to time 0.

The composition time to sample table is optional and must only be present if DT and CT differ for any samples.

Hint tracks do not use this box.

For example in Table 2

Sample count Sample_offset

1 10

1 30

2 0

1 30

2 0

1 10

1 30

2 0

1 30

2 0

ISO/IEC 14496-12:2008(E)

© ISO/IEC 2008 – All rights reserved PROOF/ÉPREUVE 37

8.6.1.3.2 Syntax

aligned(8) class CompositionOffsetBox
 extends FullBox(‘ctts’, version = 0, 0) {
 unsigned int(32) entry_count;
 int i;
 if (version==0) {
 for (i=0; i < entry_count; i++) {
 unsigned int(32) sample_count;
 unsigned int(32) sample_offset;
 }
 }
 else if (version == 1) {
 for (i=0; i < entry_count; i++) {
 unsigned int(32) sample_count;
 signed int(32) sample_offset;
 }
 }
}

8.6.1.3.3 Semantics

version - is an integer that specifies the version of this box.
entry_count is an integer that gives the number of entries in the following table.
sample_count is an integer that counts the number of consecutive samples that have the given offset.
sample_offset is an integer that gives the offset between CT and DT, such that CT(n) = DT(n) +

CTTS(n).

8.6.1.4 Composition to Decode Box

8.6.1.4.1 Definition

Box Type: ‘cslg’
Container: Sample Table Box (‘stbl’)
Mandatory: No
Quantity: Zero or one

When signed composition offsets are used, this box may be used to relate the composition and decoding
timelines, and deal with some of the ambiguities that signed composition offsets introduce.

Note that all these fields apply to the entire media (not just that selected by any edits). It is recommended that
any edits, explicit or implied, not select any portion of the composition timeline that does not map to a sample.
For example, if the smallest composition time is 1000, then the default edit from 0 to the media duration
leaves the period from 0 to 1000 associated with no media sample. Player behaviour, and what is composed
in this interval, is undefined under these circumstances. It is recommended that the smallest computed CTS
be zero, or match the beginning of the first edit.

The composition duration of the last sample in a track might be (often is) ambiguous or unclear; the field for
composition end time can be used to clarify this ambiguity and, with the composition start time, establish a
clear composition duration for the track.

When the Composition to Decode Box is included in the Sample Table Box, it documents the composition and
decoding time relations of the samples in the Movie Box only, not including any subsequent movie fragments.

ISO/IEC 14496-12:2008(E)

38 PROOF/ÉPREUVE © ISO/IEC 2008 – All rights reserved

8.6.1.4.2 Syntax

class CompositionToDecodeBox extends FullBox(‘cslg’, version=0, 0) {
 signed int(32) compositionToDTSShift;
 signed int(32) leastDecodeToDisplayDelta;
 signed int(32) greatestDecodeToDisplayDelta;
 signed int(32) compositionStartTime;
 signed int(32) compositionEndTime;
}

8.6.1.4.3 Semantics

compositionToDTSShift: if this value is added to the composition times (as calculated by the CTS
offsets from the DTS), then for all samples, their CTS is guaranteed to be greater than or equal to
their DTS, and the buffer model implied by the indicated profile/level will be honoured; if
leastDecodeToDisplayDelta is positive or zero, this field can be 0; otherwise it should be at least
(- leastDecodeToDisplayDelta)

leastDecodeToDisplayDelta: the smallest composition offset in the CompositionTimeToSample box
in this track

greatestDecodeToDisplayDelta: the largest composition offset in the CompositionTimeToSample
box in this track

compositionStartTime: the smallest computed composition time (CTS) for any sample in the media
of this track

compositionEndTime: the composition time plus the composition duration, of the sample with the
largest computed composition time (CTS) in the media of this track; if this field takes the value 0, the
composition end time is unknown.

8.6.2 Sync Sample Box

8.6.2.1 Definition

Box Type: ‘stss’
Container: Sample Table Box (‘stbl’)
Mandatory: No
Quantity: Zero or one

This box provides a compact marking of the random access points within the stream. The table is arranged in
strictly increasing order of sample number.

If the sync sample box is not present, every sample is a random access point.

8.6.2.2 Syntax

aligned(8) class SyncSampleBox
 extends FullBox(‘stss’, version = 0, 0) {
 unsigned int(32) entry_count;
 int i;
 for (i=0; i < entry_count; i++) {
 unsigned int(32) sample_number;
 }
 }

8.6.2.3 Semantics

version - is an integer that specifies the version of this box.
entry_count is an integer that gives the number of entries in the following table. If entry_count is zero,

there are no random access points within the stream and the following table is empty.
sample_number gives the numbers of the samples that are random access points in the stream.

ISO/IEC 14496-12:2008(E)

© ISO/IEC 2008 – All rights reserved PROOF/ÉPREUVE 39

8.6.3 Shadow Sync Sample Box

8.6.3.1 Definition

Box Type: ‘stsh’
Container: Sample Table Box (‘stbl’)
Mandatory: No
Quantity: Zero or one

The shadow sync table provides an optional set of sync samples that can be used when seeking or for similar
purposes. In normal forward play they are ignored.

Each entry in the ShadowSyncTable consists of a pair of sample numbers. The first entry (shadowed-sample-
number) indicates the number of the sample that a shadow sync will be defined for. This should always be a
non-sync sample (e.g. a frame difference). The second sample number (sync-sample-number) indicates the
sample number of the sync sample (i.e. key frame) that can be used when there is a random access at, or
before, the shadowed-sample-number.

The entries in the ShadowSyncBox shall be sorted based on the shadowed-sample-number field.

The shadow sync samples are normally placed in an area of the track that is not presented during normal play
(edited out by means of an edit list), though this is not a requirement. The shadow sync table can be ignored
and the track will play (and seek) correctly if it is ignored (though perhaps not optimally).

The ShadowSyncSample replaces, not augments, the sample that it shadows (i.e. the next sample sent is
shadowed-sample-number+1). The shadow sync sample is treated as if it occurred at the time of the sample
it shadows, having the duration of the sample it shadows.

Hinting and transmission might become more complex if a shadow sample is used also as part of normal
playback, or is used more than once as a shadow. In this case the hint track might need separate shadow
syncs, all of which can get their media data from the one shadow sync in the media track, to allow for the
different time-stamps etc. needed in their headers.

8.6.3.2 Syntax

aligned(8) class ShadowSyncSampleBox
 extends FullBox(‘stsh’, version = 0, 0) {
 unsigned int(32) entry_count;
 int i;
 for (i=0; i < entry_count; i++) {
 unsigned int(32) shadowed_sample_number;
 unsigned int(32) sync_sample_number;
 }
 }

8.6.3.3 Semantics

version - is an integer that specifies the version of this box.
entry_count - is an integer that gives the number of entries in the following table.
shadowed_sample_number - gives the number of a sample for which there is an alternative sync

sample.
sync_sample_number - gives the number of the alternative sync sample.

ISO/IEC 14496-12:2008(E)

40 PROOF/ÉPREUVE © ISO/IEC 2008 – All rights reserved

8.6.4 Independent and Disposable Samples Box

8.6.4.1 Definition

Box Types: ‘sdtp’
Container: Sample Table Box (‘stbl’)
Mandatory: No
Quantity: Zero or one

This optional table answers three questions about sample dependency:
1) does this sample depend on others (is it an I-picture)?
2) do no other samples depend on this one?
3) does this sample contain multiple (redundant) encodings of the data at this time-instant (possibly with

different dependencies)?

In the absence of this table:
1) the sync sample table answers the first question; in most video codecs, I-pictures are also sync points,
2) the dependency of other samples on this one is unknown.
3) the existence of redundant coding is unknown.

When performing ‘trick’ modes, such as fast-forward, it is possible to use the first piece of information to locate
independently decodable samples. Similarly, when performing random access, it may be necessary to locate
the previous sync point or random access recovery point, and roll-forward from the sync point or the pre-roll
starting point of the random access recovery point to the desired point. While rolling forward, samples on
which no others depend need not be retrieved or decoded.

The value of ‘sample_is_depended_on’ is independent of the existence of redundant codings. However, a
redundant coding may have different dependencies from the primary coding; if redundant codings are
available, the value of ‘sample_depends_on’ documents only the primary coding.

A leading sample (usually a picture in video) is defined relative to a reference sample, which is the
immediately prior sample that is marked as “sample_depends_on” having no dependency (an I picture). A
leading sample has both a composition time before the reference sample, and possibly also a decoding
dependency on a sample before the reference sample. Therefore if, for example, playback and decoding were
to start at the reference sample, those samples marked as leading would not be needed and might not be
decodable. A leading sample itself must therefore not be marked as having no dependency.

For tracks with a handler_type that is not ‘vide’, ‘soun’, ‘hint’ or ‘auxv’, if another sample with
sample_depends_on=2 or another sample tagged as a “Sync Sample” has already been processed and
unless specified otherwise, a sample tagged with sample_depends_on=2, and
sample_has_redundancy=1 can be discarded, and its duration added to the duration of the preceding one,
to maintain the timing of subsequent samples.

The size of the table, sample_count, is taken from the sample_count in the Sample Size Box ('stsz')
or Compact Sample Size Box (‘stz2’).

8.6.4.2 Syntax

aligned(8) class SampleDependencyTypeBox
 extends FullBox(‘sdtp’, version = 0, 0) {
 for (i=0; i < sample_count; i++){
 unsigned int(2) is_leading;
 unsigned int(2) sample_depends_on;
 unsigned int(2) sample_is_depended_on;
 unsigned int(2) sample_has_redundancy;
 }
}

ISO/IEC 14496-12:2008(E)

© ISO/IEC 2008 – All rights reserved PROOF/ÉPREUVE 41

8.6.4.3 Semantics

is_leading takes one of the following four values:
0: the leading nature of this sample is unknown;
1: this sample is a leading sample that has a dependency before the referenced I-picture (and is

therefore not decodable);
2: this sample is not a leading sample;
3: this sample is a leading sample that has no dependency before the referenced I-picture (and is

therefore decodable);
sample_depends_on takes one of the following four values:

0: the dependency of this sample is unknown;
1: this sample does depend on others (not an I picture);
2: this sample does not depend on others (I picture);
3: reserved

sample_is_depended_on takes one of the following four values:
0: the dependency of other samples on this sample is unknown;
1: other samples may depend on this one (not disposable);
2: no other sample depends on this one (disposable);
3: reserved

sample_has_redundancy takes one of the following four values:
0: it is unknown whether there is redundant coding in this sample;
1: there is redundant coding in this sample;
2: there is no redundant coding in this sample;
3: reserved

8.6.5 Edit Box

8.6.5.1 Definition

Box Type: ‘edts’
Container: Track Box (‘trak’)
Mandatory: No
Quantity: Zero or one

An Edit Box maps the presentation time-line to the media time-line as it is stored in the file. The Edit Box is a
container for the edit lists.

The Edit Box is optional. In the absence of this box, there is an implicit one-to-one mapping of these time-lines,
and the presentation of a track starts at the beginning of the presentation. An empty edit is used to offset the
start time of a track.

8.6.5.2 Syntax

aligned(8) class EditBox extends Box(‘edts’) {
}

8.6.6 Edit List Box

8.6.6.1 Definition

Box Type: ‘elst’
Container: Edit Box (‘edts’)
Mandatory: No
Quantity: Zero or one

This box contains an explicit timeline map. Each entry defines part of the track time-line: by mapping part of
the media time-line, or by indicating ‘empty’ time, or by defining a ‘dwell’, where a single time-point in the
media is held for a period.

ISO/IEC 14496-12:2008(E)

42 PROOF/ÉPREUVE © ISO/IEC 2008 – All rights reserved

NOTE Edits are not restricted to fall on sample times. This means that when entering an edit, it can be
necessary to (a) back up to a sync point, and pre-roll from there and then (b) be careful about the duration of the
first sample — it might have been truncated if the edit enters it during its normal duration. If this is audio, that
frame might need to be decoded, and then the final slicing done. Likewise, the duration of the last sample in an
edit might need slicing.

Starting offsets for tracks (streams) are represented by an initial empty edit. For example, to play a track from
its start for 30 seconds, but at 10 seconds into the presentation, we have the following edit list:

Entry-count = 2

Segment-duration = 10 seconds
Media-Time = -1
Media-Rate = 1

Segment-duration = 30 seconds (could be the length of the whole track)
Media-Time = 0 seconds
Media-Rate = 1

A non-empty edit may insert a portion of the media timeline that is not present in the initial movie, and is
present only in subsequent movie fragments. The segment_duration of this edit may be zero, whereupon
the edit provides the offset from media composition time to movie presentation time, for the movie and
subsequent movie fragments. It is recommended that such an edit be used to establish a presentation time of
0 for the first presented sample, when composition offsets are used.

For example, if the composition time of the first composed frame is 20, then the edit that maps the media time
from 20 onwards to movie time 0 onwards, would read:

Entry-count = 1

Segment-duration = 0
Media-Time = 20
Media-Rate = 1

8.6.6.2 Syntax

aligned(8) class EditListBox extends FullBox(‘elst’, version, 0) {
 unsigned int(32) entry_count;
 for (i=1; i <= entry_count; i++) {
 if (version==1) {
 unsigned int(64) segment_duration;
 int(64) media_time;
 } else { // version==0
 unsigned int(32) segment_duration;
 int(32) media_time;
 }
 int(16) media_rate_integer;
 int(16) media_rate_fraction = 0;
 }
}

8.6.6.3 Semantics

version is an integer that specifies the version of this box (0 or 1)
entry_count is an integer that gives the number of entries in the following table
segment_duration is an integer that specifies the duration of this edit segment in units of the timescale

in the Movie Header Box
media_time is an integer containing the starting time within the media of this edit segment (in media

time scale units, in composition time). If this field is set to –1, it is an empty edit. The last edit in a

ISO/IEC 14496-12:2008(E)

© ISO/IEC 2008 – All rights reserved PROOF/ÉPREUVE 43

track shall never be an empty edit. Any difference between the duration in the Movie Header Box, and
the track’s duration is expressed as an implicit empty edit at the end.

media_rate specifies the relative rate at which to play the media corresponding to this edit segment. If
this value is 0, then the edit is specifying a ‘dwell’: the media at media-time is presented for the
segment-duration. Otherwise this field shall contain the value 1.

8.7 Track Data Layout Structures

8.7.1 Data Information Box

8.7.1.1 Definition

Box Type: ‘dinf’
Container: Media Information Box (‘minf’) or Meta Box (‘meta’)
Mandatory: Yes (required within ‘minf’ box) and No (optional within ‘meta’ box)
Quantity: Exactly one

The data information box contains objects that declare the location of the media information in a track.

8.7.1.2 Syntax

aligned(8) class DataInformationBox extends Box(‘dinf’) {
}

8.7.2 Data Reference Box

8.7.2.1 Definition

Box Types: ‘url ‘, ‘urn ‘, ‘dref’
Container: Data Information Box (‘dinf’)
Mandatory: Yes
Quantity: Exactly one

The data reference object contains a table of data references (normally URLs) that declare the location(s) of
the media data used within the presentation. The data reference index in the sample description ties entries in
this table to the samples in the track. A track may be split over several sources in this way.

If the flag is set indicating that the data is in the same file as this box, then no string (not even an empty one)
shall be supplied in the entry field.

The DataEntryBox within the DataReferenceBox shall be either a DataEntryUrnBox or a DataEntryUrlBox.

NOTE Though the count is 32 bits, the number of items is usually much fewer, and is restricted by the fact
that the reference index in the sample table is only 16 bits

When a file that has data entries with the flag set indicating that the media data is in the same file, is split into
segments for transport, the value of this flag does not change, as the file is (logically) reassembled after the
transport operation.

8.7.2.2 Syntax

aligned(8) class DataEntryUrlBox (bit(24) flags)
 extends FullBox(‘url ’, version = 0, flags) {
 string location;
}

ISO/IEC 14496-12:2008(E)

44 PROOF/ÉPREUVE © ISO/IEC 2008 – All rights reserved

aligned(8) class DataEntryUrnBox (bit(24) flags)
 extends FullBox(‘urn ’, version = 0, flags) {
 string name;
 string location;
}

aligned(8) class DataReferenceBox
 extends FullBox(‘dref’, version = 0, 0) {
 unsigned int(32) entry_count;
 for (i=1; i <= entry_count; i++) {
 DataEntryBox(entry_version, entry_flags) data_entry;
 }
}

8.7.2.3 Semantics

version is an integer that specifies the version of this box
entry_count is an integer that counts the actual entries
entry_version is an integer that specifies the version of the entry format
entry_flags is a 24-bit integer with flags; one flag is defined (x000001) which means that the media

data is in the same file as the Movie Box containing this data reference.
data_entry is a URL or URN entry. Name is a URN, and is required in a URN entry. Location is a URL,

and is required in a URL entry and optional in a URN entry, where it gives a location to find the
resource with the given name. Each is a null-terminated string using UTF-8 characters. If the self-
contained flag is set, the URL form is used and no string is present; the box terminates with the entry-
flags field. The URL type should be of a service that delivers a file (e.g. URLs of type file, http, ftp etc.),
and which services ideally also permit random access. Relative URLs are permissible and are relative
to the file containing the Movie Box that contains this data reference.

8.7.3 Sample Size Boxes

8.7.3.1 Definition

Box Type: ‘stsz’, ‘stz2’
Container: Sample Table Box (‘stbl’)
Mandatory: Yes
Quantity: Exactly one variant must be present

This box contains the sample count and a table giving the size in bytes of each sample. This allows the media
data itself to be unframed. The total number of samples in the media is always indicated in the sample count.

There are two variants of the sample size box. The first variant has a fixed size 32-bit field for representing the
sample sizes; it permits defining a constant size for all samples in a track. The second variant permits smaller
size fields, to save space when the sizes are varying but small. One of these boxes must be present; the first
version is preferred for maximum compatibility.

NOTE A sample size of zero is not prohibited in general, but it must be valid and defined for the coding
system, as defined by the sample entry, that the sample belongs to.

ISO/IEC 14496-12:2008(E)

© ISO/IEC 2008 – All rights reserved PROOF/ÉPREUVE 45

8.7.3.2 Sample Size Box

8.7.3.2.1 Syntax

aligned(8) class SampleSizeBox extends FullBox(‘stsz’, version = 0, 0) {
 unsigned int(32) sample_size;
 unsigned int(32) sample_count;
 if (sample_size==0) {
 for (i=1; i <= sample_count; i++) {
 unsigned int(32) entry_size;
 }
 }
}

8.7.3.2.2 Semantics

version is an integer that specifies the version of this box
sample_size is integer specifying the default sample size. If all the samples are the same size, this field

contains that size value. If this field is set to 0, then the samples have different sizes, and those sizes
are stored in the sample size table. If this field is not 0, it specifies the constant sample size, and no
array follows.

sample_count is an integer that gives the number of samples in the track; if sample-size is 0, then it is
also the number of entries in the following table.

entry_size is an integer specifying the size of a sample, indexed by its number.

8.7.3.3 Compact Sample Size Box

8.7.3.3.1 Syntax

aligned(8) class CompactSampleSizeBox extends FullBox(‘stz2’, version = 0, 0) {
 unsigned int(24) reserved = 0;
 unisgned int(8) field_size;
 unsigned int(32) sample_count;
 for (i=1; i <= sample_count; i++) {
 unsigned int(field_size) entry_size;
 }
}

8.7.3.3.2 Semantics

version is an integer that specifies the version of this box
field_size is an integer specifying the size in bits of the entries in the following table; it shall take the

value 4, 8 or 16. If the value 4 is used, then each byte contains two values:
entry[i]<<4 + entry[i+1]; if the sizes do not fill an integral number of bytes, the last byte is padded with
zeros.

sample_count is an integer that gives the number of entries in the following table
entry_size is an integer specifying the size of a sample, indexed by its number.

8.7.4 Sample To Chunk Box

8.7.4.1 Definition

Box Type: ‘stsc’
Container: Sample Table Box (‘stbl’)
Mandatory: Yes
Quantity: Exactly one

ISO/IEC 14496-12:2008(E)

46 PROOF/ÉPREUVE © ISO/IEC 2008 – All rights reserved

Samples within the media data are grouped into chunks. Chunks can be of different sizes, and the samples
within a chunk can have different sizes. This table can be used to find the chunk that contains a sample, its
position, and the associated sample description.

The table is compactly coded. Each entry gives the index of the first chunk of a run of chunks with the same
characteristics. By subtracting one entry here from the previous one, you can compute how many chunks are
in this run. You can convert this to a sample count by multiplying by the appropriate samples-per-chunk.

8.7.4.2 Syntax

aligned(8) class SampleToChunkBox
 extends FullBox(‘stsc’, version = 0, 0) {
 unsigned int(32) entry_count;
 for (i=1; i <= entry_count; i++) {
 unsigned int(32) first_chunk;
 unsigned int(32) samples_per_chunk;
 unsigned int(32) sample_description_index;
 }
}

8.7.4.3 Semantics

version is an integer that specifies the version of this box
entry_count is an integer that gives the number of entries in the following table
first_chunk is an integer that gives the index of the first chunk in this run of chunks that share the

same samples-per-chunk and sample-description-index; the index of the first chunk in a track has the
value 1 (the first_chunk field in the first record of this box has the value 1, identifying that the first
sample maps to the first chunk).

samples_per_chunk is an integer that gives the number of samples in each of these chunks
sample_description_index is an integer that gives the index of the sample entry that describes the

samples in this chunk. The index ranges from 1 to the number of sample entries in the Sample
Description Box

8.7.5 Chunk Offset Box

8.7.5.1 Definition

Box Type: ‘stco’, ‘co64’
Container: Sample Table Box (‘stbl’)
Mandatory: Yes
Quantity: Exactly one variant must be present

The chunk offset table gives the index of each chunk into the containing file. There are two variants, permitting
the use of 32-bit or 64-bit offsets. The latter is useful when managing very large presentations. At most one of
these variants will occur in any single instance of a sample table.

Offsets are file offsets, not the offset into any box within the file (e.g. Media Data Box). This permits referring
to media data in files without any box structure. It does also mean that care must be taken when constructing
a self-contained ISO file with its metadata (Movie Box) at the front, as the size of the Movie Box will affect the
chunk offsets to the media data.

ISO/IEC 14496-12:2008(E)

© ISO/IEC 2008 – All rights reserved PROOF/ÉPREUVE 47

8.7.5.2 Syntax

aligned(8) class ChunkOffsetBox
 extends FullBox(‘stco’, version = 0, 0) {
 unsigned int(32) entry_count;
 for (i=1; i <= entry_count; i++) {
 unsigned int(32) chunk_offset;
 }
}

aligned(8) class ChunkLargeOffsetBox
 extends FullBox(‘co64’, version = 0, 0) {
 unsigned int(32) entry_count;
 for (i=1; i <= entry_count; i++) {
 unsigned int(64) chunk_offset;
 }
}

8.7.5.3 Semantics

version is an integer that specifies the version of this box
entry_count is an integer that gives the number of entries in the following table
chunk_offset is a 32 or 64 bit integer that gives the offset of the start of a chunk into its containing

media file.

8.7.6 Padding Bits Box

8.7.6.1 Definition

Box Type: ‘padb’
Container: Sample Table (‘stbl’)
Mandatory: No
Quantity: Zero or one

In some streams the media samples do not occupy all bits of the bytes given by the sample size, and are
padded at the end to a byte boundary. In some cases, it is necessary to record externally the number of
padding bits used. This table supplies that information.

8.7.6.2 Syntax

aligned(8) class PaddingBitsBox extends FullBox(‘padb’, version = 0, 0) {
 unsigned int(32) sample_count;
 int i;
 for (i=0; i < ((sample_count + 1)/2); i++) {
 bit(1) reserved = 0;
 bit(3) pad1;
 bit(1) reserved = 0;
 bit(3) pad2;
 }
 }

8.7.6.3 Semantics

sample_count – counts the number of samples in the track; it should match the count in other tables
pad1 – a value from 0 to 7, indicating the number of bits at the end of sample (i*2)+1.
pad2 – a value from 0 to 7, indicating the number of bits at the end of sample (i*2)+2

ISO/IEC 14496-12:2008(E)

48 PROOF/ÉPREUVE © ISO/IEC 2008 – All rights reserved

8.7.7 Sub-Sample Information Box

8.7.7.1 Definition

Box Type: ‘subs’
Container: Sample Table Box (‘stbl’) or Track Fragment Box (‘traf’)
Mandatory: No
Quantity: Zero or one

This box, named the Sub-Sample Information box, is designed to contain sub-sample information.

A sub-sample is a contiguous range of bytes of a sample. The specific definition of a sub-sample shall be
supplied for a given coding system (e.g. for ISO/IEC 14496-10, Advanced Video Coding). In the absence of
such a specific definition, this box shall not be applied to samples using that coding system.

If subsample_count is 0 for any entry, then those samples have no subsample information and no array
follows. The table is sparsely coded; the table identifies which samples have sub-sample structure by
recording the difference in sample-number between each entry. The first entry in the table records the sample
number of the first sample having sub-sample information.

NOTE It is possible to combine subsample_priority and discardable such that when
subsample_priority is smaller than a certain value, discardable is set to 1. However, since different
systems may use different scales of priority values, to separate them is safe to have a clean solution for
discardable sub-samples.

8.7.7.2 Syntax

aligned(8) class SubSampleInformationBox
 extends FullBox(‘subs’, version, 0) {
 unsigned int(32) entry_count;
 int i,j;
 for (i=0; i < entry_count; i++) {
 unsigned int(32) sample_delta;
 unsigned int(16) subsample_count;
 if (subsample_count > 0) {
 for (j=0; j < subsample_count; j++) {
 if(version == 1)
 {
 unsigned int(32) subsample_size;
 }
 else
 {
 unsigned int(16) subsample_size;
 }
 unsigned int(8) subsample_priority;
 unsigned int(8) discardable;
 unsigned int(32) reserved = 0;
 }
 }
 }
}

8.7.7.3 Semantics

version is an integer that specifies the version of this box (0 or 1 in this specification)
entry_count is an integer that gives the number of entries in the following table.
sample_delta is an integer that specifies the sample number of the sample having sub-sample

structure. It is coded as the difference between the desired sample number, and the sample number
indicated in the previous entry. If the current entry is the first entry, the value indicates the sample
number of the first sample having sub-sample information, that is, the value is the difference between
the sample number and zero (0).

ISO/IEC 14496-12:2008(E)

© ISO/IEC 2008 – All rights reserved PROOF/ÉPREUVE 49

subsample_count is an integer that specifies the number of sub-sample for the current sample. If there
is no sub-sample structure, then this field takes the value 0.

subsample_size is an integer that specifies the size, in bytes, of the current sub-sample.
subsample_priority is an integer specifying the degradation priority for each sub-sample. Higher

values of subsample_priority, indicate sub-samples which are important to, and have a greater
impact on, the decoded quality.

discardable equal to 0 means that the sub-sample is required to decode the current sample, while
equal to 1 means the sub-sample is not required to decode the current sample but may be used for
enhancements, e.g., the sub-sample consists of supplemental enhancement information (SEI)
messages.

8.7.8 Sample Auxiliary Information Sizes Box

8.7.8.1 Definition

Box Type: ‘saiz’
Container: Sample Table Box (‘stbl’) or Track Fragment Box ('traf')
Mandatory: No
Quantity: Zero or More

Per-sample sample auxiliary information may be stored anywhere in the same file as the sample data itself;
for self-contained media files, this is typically in a MediaData box or a box from a derived specification. It is
stored either (a) in multiple chunks, with the number of samples per chunk, as well as the number of chunks,
matching the chunking of the primary sample data or (b) in a single chunk for all the samples in a movie
sample table (or a movie fragment). The Sample Auxiliary Information for all samples contained within a single
chunk (or track run) is stored contiguously (similarly to sample data).

Sample Auxiliary Information, when present, is always stored in the same file as the samples to which it
relates as they share the same data reference (‘dref’) structure. However, this data may be located
anywhere within this file, using auxiliary information offsets (‘saio’) to indicate the location of the data.

Whether sample auxiliary information is permitted or required may be specified by the brands or the coding
format in use. The format of the sample auxiliary information is determined by aux_info_type. If
aux_info_type and aux_info_type_parameter are omitted then the implied value of aux_info_type
is either (a) in the case of transformed content, such as protected content, the scheme_type included in the
Protection Scheme Information box or otherwise (b) the sample entry type. The default value of the
aux_info_type_parameter is 0. Some values of aux_info_type may be restricted to be used only with
particular track types. A track may have multiple streams of sample auxiliary information of different types.
The types are registered at the registration authority.

While aux_info_type determines the format of the auxiliary information, several streams of auxiliary
information having the same format may be used when their value of aux_info_type_parameter differs.
The semantics of aux_info_type_parameter for a particular aux_info_type value must be specified
along with specifying the semantics of the particular aux_info_type value and the implied auxiliary
information format.

This box provides the size of the auxiliary information for each sample. For each instance of this box, there
must be a matching SampleAuxiliaryInformationOffsetsBox with the same values of
aux_info_type and aux_info_type_parameter, providing the offset information for this auxiliary
information.

NOTE For discussions on the use of sample auxiliary information versus other mechanisms, see Annex C.8.

ISO/IEC 14496-12:2008(E)

50 PROOF/ÉPREUVE © ISO/IEC 2008 – All rights reserved

8.7.8.2 Syntax

aligned(8) class SampleAuxiliaryInformationSizesBox
 extends FullBox(‘saiz’, version = 0, flags)
{
 if (flags & 1) {
 unsigned int(32) aux_info_type;
 unsigned int(32) aux_info_type_parameter;
 }
 unsigned int(8) default_sample_info_size;
 unsigned int(32) sample_count;
 if (default_sample_info_size == 0) {
 unsigned int(8) sample_info_size[sample_count];
 }
}

8.7.8.3 Semantics

aux_info_type is an integer that identifies the type of the sample auxiliary information. At most one
occurrence of this box with the same values for aux_info_type and aux_info_type_parameter
shall exist in the containing box.

aux_info_type_parameter identifies the “stream” of auxiliary information having the same value of
aux_info_type and associated to the same track. The semantics of aux_info_type_parameter
are determined by the value of aux_info_type.

default_sample_info_size is an integer specifying the sample auxiliary information size for the case
where all the indicated samples have the same sample auxiliary information size. If the size varies
then this field shall be zero.

sample_count is an integer that gives the number of samples for which a size is defined. For a Sample
Auxiliary Information Sizes box appearing in the Sample Table Box this must be the same as, or less
than, the sample_count within the Sample Size Box or Compact Sample Size Box. For a Sample
Auxiliary Information Sizes box appearing in a Track Fragment box this must be the same as, or less
than, the sum of the sample_count entries within the Track Fragment Run boxes of the Track
Fragment. If this is less than the number of samples, then auxiliary information is supplied for the
initial samples, and the remaining samples have no associated auxiliary information.

sample_info_size gives the size of the sample auxiliary information in bytes. This may be zero to
indicate samples with no associated auxiliary information.

8.7.9 Sample Auxiliary Information Offsets Box

8.7.9.1 Definition

Box Type: ‘saio’
Container: Sample Table Box (‘stbl’) or Track Fragment Box ('traf')
Mandatory: No
Quantity: Zero or More

For an introduction to sample auxiliary information, see the definition of the Sample Auxiliary Information Size
Box.

This box provides the position information for the sample auxiliary information, in a way similar to the chunk
offsets for sample data.

ISO/IEC 14496-12:2008(E)

© ISO/IEC 2008 – All rights reserved PROOF/ÉPREUVE 51

8.7.9.2 Syntax

aligned(8) class SampleAuxiliaryInformationOffsetsBox
 extends FullBox(‘saio’, version, flags)
{
 if (flags & 1) {
 unsigned int(32) aux_info_type;
 unsigned int(32) aux_info_type_parameter;
 }
 unsigned int(32) entry_count;
 if (version == 0) {
 unsigned int(32) offset[entry_count];
 }
 else {
 unsigned int(64) offset[entry_count];
 }
}

8.7.9.3 Semantics

aux_info_type and aux_info_type_parameter are defined as in the
SampleAuxiliaryInformationSizesBox

entry_count gives the number of entries in the following table. For a Sample Auxiliary Information
Offsets box appearing in a Sample Table Box this must be equal to one or to the value of the
entry_count field in the Chunk Offset Box or Chunk Large Offset Box. For a Sample Auxiliary
Information Offsets Box appearing in a Track Fragment box, this must be equal to one or to the
number of Track Fragment Run boxes in the Track Fragment Box.

offset gives the position in the file of the Sample Auxiliary Information for each Chunk or Track
Fragment Run. If entry_count is one, then the Sample Auxiliary Information for all Chunks or Runs
is contiguous in the file in chunk or run order. When in the Sample Table Box, the offsets are absolute.
In a track fragment box, this value is relative to the base offset established by the track fragment
header box (‘tfhd’) in the same track fragment (see 8.8.14).

8.8 Movie Fragments

8.8.1 Movie Extends Box

8.8.1.1 Definition

Box Type: ‘mvex’
Container: Movie Box (‘moov’)
Mandatory: No
Quantity: Zero or one

This box warns readers that there might be Movie Fragment Boxes in this file. To know of all samples in the
tracks, these Movie Fragment Boxes must be found and scanned in order, and their information logically
added to that found in the Movie Box.

There is a narrative introduction to Movie Fragments in Annex A.

8.8.1.2 Syntax

aligned(8) class MovieExtendsBox extends Box(‘mvex’){
}

ISO/IEC 14496-12:2008(E)

52 PROOF/ÉPREUVE © ISO/IEC 2008 – All rights reserved

8.8.2 Movie Extends Header Box

8.8.2.1 Definition

Box Type: ‘mehd’
Container: Movie Extends Box(‘mvex’)
Mandatory: No
Quantity: Zero or one

The Movie Extends Header is optional, and provides the overall duration, including fragments, of a fragmented
movie. If this box is not present, the overall duration must be computed by examining each fragment.

8.8.2.2 Syntax

aligned(8) class MovieExtendsHeaderBox extends FullBox(‘mehd’, version, 0) {
 if (version==1) {
 unsigned int(64) fragment_duration;
 } else { // version==0
 unsigned int(32) fragment_duration;
 }
}

8.8.2.3 Semantics

fragment_duration is an integer that declares length of the presentation of the whole movie including
fragments (in the timescale indicated in the Movie Header Box). The value of this field corresponds to
the duration of the longest track, including movie fragments. If an MP4 file is created in real-time, such
as used in live streaming, it is not likely that the fragment_duration is known in advance and this
box may be omitted.

8.8.3 Track Extends Box

8.8.3.1 Definition

Box Type: ‘trex’
Container: Movie Extends Box (‘mvex’)
Mandatory: Yes
Quantity: Exactly one for each track in the Movie Box

This sets up default values used by the movie fragments. By setting defaults in this way, space and
complexity can be saved in each Track Fragment Box.

The sample flags field in sample fragments (default_sample_flags here and in a Track Fragment Header
Box, and sample_flags and first_sample_flags in a Track Fragment Run Box) is coded as a 32-bit
value. It has the following structure:

bit(4) reserved=0;
unsigned int(2) is_leading;
unsigned int(2) sample_depends_on;
unsigned int(2) sample_is_depended_on;
unsigned int(2) sample_has_redundancy;
bit(3) sample_padding_value;
bit(1) sample_is_non_sync_sample;
unsigned int(16) sample_degradation_priority;

The is_leading, sample_depends_on, sample_is_depended_on and sample_has_redundancy
values are defined as documented in the Independent and Disposable Samples Box.

ISO/IEC 14496-12:2008(E)

© ISO/IEC 2008 – All rights reserved PROOF/ÉPREUVE 53

The flag sample_is_non_sync_sample provides the same information as the sync sample table [8.6.2].
When this value is set 0 for a sample, it is the same as if the sample were not in a movie fragment and
marked with an entry in the sync sample table (or, if all samples are sync samples, the sync sample table
were absent).

The sample_padding_value is defined as for the padding bits table. The
sample_degradation_priority is defined as for the degradation priority table.

8.8.3.2 Syntax

aligned(8) class TrackExtendsBox extends FullBox(‘trex’, 0, 0){
 unsigned int(32) track_ID;
 unsigned int(32) default_sample_description_index;
 unsigned int(32) default_sample_duration;
 unsigned int(32) default_sample_size;
 unsigned int(32) default_sample_flags
}

8.8.3.3 Semantics

track_id identifies the track; this shall be the track ID of a track in the Movie Box
default_ these fields set up defaults used in the track fragments.

8.8.4 Movie Fragment Box

8.8.4.1 Definition

Box Type: ‘moof’
Container: File
Mandatory: No
Quantity: Zero or more

The movie fragments extend the presentation in time. They provide the information that would previously have
been in the Movie Box. The actual samples are in Media Data Boxes, as usual, if they are in the same file.
The data reference index is in the sample description, so it is possible to build incremental presentations
where the media data is in files other than the file containing the Movie Box.

The Movie Fragment Box is a top-level box, (i.e. a peer to the Movie Box and Media Data boxes). It contains a
Movie Fragment Header Box, and then one or more Track Fragment Boxes.

NOTE There is no requirement that any particular movie fragment extend all tracks present in the
movie header, and there is no restriction on the location of the media data referred to by the movie
fragments. However, derived specifications may make such restrictions.

8.8.4.2 Syntax

aligned(8) class MovieFragmentBox extends Box(‘moof’){
}

8.8.5 Movie Fragment Header Box

8.8.5.1 Definition

Box Type: ‘mfhd’
Container: Movie Fragment Box ('moof')
Mandatory: Yes
Quantity: Exactly one

ISO/IEC 14496-12:2008(E)

54 PROOF/ÉPREUVE © ISO/IEC 2008 – All rights reserved

The movie fragment header contains a sequence number, as a safety check. The sequence number usually
starts at 1 and must increase for each movie fragment in the file, in the order in which they occur. This allows
readers to verify integrity of the sequence; it is an error to construct a file where the fragments are out of
sequence.

NOTE There is no requirement that the sequence numbers be consecutive, only that the value in
a given movie fragment be greater than in any preceding movie fragment.

8.8.5.2 Syntax

aligned(8) class MovieFragmentHeaderBox
 extends FullBox(‘mfhd’, 0, 0){
 unsigned int(32) sequence_number;
}

8.8.5.3 Semantics

sequence_number the ordinal number of this fragment, in increasing order

8.8.6 Track Fragment Box

8.8.6.1 Definition

Box Type: ‘traf’
Container: Movie Fragment Box ('moof')
Mandatory: No
Quantity: Zero or more

Within the movie fragment there is a set of track fragments, zero or more per track. The track fragments in
turn contain zero or more track runs, each of which document a contiguous run of samples for that track.
Within these structures, many fields are optional and can be defaulted.

It is possible to add 'empty time' to a track using these structures, as well as adding samples. Empty inserts
can be used in audio tracks doing silence suppression, for example.

8.8.6.2 Syntax

aligned(8) class TrackFragmentBox extends Box(‘traf’){
}

8.8.7 Track Fragment Header Box

8.8.7.1 Definition

Box Type: ‘tfhd’
Container: Track Fragment Box ('traf')
Mandatory: Yes
Quantity: Exactly one

Each movie fragment can add zero or more fragments to each track; and a track fragment can add zero or
more contiguous runs of samples. The track fragment header sets up information and defaults used for those
runs of samples.

The following flags are defined in the tf_flags:

0x000001 base-data-offset-present: indicates the presence of the base-data-offset field. This provides
an explicit anchor for the data offsets in each track run (see below). If not provided, the base-data-
offset for the first track in the movie fragment is the position of the first byte of the enclosing Movie

ISO/IEC 14496-12:2008(E)

© ISO/IEC 2008 – All rights reserved PROOF/ÉPREUVE 55

Fragment Box, and for second and subsequent track fragments, the default is the end of the data
defined by the preceding fragment. Fragments 'inheriting' their offset in this way must all use the same
data-reference (i.e., the data for these tracks must be in the same file).

0x000002 sample-description-index-present: indicates the presence of this field, which over-rides, in this
fragment, the default set up in the Track Extends Box.

0x000008 default-sample-duration-present
0x000010 default-sample-size-present
0x000020 default-sample-flags-present
0x010000 duration-is-empty: this indicates that the duration provided in either default-sample-duration,

or by the default-duration in the Track Extends Box, is empty, i.e. that there are no samples for this
time interval. It is an error to make a presentation that has both edit lists in the Movie Box, and empty-
duration fragments.

0x020000 default-base-is-moof: if base-data-offset-present is zero, this indicates that the base-data-
offset for this track fragment is the position of the first byte of the enclosing Movie Fragment Box.
Support for the default-base-is-moof flag is required under the ‘iso5’ brand, and it shall not be used in
brands or compatible brands earlier than iso5.

NOTE The use of the default-base-is-moof flag breaks the compatibility to earlier brands of the file format, because it
sets the anchor point for offset calculation differently than earlier. Therefore, the default-base-is-moof flag cannot be set
when earlier brands are included in the File Type box.

8.8.7.2 Syntax

aligned(8) class TrackFragmentHeaderBox
 extends FullBox(‘tfhd’, 0, tf_flags){
 unsigned int(32) track_ID;
 // all the following are optional fields
 unsigned int(64) base_data_offset;
 unsigned int(32) sample_description_index;
 unsigned int(32) default_sample_duration;
 unsigned int(32) default_sample_size;
 unsigned int(32) default_sample_flags
}

8.8.7.3 Semantics

base_data_offset the base offset to use when calculating data offsets

8.8.8 Track Fragment Run Box

8.8.8.1 Definition

Box Type: ‘trun’
Container: Track Fragment Box ('traf')
Mandatory: No
Quantity: Zero or more

Within the Track Fragment Box, there are zero or more Track Run Boxes. If the duration-is-empty flag is set in
the tf_flags, there are no track runs. A track run documents a contiguous set of samples for a track.

The number of optional fields is determined from the number of bits set in the lower byte of the flags, and the
size of a record from the bits set in the second byte of the flags. This procedure shall be followed, to allow for
new fields to be defined.

If the data-offset is not present, then the data for this run starts immediately after the data of the previous run,
or at the base-data-offset defined by the track fragment header if this is the first run in a track fragment, If the
data-offset is present, it is relative to the base-data-offset established in the track fragment header.

The following flags are defined:

ISO/IEC 14496-12:2008(E)

56 PROOF/ÉPREUVE © ISO/IEC 2008 – All rights reserved

0x000001 data-offset-present.
0x000004 first-sample-flags-present; this over-rides the default flags for the first sample only. This

makes it possible to record a group of frames where the first is a key and the rest are difference
frames, without supplying explicit flags for every sample. If this flag and field are used, sample-flags
shall not be present.

0x000100 sample-duration-present: indicates that each sample has its own duration, otherwise the
default is used.

0x000200 sample-size-present: each sample has its own size, otherwise the default is used.
0x000400 sample-flags-present; each sample has its own flags, otherwise the default is used.
0x000800 sample-composition-time-offsets-present; each sample has a composition time offset (e.g. as

used for I/P/B video in MPEG).

The composition offset values in the composition time-to-sample box and in the track run box may be signed
or unsigned. The recommendations given in the composition time-to-sample box concerning the use of signed
composition offsets also apply here.

8.8.8.2 Syntax

aligned(8) class TrackRunBox
 extends FullBox(‘trun’, version, tr_flags) {
 unsigned int(32) sample_count;
 // the following are optional fields
 signed int(32) data_offset;
 unsigned int(32) first_sample_flags;
 // all fields in the following array are optional
 {
 unsigned int(32) sample_duration;
 unsigned int(32) sample_size;
 unsigned int(32) sample_flags
 if (version == 0)
 { unsigned int(32) sample_composition_time_offset; }
 else
 { signed int(32) sample_composition_time_offset; }
 }[sample_count]
}

8.8.8.3 Semantics

sample_count the number of samples being added in this run; also the number of rows in the following
table (the rows can be empty)

data_offset is added to the implicit or explicit data_offset established in the track fragment header.
first_sample_flags provides a set of flags for the first sample only of this run.

8.8.9 Movie Fragment Random Access Box

8.8.9.1 Definition

Box Type: ‘mfra’
Container: File
Mandatory: No
Quantity: Zero or one

The Movie Fragment Random Access Box (‘mfra’) provides a table which may assist readers in finding
random access points in a file using movie fragments. It contains a track fragment random access box for
each track for which information is provided (which may not be all tracks). It is usually placed at or near the
end of the file; the last box within the Movie Fragment Random Access Box provides a copy of the length field
from the Movie Fragment Random Access Box. Readers may attempt to find this box by examining the last
32 bits of the file, or scanning backwards from the end of the file for a Movie Fragment Random Access Offset
Box and using the size information in it, to see if that locates the beginning of a Movie Fragment Random
Access Box.

ISO/IEC 14496-12:2008(E)

© ISO/IEC 2008 – All rights reserved PROOF/ÉPREUVE 57

This box provides only a hint as to where random access points are; the movie fragments themselves are
definitive. It is recommended that readers take care in both locating and using this box as modifications to the
file after it was created may render either the pointers, or the declaration of random access points, incorrect.

8.8.9.2 Syntax

aligned(8) class MovieFragmentRandomAccessBox
 extends Box(‘mfra’)
{
}

8.8.10 Track Fragment Random Access Box

8.8.10.1 Definition

Box Type: ‘tfra’
Container: Movie Fragment Random Access Box (‘mfra’)
Mandatory: No
Quantity: Zero or one per track

Each entry contains the location and the presentation time of the random accessible sample. It indicates that
the sample in the entry can be random accessed. Note that not every random accessible sample in the track
needs to be listed in the table.

The absence of this box does not mean that all the samples are sync samples. Random access information in
the ‘trun’, ‘traf’ and ‘trex’ shall be set appropriately regardless of the presence of this box.

8.8.10.2 Syntax

aligned(8) class TrackFragmentRandomAccessBox
 extends FullBox(‘tfra’, version, 0) {
 unsigned int(32) track_ID;
 const unsigned int(26) reserved = 0;
 unsigned int(2) length_size_of_traf_num;
 unsigned int(2) length_size_of_trun_num;
 unsigned int(2) length_size_of_sample_num;
 unsigned int(32) number_of_entry;
 for(i=1; i <= number_of_entry; i++){
 if(version==1){
 unsigned int(64) time;
 unsigned int(64) moof_offset;
 }else{
 unsigned int(32) time;
 unsigned int(32) moof_offset;
 }
 unsigned int((length_size_of_traf_num+1) * 8) traf_number;
 unsigned int((length_size_of_trun_num+1) * 8) trun_number;
 unsigned int((length_size_of_sample_num+1) * 8) sample_number;
 }
}

8.8.10.3 Semantics

track_ID is an integer identifying the track_ID.
length_size_of_traf_num indicates the length in byte of the traf_number field minus one.
length_size_of_trun_num indicates the length in byte of the trun_number field minus one.
length_size_of_sample_num indicates the length in byte of the sample_number field minus one.
number_of_entry is an integer that gives the number of the entries for this track. If this value is zero, it

indicates that every sample is a random access point and no table entry follows.

ISO/IEC 14496-12:2008(E)

58 PROOF/ÉPREUVE © ISO/IEC 2008 – All rights reserved

time is 32 or 64 bits integer that indicates the presentation time of the random access sample in units
defined in the ‘mdhd’ of the associated track.

moof_offset is 32 or 64 bits integer that gives the offset of the ‘moof’ used in this entry. Offset is the
byte-offset between the beginning of the file and the beginning of the ‘moof’.

traf_number indicates the ‘traf’ number that contains the random accessible sample. The number
ranges from 1 (the first ‘traf’ is numbered 1) in each ‘moof’.

trun_number indicates the ‘trun’ number that contains the random accessible sample. The number
ranges from 1 in each ‘traf’.

sample_number indicates the sample number that contains the random accessible sample. The number
ranges from 1 in each ‘trun’.

8.8.11 Movie Fragment Random Access Offset Box

8.8.11.1 Definition

Box Type: ‘mfro’
Container: Movie Fragment Random Access Box (‘mfra’)
Mandatory: Yes
Quantity: Exactly one

The Movie Fragment Random Access Offset Box provides a copy of the length field from the enclosing Movie
Fragment Random Access Box. It is placed last within that box, so that the size field is also last in the
enclosing Movie Fragment Random Access Box. When the Movie Fragment Random Access Box is also last
in the file this permits its easy location. The size field here must be correct. However, neither the presence of
the Movie Fragment Random Access Box, nor its placement last in the file, are assured.

8.8.11.2 Syntax

aligned(8) class MovieFragmentRandomAccessOffsetBox
 extends FullBox(‘mfro’, version, 0) {
 unsigned int(32) size;
}

8.8.11.3 Semantics

size is an integer gives the number of bytes of the enclosing ‘mfra’ box. This field is placed at the last
of the enclosing box to assist readers scanning from the end of the file in finding the ‘mfra’ box.

8.8.12 Track fragment decode time

8.8.12.1 Definition

Box Type: `tfdt’
Container: Track Fragment box (‘traf’)
Mandatory: No
Quantity: Zero or one

The Track Fragment Base Media Decode Time Box provides the absolute decode time, measured on the
media timeline, of the first sample in decode order in the track fragment. This can be useful, for example,
when performing random access in a file; it is not necessary to sum the sample durations of all preceding
samples in previous fragments to find this value (where the sample durations are the deltas in the Decoding
Time to Sample Box and the sample_durations in the preceding track runs).

The Track Fragment Base Media Decode Time Box, if present, shall be positioned after the Track Fragment
Header Box and before the first Track Fragment Run box.

NOTE The decode timeline is a media timeline, established before any explicit or implied mapping of media time to
presentation time, for example by an edit list or similar structure.

ISO/IEC 14496-12:2008(E)

© ISO/IEC 2008 – All rights reserved PROOF/ÉPREUVE 59

8.8.12.2 Syntax

aligned(8) class TrackFragmentBaseMediaDecodeTimeBox
 extends FullBox(‘tfdt’, version, 0) {
 if (version==1) {
 unsigned int(64) baseMediaDecodeTime;
 } else { // version==0
 unsigned int(32) baseMediaDecodeTime;
 }
}

8.8.12.3 Semantics

version is an integer that specifies the version of this box (0 or 1 in this specification).
baseMediaDecodeTime is an integer equal to the sum of the decode durations of all earlier samples in

the media, expressed in the media's timescale. It does not include the samples added in the enclosing
track fragment.

8.8.13 Level Assignment Box

8.8.13.1 Definition

Box Type: `leva’
Container: Movie Extends Box (`mvex’)
Mandatory: No
Quantity: Zero or one

Levels specify subsets of the file. Samples mapped to level n may depend on any samples of levels m, where
m <= n, and shall not depend on any samples of levels p, where p > n. For example, levels can be specified
according to temporal level (e.g., temporal_id of SVC or MVC).

Levels cannot be specified for the initial movie. When the Level Assignment box is present, it applies to all
movie fragments subsequent to the initial movie.

For the context of the Level Assignment box, a fraction is defined to consist of one or more Movie Fragment
boxes and the associated Media Data boxes, possibly including only an initial part of the last Media Data Box.
Within a fraction, data for each level shall appear contiguously. Data for levels within a fraction shall appear in
increasing order of level value. All data in a fraction shall be assigned to levels.

NOTE In the context of DASH (ISO/IEC 23009-1), each subsegment indexed within a Subsegment Index box is a
fraction.

The Level Assignment box provides a mapping from features, such as scalability layers, to levels. A feature
can be specified through a track, a sub-track within a track, or a sample grouping of a track.

When padding_flag is equal to 1 this indicates that a conforming fraction can be formed by concatenating
any positive integer number of levels within a fraction and padding the last Media Data box by zero bytes up to
the full size that is indicated in the header of the last Media Data box. For example, padding_flag can be
set equal to 1 when the following conditions are true:

• Each fraction contains two or more AVC, SVC, or MVC [ISO/IEC 14496-15] tracks of the
same video bitstream.

• The samples for each track of a fraction are contiguous and in decoding order in a Media
Data box.

• The samples of the first AVC, SVC, or MVC level contain extractor NAL units for including the
video coding NAL units from the other levels of the same fraction.

ISO/IEC 14496-12:2008(E)

60 PROOF/ÉPREUVE © ISO/IEC 2008 – All rights reserved

8.8.13.2 Syntax

aligned(8) class LevelAssignmentBox extends FullBox(‘leva’, 0, 0)
{
 unsigned int(8) level_count;
 for (j=1; j <= level_count; j++) {
 unsigned int(32) track_id;
 unsigned int(1) padding_flag;
 unsigned int(7) assignment_type;
 if (assignment_type == 0) {
 unsigned int(32) grouping_type;
 }
 else if (assignment_type == 1) {
 unsigned int(32) grouping_type;
 unsigned int(32) grouping_type_parameter;
 }
 else if (assignment_type == 2) {} // no further syntax elements needed
 else if (assignment_type == 3) {} // no further syntax elements needed
 else if (assignment_type == 4) {
 unsigned int(32) sub_track_id;
 }
 // other assignment_type values are reserved
 }
}

8.8.13.3 Semantics

level_count specifies the number of levels each fraction is grouped into. level_count shall be
greater than or equal to 2.

track_id for loop entry j specifies the track identifier of the track assigned to level j.
padding_flag equal to 1 indicates that a conforming fraction can be formed by concatenating any

positive integer number of levels within a fraction and padding the last Media Data box by zero bytes
up to the full size that is indicated in the header of the last Media Data box. The semantics of
padding_flag equal to 0 are that this is not assured.

assignment_type indicates the mechanism used to specify the assignment to a level.
assignment_type values greater than 4 are reserved, while the semantics for the other values are
specified as follows. The sequence of assignment_types is restricted to be a set of zero or more of
type 2 or 3, followed by zero or more of exactly one type.
• 0: sample groups are used to specify levels, i.e., samples mapped to different sample group

description indexes of a particular sample grouping lie in different levels within the identified track;
other tracks are not affected and must have all their data in precisely one level;

• 1: as for assignment_type 0 except assignment is by a parameterized sample group;
• 2, 3: level assignment is by track (see the Subsegment Index Box for the difference in processing

of these levels)
• 4: the respective level contains the samples for a sub-track. The sub-tracks are specified through

the Sub Track box; other tracks are not affected and must have all their data in precisely one
level;

grouping_type and grouping_type_parameter, if present, specify the sample grouping used to
map sample group description entries in the Sample Group Description box to levels. Level n contains
the samples that are mapped to the sample group description entry having index n in the Sample
Group Description box having the same values of grouping_type and
grouping_type_parameter, if present, as those provided in this box.

sub_track_id specifies that the sub-track identified by sub_track_id within loop entry j is mapped to
level j.

8.8.14 Sample Auxiliary Information in Movie Fragments

When sample auxiliary information (8.7.8 and 8.7.9) is present in the Movie Fragment box, the offsets in the
Sample Auxiliary Information Offsets Box are treated the same as the data_offset in the Track Fragment

ISO/IEC 14496-12:2008(E)

© ISO/IEC 2008 – All rights reserved PROOF/ÉPREUVE 61

Run box, that is, they are relative to any base data offset established for that track fragment. If movie fragment
relative addressing is used (no base data offset is provided in the track fragment header) and auxiliary
information is present, then the default_base_is_moof flag must also be set in the flags of that track
fragment header.

If only one offset is provided, then the Sample Auxiliary Information for all the track runs in the fragment is
stored contiguously, otherwise exactly one offset must be provided for each track run.

If the field default_sample_info_size is non-zero in one of these boxes, then the size of the auxiliary
information is constant for the identified samples.

In addition, if:

• this box is present in the movie box,

• and default_sample_info_size is non-zero in the box in the movie box,

• and the sample auxiliary information sizes box is absent in a movie fragment,

then the auxiliary information has this same constant size for every sample in the movie fragment also; it is
then not necessary to repeat the box in the movie fragment.

8.9 Sample Group Structures

8.9.1 Introduction

This clause specifies a generic mechanism for representing a partition of the samples in a track. A sample
grouping is an assignment of each sample in a track to be a member of one sample group, based on a
grouping criterion. A sample group in a sample grouping is not limited to being contiguous samples and may
contain non-adjacent samples. As there may be more than one sample grouping for the samples in a track,
each sample grouping has a type field to indicate the type of grouping. For example, a file might contain two
sample groupings for the same track: one based on an assignment of sample to layers and another to sub-
sequences.

Sample groupings are represented by two linked data structures: (1) a SampleToGroup box represents the
assignment of samples to sample groups; (2) a SampleGroupDescription box contains a sample group
entry for each sample group describing the properties of the group. There may be multiple instances of the
SampleToGroup and SampleGroupDescription boxes based on different grouping criteria. These are
distinguished by a type field used to indicate the type of grouping.

A grouping of a particular grouping type may use a parameter in the sample to group mapping; if so, the
meaning of the parameter must be documented with the group. An example of this might be documented the
sync points in a multiplex of several video streams; the group definition might be ‘Is an I frame’, and the group
parameter might be the identifier of each stream. Since the sample to group box occurs once for each stream,
it is now both compact, and informs the reader about each stream separately.

One example of using these tables is to represent the assignments of samples to layers. In this case each
sample group represents one layer, with an instance of the SampleToGroup box describing which layer a
sample belongs to.

8.9.2 Sample to Group Box

8.9.2.1 Definition

Box Type: ‘sbgp’
Container: Sample Table Box (‘stbl’) or Track Fragment Box (‘traf’)
Mandatory: No
Quantity: Zero or more.

ISO/IEC 14496-12:2008(E)

62 PROOF/ÉPREUVE © ISO/IEC 2008 – All rights reserved

This table can be used to find the group that a sample belongs to and the associated description of that
sample group. The table is compactly coded with each entry giving the index of the first sample of a run of
samples with the same sample group descriptor. The sample group description ID is an index that refers to a
SampleGroupDescription box, which contains entries describing the characteristics of each sample group.

There may be multiple instances of this box if there is more than one sample grouping for the samples in a
track. Each instance of the SampleToGroup box has a type code that distinguishes different sample
groupings. Within a track, there shall be at most one instance of this box with a particular grouping type. The
associated SampleGroupDescription shall indicate the same value for the grouping type.

Version 1 of this box should only be used if a grouping type parameter is needed.

8.9.2.2 Syntax

aligned(8) class SampleToGroupBox
 extends FullBox(‘sbgp’, version, 0)
{
 unsigned int(32) grouping_type;
 if (version == 1) {
 unsigned int(32) grouping_type_parameter;
 }
 unsigned int(32) entry_count;
 for (i=1; i <= entry_count; i++)
 {
 unsigned int(32) sample_count;
 unsigned int(32) group_description_index;
 }
}

8.9.2.3 Semantics

version is an integer that specifies the version of this box, either 0 or 1.
grouping_type is an integer that identifies the type (i.e. criterion used to form the sample groups) of

the sample grouping and links it to its sample group description table with the same value for grouping
type. At most one occurrence of this box with the same value for grouping_type (and, if used,
grouping_type_parameter) shall exist for a track.

grouping_type_parameter is an indication of the sub-type of the grouping
entry_count is an integer that gives the number of entries in the following table.
sample_count is an integer that gives the number of consecutive samples with the same sample group

descriptor. If the sum of the sample count in this box is less than the total sample count, then the
reader should effectively extend it with an entry that associates the remaining samples with no group.
It is an error for the total in this box to be greater than the sample_count documented elsewhere,
and the reader behaviour would then be undefined.

group_description_index is an integer that gives the index of the sample group entry which
describes the samples in this group. The index ranges from 1 to the number of sample group entries
in the SampleGroupDescription Box, or takes the value 0 to indicate that this sample is a member
of no group of this type.

8.9.3 Sample Group Description Box

8.9.3.1 Definition

Box Type: ‘sgpd’
Container: Sample Table Box (‘stbl’) or Track Fragment Box (‘traf’)
Mandatory: No
Quantity: Zero or more, with one for each Sample to Group Box.

This description table gives information about the characteristics of sample groups. The descriptive
information is any other information needed to define or characterize the sample group.

ISO/IEC 14496-12:2008(E)

© ISO/IEC 2008 – All rights reserved PROOF/ÉPREUVE 63

There may be multiple instances of this box if there is more than one sample grouping for the samples in a
track. Each instance of the SampleGroupDescription box has a type code that distinguishes different
sample groupings. Within a track, there shall be at most one instance of this box with a particular grouping
type. The associated SampleToGroup shall indicate the same value for the grouping type.

The information is stored in the sample group description box after the entry-count. An abstract entry type is
defined and sample groupings shall define derived types to represent the description of each sample group.
For video tracks, an abstract VisualSampleGroupEntry is used with similar types for audio and hint tracks.

NOTE In version 0 of the entries the base classes for sample group description entries are neither
boxes nor have a size is signaled. For this reason, use of version 0 entries is deprecated. When defining
derived classes, ensure either that they have a fixed size, or that the size is explicitly indicated with a
length field. An implied size (e.g. achieved by parsing the data) is not recommended as this makes
scanning the array difficult.

8.9.3.2 Syntax

// Sequence Entry
abstract class SampleGroupDescriptionEntry (unsigned int(32) grouping_type)
{
}

abstract class VisualSampleGroupEntry (unsigned int(32) grouping_type) extends
SampleGroupDescriptionEntry (grouping_type)
{
}

abstract class AudioSampleGroupEntry (unsigned int(32) grouping_type) extends
SampleGroupDescriptionEntry (grouping_type)
{
}

abstract class HintSampleGroupEntry (unsigned int(32) grouping_type) extends
SampleGroupDescriptionEntry (grouping_type)
{
}

ISO/IEC 14496-12:2008(E)

64 PROOF/ÉPREUVE © ISO/IEC 2008 – All rights reserved

aligned(8) class SampleGroupDescriptionBox (unsigned int(32) handler_type)
 extends FullBox('sgpd', version, 0){
 unsigned int(32) grouping_type;
 if (version==1) { unsigned int(32) default_length; }
 unsigned int(32) entry_count;
 int i;
 for (i = 1 ; i <= entry_count ; i++){
 if (version==1) {
 if (default_length==0) {
 unsigned int(32) description_length;
 }
 }
 switch (handler_type){
 case ‘vide’: // for video tracks
 VisualSampleGroupEntry (grouping_type);
 break;
 case ‘soun’: // for audio tracks
 AudioSampleGroupEntry(grouping_type);
 break;
 case ‘hint’: // for hint tracks
 HintSampleGroupEntry(grouping_type);
 break;
 }
 }
}

8.9.3.3 Semantics

version is an integer that specifies the version of this box.
grouping_type is an integer that identifies the SampleToGroup box that is associated with this

sample group description.
entry_count is an integer that gives the number of entries in the following table.
default_length indicates the length of every group entry (if the length is constant), or zero (0) if it is

variable
description_length indicates the length of an individual group entry, in the case it varies from entry

to entry and default_length is therefore 0

8.9.4 Representation of group structures in Movie Fragments

Support for Sample Group structures within Movie fragments is provided by the use of the SampleToGroup
Box with the container for this Box being the Track Fragment Box (‘traf’). The definition, syntax and
semantics of this Box is as specified in subclause 8.9.2.

The SampleToGroup Box can be used to find the group that a sample in a track fragment belongs to and the
associated description of that sample group. The table is compactly coded with each entry giving the index of
the first sample of a run of samples with the same sample group descriptor. The sample group description ID
is an index that refers to a SampleGroupDescription Box, which contains entries describing the
characteristics of each sample group and present in the SampleTableBox.

There may be multiple instances of the SampleToGroup Box if there is more the one sample grouping for the
samples in a track fragment. Each instance of the SampleToGroup Box has a type code that distinguishes
different sample groupings. The associated SampleGroupDescription shall indicate the same value for
the grouping type.

The total number of samples represented in any SampleToGroup Box in the track fragment must match the
total number of samples in all the track fragment runs. Each SampleToGroup Box documents a different
grouping of the same samples.

ISO/IEC 14496-12:2008(E)

© ISO/IEC 2008 – All rights reserved PROOF/ÉPREUVE 65

Zero or more SampleGroupDescription boxes may also be present in a Track Fragment Box. These
definitions are additional to the definitions provided in the Sample Table of the track in the Movie Box. Group
definitions within a movie fragment can also be referenced and used from within that same movie fragment.

Within the SampleToGroup box in that movie fragment, the group description indexes for groups defined
within the same fragment start at 0x10001, i.e. the index value 1, with the value 1 in the top 16 bits. This
means there must be fewer than 65536 group definitions for this track and grouping type in the sample table in
the Movie Box.

When changing the size of movie fragments, or removing them, these fragment-local group definitions will
need to be merged into the definitions in the movie box, or into the new movie fragments, and the index
numbers in the SampleToGroup box(es) adjusted accordingly. It is recommended that, in this process,
identical (and hence duplicate) definitions not be made in any SampleGroupDescription box, but that
duplicates be merged and the indexes adjusted accordingly.

8.10 User Data

8.10.1 User Data Box

8.10.1.1 Definition

Box Type: ‘udta’
Container: Movie Box (‘moov’) or Track Box (‘trak’)
Mandatory: No
Quantity: Zero or one

This box contains objects that declare user information about the containing box and its data (presentation or
track).

The User Data Box is a container box for informative user-data. This user data is formatted as a set of boxes
with more specific box types, which declare more precisely their content.

Only a copyright notice is defined in this specification.

8.10.1.2 Syntax

aligned(8) class UserDataBox extends Box(‘udta’) {
}

8.10.2 Copyright Box

8.10.2.1 Definition

Box Type: ‘cprt’
Container: User data box (‘udta’)
Mandatory: No
Quantity: Zero or more

The Copyright box contains a copyright declaration which applies to the entire presentation, when contained
within the Movie Box, or, when contained in a track, to that entire track. There may be multiple copyright
boxes using different language codes.

ISO/IEC 14496-12:2008(E)

66 PROOF/ÉPREUVE © ISO/IEC 2008 – All rights reserved

8.10.2.2 Syntax

aligned(8) class CopyrightBox
 extends FullBox(‘cprt’, version = 0, 0) {
 const bit(1) pad = 0;
 unsigned int(5)[3] language; // ISO-639-2/T language code
 string notice;
}

8.10.2.3 Semantics

language declares the language code for the following text. See ISO 639-2/T for the set of three
character codes. Each character is packed as the difference between its ASCII value and 0x60. The
code is confined to being three lower-case letters, so these values are strictly positive.

notice is a null-terminated string in either UTF-8 or UTF-16 characters, giving a copyright notice. If UTF-
16 is used, the string shall start with the BYTE ORDER MARK (0xFEFF), to distinguish it from a UTF-
8 string. This mark does not form part of the final string.

8.10.3 Track Selection Box

8.10.3.1 Introduction

A typical presentation stored in a file contains one alternate group per media type: one for video, one for audio,
etc. Such a file may include several video tracks, although, at any point in time, only one of them should be
played or streamed. This is achieved by assigning all video tracks to the same alternate group. (See
subclause 8.3.2 for the definition of alternate groups.)

All tracks in an alternate group are candidates for media selection, but it may not make sense to switch
between some of those tracks during a session. One may for instance allow switching between video tracks at
different bitrates and keep frame size but not allow switching between tracks of different frame size. In the
same manner it may be desirable to enable selection – but not switching – between tracks of different video
codecs or different audio languages.

The distinction between tracks for selection and switching is addressed by assigning tracks to switch groups in
addition to alternate groups. One alternate group may contain one or more switch groups. All tracks in an
alternate group are candidates for media selection, while tracks in a switch group are also available for
switching during a session. Different switch groups represent different operation points, such as different
frame size, high/low quality, etc.

For the case of non-scalable bitstreams, several tracks may be included in a switch group. The same also
applies to non-layered scalable bitstreams, such as traditional AVC streams.

By labelling tracks with attributes it is possible to characterize them. Each track can be labelled with a list of
attributes which can be used to describe tracks in a particular switch group or differentiate tracks that belong
to different switch groups.

8.10.3.2 Definition

Box Type: ‘tsel’
Container: User Data Box (‘udta’)
Mandatory: No
Quantity: Zero or One

The track selection box is contained in the user data box of the track it modifies.

ISO/IEC 14496-12:2008(E)

© ISO/IEC 2008 – All rights reserved PROOF/ÉPREUVE 67

8.10.3.3 Syntax

aligned(8) class TrackSelectionBox
 extends FullBox(‘tsel’, version = 0, 0) {
 template int(32) switch_group = 0;
 unsigned int(32) attribute_list[]; // to end of the box
}

8.10.3.4 Semantics

switch_group is an integer that specifies a group or collection of tracks. If this field is 0 (default value)
or if the Track Selection box is absent there is no information on whether the track can be used for
switching during playing or streaming. If this integer is not 0 it shall be the same for tracks that can be
used for switching between each other. Tracks that belong to the same switch group shall belong to
the same alternate group. A switch group may have only one member.

attribute_list is a list, to the end of the box, of attributes. The attributes in this list should be used as
descriptions of tracks or differentiation criteria for tracks in the same alternate or switch group. Each
differentiating attribute is associated with a pointer to the field or information that distinguishes the
track.

8.10.3.5 Attributes

The following attributes are descriptive:

Name Attribute Description
Temporal scalability ‘tesc’ The track can be temporally scaled.
Fine-grain SNR
scalability

‘fgsc’ The track can be scaled in terms of quality.

Coarse-grain SNR
scalability

‘cgsc’ The track can be scaled in terms of quality.

Spatial scalability ‘spsc’ The track can be spatially scaled.
Region-of-interest
scalability

‘resc’ The track can be region-of-interest scaled.

View scalability ‘vwsc’ The track can be scaled in terms of number of views.

The following attributes are differentiating:

Name Attribute Pointer
Codec ‘cdec’ Sample Entry (in Sample Description box of media track)
Screen size ‘scsz’ Width and height fields of Visual Sample Entries.
Max packet size ‘mpsz’ Maxpacketsize field in RTP Hint Sample Entry
Media type ‘mtyp’ Handlertype in Handler box (of media track)
Media language ‘mela’ Language field in Media Header box
Bitrate ‘bitr’ Total size of the samples in the track divided by the

duration in the track header box
Frame rate ‘frar’ Number of samples in the track divided by duration in the

track header box
Number of views ‘nvws’ Number of views in the sub track

Descriptive attributes characterize the tracks they modify, whereas differentiating attributes differentiate
between tracks that belong to the same alternate or switch groups. The pointer of a differentiating attribute
indicates the location of the information that differentiates the track from other tracks with the same attribute.

ISO/IEC 14496-12:2008(E)

68 PROOF/ÉPREUVE © ISO/IEC 2008 – All rights reserved

8.11 Metadata Support

A common base structure is used to contain general metadata, called the meta box.

8.11.1 The Meta box

8.11.1.1 Definition

Box Type: ‘meta’
Container: File, Movie Box (‘moov’), Track Box (‘trak’), or Additional Metadata Container Box (‘meco’)
Mandatory: No
Quantity: Zero or one (in File, ‘moov’, and ‘trak’), One or more (in ‘meco’)

A meta box contains descriptive or annotative metadata. The 'meta' box is required to contain a ‘hdlr’
box indicating the structure or format of the ‘meta’ box contents. That metadata is located either within a box
within this box (e.g. an XML box), or is located by the item identified by a primary item box.

All other contained boxes are specific to the format specified by the handler box.

The other boxes defined here may be defined as optional or mandatory for a given format. If they are used,
then they must take the form specified here. These optional boxes include a data-information box, which
documents other files in which metadata values (e.g. pictures) are placed, and a item location box, which
documents where in those files each item is located (e.g. in the common case of multiple pictures stored in the
same file). At most one meta box may occur at each of the file level, movie level, or track level, unless they
are contained in an additional metadata container box (‘meco’).

If an Item Protection Box occurs, then some or all of the meta-data, including possibly the primary resource,
may have been protected and be un-readable unless the protection system is taken into account.

8.11.1.2 Syntax

aligned(8) class MetaBox (handler_type)
 extends FullBox(‘meta’, version = 0, 0) {
 HandlerBox(handler_type) theHandler;
 PrimaryItemBox primary_resource; // optional
 DataInformationBox file_locations; // optional
 ItemLocationBox item_locations; // optional
 ItemProtectionBox protections; // optional
 ItemInfoBox item_infos; // optional
 IPMPControlBox IPMP_control; // optional
 ItemReferenceBox item_refs; // optional
 ItemDataBox item_data; // optional
 Box other_boxes[]; // optional
}

8.11.1.3 Semantics

The structure or format of the metadata is declared by the handler. In the case that the primary data is
identified by a primary item, and that primary item has an item information entry with an item_type,
the handler type may be the same as the item_type.

ISO/IEC 14496-12:2008(E)

© ISO/IEC 2008 – All rights reserved PROOF/ÉPREUVE 69

8.11.2 XML Boxes

8.11.2.1 Definition

Box Type: ‘xml ‘ or ‘bxml’
Container: Meta box (‘meta’)
Mandatory: No
Quantity: Zero or one

When the primary data is in XML format and it is desired that the XML be stored directly in the meta-box, one
of these forms may be used. The Binary XML Box may only be used when there is a single well-defined
binarization of the XML for that defined format as identified by the handler.

Within an XML box the data is in UTF-8 format unless the data starts with a byte-order-mark (BOM), which
indicates that the data is in UTF-16 format.

8.11.2.2 Syntax

aligned(8) class XMLBox
 extends FullBox(‘xml ’, version = 0, 0) {
 string xml;
}

aligned(8) class BinaryXMLBox
 extends FullBox(‘bxml’, version = 0, 0) {
 unsigned int(8) data[]; // to end of box
}

8.11.3 The Item Location Box

8.11.3.1 Definition

Box Type: ‘iloc’
Container: Meta box (‘meta’)
Mandatory: No
Quantity: Zero or one

The item location box provides a directory of resources in this or other files, by locating their containing file,
their offset within that file, and their length. Placing this in binary format enables common handling of this data,
even by systems which do not understand the particular metadata system (handler) used. For example, a
system might integrate all the externally referenced metadata resources into one file, re-adjusting file offsets
and file references accordingly.

The box starts with three or four values, specifying the size in bytes of the offset field, length field,
base_offset field, and, in version 1 of this box, the extent_index fields, respectively. These values must
be from the set {0, 4, 8}.

The construction_method field indicates the ‘construction method’ for the item:

i) file_offset: by the usual absolute file offsets into the file at data_reference_index;
(construction_method == 0)

ii) idat_offset: by box offsets into the idat box in the same meta box; neither the
data_reference_index nor extent_index fields are used; (construction_method == 1)

iii) item_offset: by item offset into the items indicated by a new extent_index field, which is only used
(currently) by this construction method. (construction_method == 2).

The extent_index is only used for the method item_offset; it indicates the 1-based index of the item reference
with referenceType ‘iloc’ linked from this item. If index_size is 0, then the value 1 is implied; the value 0 is
reserved.

ISO/IEC 14496-12:2008(E)

70 PROOF/ÉPREUVE © ISO/IEC 2008 – All rights reserved

Items may be stored fragmented into extents, e.g. to enable interleaving. An extent is a contiguous subset of
the bytes of the resource; the resource is formed by concatenating the extents. If only one extent is used
(extent_count = 1) then either or both of the offset and length may be implied:

• If the offset is not identified (the field has a length of zero), then the beginning of the source (offset 0
into the file, idat box, or other item) is implied.

• If the length is not specified, or specified as zero, then the entire length of the source is implied.
References into the same file as this metadata, or items divided into more than one extent, should
have an explicit offset and length, or use a MIME type requiring a different interpretation of the file, to
avoid infinite recursion.

The size of the item is the sum of the extent lengths.

NOTE Extents may be interleaved with the chunks defined by the sample tables of tracks.

The data-reference index may take the value 0, indicating a reference into the same file as this metadata, or
an index into the data-reference table.

Some referenced data may itself use offset/length techniques to address resources within it (e.g. an MP4 file
might be ‘included’ in this way). Normally such offsets are relative to the beginning of the containing file. The
field ‘base offset’ provides an additional offset for offset calculations within that contained data. For example, if
an MP4 file is included within a file formatted to this specification, then normally data-offsets within that MP4
section are relative to the beginning of file; the base offset adds to those offsets.

If an item is constructed from other items, and those source items are protected, the offset and length
information apply to the source items after they have been de-protected. That is, the target item data is formed
from unprotected source data.

For maximum compatibility, version 0 of this box should be used in preference to version 1 with
construction_method==0, when possible.

ISO/IEC 14496-12:2008(E)

© ISO/IEC 2008 – All rights reserved PROOF/ÉPREUVE 71

8.11.3.2 Syntax

aligned(8) class ItemLocationBox extends FullBox(‘iloc’, version, 0) {
 unsigned int(4) offset_size;
 unsigned int(4) length_size;
 unsigned int(4) base_offset_size;
 if (version == 1)
 unsigned int(4) index_size;
 else
 unsigned int(4) reserved;
 unsigned int(16) item_count;
 for (i=0; i<item_count; i++) {
 unsigned int(16) item_ID;
 if (version == 1) {
 unsigned int(12) reserved = 0;
 unsigned int(4) construction_method;
 }
 unsigned int(16) data_reference_index;
 unsigned int(base_offset_size*8) base_offset;
 unsigned int(16) extent_count;
 for (j=0; j<extent_count; j++) {
 if ((version == 1) && (index_size > 0)) {
 unsigned int(index_size*8) extent_index;
 }
 unsigned int(offset_size*8) extent_offset;
 unsigned int(length_size*8) extent_length;
 }
 }
}

8.11.3.3 Semantics

offset_size is taken from the set {0, 4, 8} and indicates the length in bytes of the offset field.
length_size is taken from the set {0, 4, 8} and indicates the length in bytes of the length field.
base_offset_size is taken from the set {0, 4, 8} and indicates the length in bytes of the base_offset

field.
index_size is taken from the set {0, 4, 8} and indicates the length in bytes of the extent_index field.
item_count counts the number of resources in the following array.
item_ID is an arbitrary integer ‘name’ for this resource which can be used to refer to it (e.g. in a URL).
construction_method is taken from the set 0 (file), 1 (idat) or 2 (item)
data-reference-index is either zero (‘this file’) or a 1-based index into the data references in the data

information box.
base_offset provides a base value for offset calculations within the referenced data. If

base_offset_size is 0, base_offset takes the value 0, i.e. it is unused.
extent_count provides the count of the number of extents into which the resource is fragmented; it

must have the value 1 or greater
extent_index provides an index as defined for the construction method
extent_offset provides the absolute offset in bytes from the beginning of the containing file, of this

item. If offset_size is 0, offset takes the value 0
extent_length provides the absolute length in bytes of this metadata item. If length_size is 0,

length takes the value 0. If the value is 0, then length of the item is the length of the entire
referenced file.

ISO/IEC 14496-12:2008(E)

72 PROOF/ÉPREUVE © ISO/IEC 2008 – All rights reserved

8.11.4 Primary Item Box

8.11.4.1 Definition

Box Type: ‘pitm’
Container: Meta box (‘meta’)
Mandatory: No
Quantity: Zero or one

For a given handler, the primary data may be one of the referenced items when it is desired that it be stored
elsewhere, or divided into extents; or the primary metadata may be contained in the meta-box (e.g. in an XML
box). Either this box must occur, or there must be a box within the meta-box (e.g. an XML box) containing the
primary information in the format required by the identified handler.

8.11.4.2 Syntax

aligned(8) class PrimaryItemBox
 extends FullBox(‘pitm’, version = 0, 0) {
 unsigned int(16) item_ID;
}

8.11.4.3 Semantics

item_ID is the identifier of the primary item

8.11.5 Item Protection Box

8.11.5.1 Definition

Box Type: ‘ipro’
Container: Meta box (‘meta’)
Mandatory: No
Quantity: Zero or one

The item protection box provides an array of item protection information, for use by the Item Information Box.

8.11.5.2 Syntax

aligned(8) class ItemProtectionBox
 extends FullBox(‘ipro’, version = 0, 0) {
 unsigned int(16) protection_count;
 for (i=1; i<=protection_count; i++) {
 ProtectionSchemeInfoBox protection_information;
 }
}

8.11.6 Item Information Box

8.11.6.1 Definition

Box Type: ‘iinf’
Container: Meta Box (‘meta’)
Mandatory: No
Quantity: Zero or one

The Item information box provides extra information about selected items, including symbolic (‘file’) names. It
may optionally occur, but if it does, it must be interpreted, as item protection or content encoding may have
changed the format of the data in the item. If both content encoding and protection are indicated for an item, a

ISO/IEC 14496-12:2008(E)

© ISO/IEC 2008 – All rights reserved PROOF/ÉPREUVE 73

reader should first un-protect the item, and then decode the item’s content encoding. If more control is needed,
an IPMP sequence code may be used.

This box contains an array of entries, and each entry is formatted as a box. This array is sorted by increasing
item_ID in the entry records.

Three versions of the item info entry are defined. Version 1 includes additional information to version 0 as
specified by an extension type. For instance, it shall be used with extension type 'fdel' for items that are
referenced by the file partition box ('fpar'), which is defined for source file partitionings and applies to file
delivery transmissions. Version 2 provides an alternative structure in which metadata item types are indicated
by a 32-bit (typically 4-character) registered or defined code; two of these codes are defined to indicate a
MIME type or metadata typed by a URI.

If no extension is desired, the box may terminate without the extension_type field and the extension; if, in
addition, content_encoding is not desired, that field also may be absent and the box terminate before it. If
an extension is desired without an explicit content_encoding, a single null byte, signifying the empty string,
must be supplied for the content_encoding, before the indication of extension_type.

If file delivery item information is needed and a version 2 ItemInfoEntry is used, then the file delivery
information is stored (a) as a separate item of type ‘fdel’) (b) linked by an item reference from the item, to the
file delivery information, of type ‘fdel’. There must be exactly one such reference if file delivery information is
needed.

It is possible that there are valid URI forms for MPEG-7 metadata (e.g. a schema URI with a fragment
identifying a particular element), and it may be possible that these structures could be used for MPEG-7.
However, there is explicit support for MPEG-7 in ISO base media file format family files, and this explicit
support is preferred as it allows, among other things:

a) incremental update of the metadata (logically, I/P coding, in video terms) whereas this draft is ‘I-frame
only’;

b) binarization and thus compaction;

c) the use of multiple schemas.

Therefore, the use of these structures for MPEG-7 is deprecated (and undocumented).

Information on URI forms for some metadata systems can be found in Annex G.

8.11.6.2 Syntax

aligned(8) class ItemInfoExtension(unsigned int(32) extension_type)
{
}
aligned(8) class FDItemInfoExtension() extends ItemInfoExtension (’fdel’)
{
 string content_location;
 string content_MD5;
 unsigned int(64) content_length;
 unsigned int(64) transfer_length;
 unsigned int(8) entry_count;
 for (i=1; i <= entry_count; i++)
 unsigned int(32) group_id;
}

ISO/IEC 14496-12:2008(E)

74 PROOF/ÉPREUVE © ISO/IEC 2008 – All rights reserved

aligned(8) class ItemInfoEntry
 extends FullBox(‘infe’, version, 0) {
 if ((version == 0) || (version == 1)) {
 unsigned int(16) item_ID;
 unsigned int(16) item_protection_index
 string item_name;
 string content_type;
 string content_encoding; //optional
 }
 if (version == 1) {
 unsigned int(32) extension_type; //optional
 ItemInfoExtension(extension_type); //optional
 }
 if (version == 2) {
 unsigned int(16) item_ID;
 unsigned int(16) item_protection_index;
 unsigned int(32) item_type;

 string item_name;
 if (item_type==’mime’) {
 string content_type;
 string content_encoding; //optional
 } else if (item_type == ‘uri ‘) {
 string item_uri_type;
 }
 }
}

aligned(8) class ItemInfoBox
 extends FullBox(‘iinf’, version = 0, 0) {
 unsigned int(16) entry_count;
 ItemInfoEntry[entry_count] item_infos;
}

8.11.6.3 Semantics

item_id contains either 0 for the primary resource (e.g., the XML contained in an ‘xml ‘ box) or the ID
of the item for which the following information is defined.

item_protection_index contains either 0 for an unprotected item, or the one-based index into the
item protection box defining the protection applied to this item (the first box in the item protection box
has the index 1).

item_name is a null-terminated string in UTF-8 characters containing a symbolic name of the item
(source file for file delivery transmissions).

item_type is a 32-bit value, typically 4 printable characters, that is a defined valid item type indicator,
such as ‘mime’

content_type is a null-terminated string in UTF-8 characters with the MIME type of the item. If the item
is content encoded (see below), then the content type refers to the item after content decoding.

item_uri_type is a string that is an absolute URI, that is used as a type indicator.
content_encoding is an optional null-terminated string in UTF-8 characters used to indicate that the

binary file is encoded and needs to be decoded before interpreted. The values are as defined for
Content-Encoding for HTTP/1.1. Some possible values are “gzip”, “compress” and “deflate”. An empty
string indicates no content encoding. Note that the item is stored after the content encoding has been
applied.

extension_type is a printable four-character code that identifies the extension fields of version 1 with
respect to version 0 of the Item information entry.

content_location is a null-terminated string in UTF-8 characters containing the URI of the file as
defined in HTTP/1.1 (RFC 2616).

content_MD5 is a null-terminated string in UTF-8 characters containing an MD5 digest of the file. See
HTTP/1.1 (RFC 2616) and RFC 1864.

content_length gives the total length (in bytes) of the (un-encoded) file.
transfer_length gives the total length (in bytes) of the (encoded) file. Note that transfer length is

equal to content length if no content encoding is applied (see above).
entry_count provides a count of the number of entries in the following array.

ISO/IEC 14496-12:2008(E)

© ISO/IEC 2008 – All rights reserved PROOF/ÉPREUVE 75

group_ID indicates a file group to which the file item (source file) belongs. See 3GPP TS 26.346 for
more details on file groups.

8.11.7 Additional Metadata Container Box

8.11.7.1 Definition

Box Type: ‘meco’
Container: File, Movie Box (‘moov’), or Track Box (‘trak’)
Mandatory: No
Quantity: Zero or one

The additional metadata container box includes one or more meta boxes. It can be carried at the top level of
the file, in the Movie Box (‘moov’), or in the Track Box (‘trak’) and shall only be present if it is
accompanied by a meta box in the same container. A meta box that is not contained in the additional
metadata container box is the preferred (primary) meta box. Meta boxes in the additional metadata container
box complement or give alternative metadata information. The usage of multiple meta boxes may be desirable
when, e.g., a single handler is not capable of processing all metadata. All meta boxes at a certain level,
including the preferred one and those contained in the additional metadata container box, must have different
handler types.

A meta box contained in an additional metadata container box shall contain a primary Item box or the primary
data box required by the handler (e.g., an XML Box). It shall not include boxes or syntax elements concerning
items other than the primary item indicated by the present primary item box or XML box. URLs in a meta box
contained in an additional metadata container box are relative to the context of the preferred meta box.

8.11.7.2 Syntax

aligned(8) class AdditionalMetadataContainerBox extends Box('meco') {
}

8.11.8 Metabox Relation Box

8.11.8.1 Definition

Box Type: ‘mere’
Container: Additional Metadata Container Box (‘meco’)
Mandatory: No
Quantity: Zero or more

The metabox relation box indicates a relation between two meta boxes at the same level, i.e., the top level of
the file, the Movie Box, or Track Box. The relation between two meta boxes is unspecified if there is no
metabox relation box for those meta boxes. Meta boxes are referenced by specifying their handler types.

8.11.8.2 Syntax

aligned(8) class MetaboxRelationBox
 extends FullBox('mere', version=0, 0) {
 unsigned int(32) first_metabox_handler_type;
 unsigned int(32) second_metabox_handler_type;
 unsigned int(8) metabox_relation;
}

ISO/IEC 14496-12:2008(E)

76 PROOF/ÉPREUVE © ISO/IEC 2008 – All rights reserved

8.11.8.3 Semantics

first_metabox_handler_type indicates the first meta box to be related.
second_metabox_handler_type indicates the second meta box to be related.
metabox_relation indicates the relation between the two meta boxes. The following values are

defined:
1 The relationship between the boxes is unknown (which is the default when this box is

not present);
2 the two boxes are semantically un-related (e.g., one is presentation, the other

annotation);
3 the two boxes are semantically related but complementary (e.g., two disjoint sets of

meta-data expressed in two different meta-data systems);

4 the two boxes are semantically related but overlap (e.g., two sets of meta-data
neither of which is a subset of the other); neither is ‘preferred’ to the other;

5 the two boxes are semantically related but the second is a proper subset or weaker
version of the first; the first is preferred;

6 the two boxes are semantically related and equivalent (e.g., two essentially identical
sets of meta-data expressed in two different meta-data systems).

8.11.9 URL Forms for meta boxes

When a meta-box is used, then URLs may be used to refer to items in the meta-box, either using an absolute
URL, or using a relative URL. Absolute URLs may only be used to refer to items in a file-level meta box.

When interpreting data that is in the context of a meta-box (i.e. the file for a file-level meta-box, the
presentation for a movie-level meta-box, or the track for a track-level meta-box), the items in the meta-box are
treated as shadowing files in the same location as that from which the container file came. This shadowing
means that a reference to another file in the same location as the container file may be resolved to an item
within the container file itself. Items can be addressed within the container file by appending a fragment to the
URL for the container file itself. That fragment starts with the “#” character and consists of either:

b) item_ID=<n>, identifying the item by its ID (the ID may be 0 for the primary resource);

c) item_name=<item_name>, when the item information box is used.

If a fragment within the contained item must be addressed, then the initial “#” character of that fragment is
replaced by “*”.

Consider the following example: <http://a.com/d/v.qrv#item_name=tree.html*branch1>. We
assume that v.qrv is a file with a meta-box at the file level. First, the client strips the fragment and fetches
v.qrv from a.com using HTTP. It then inspects the top-level meta box and adds the items in it, logically, to its
cache of the directory “d” on a.com. It then re-forms the URL as <http://a.com/d/tree.html#branch1>.
Note that the fragment has been elevated to a full file name, and the first “*” has been transformed back into a
“#”. The client then either finds an item named tree.html in the meta box, or fetches tree.html from
a.com, and it then finds the anchor “branch1” within tree.html. If within that html, a file was referenced
using a relative URL, e.g. “flower.gif”, then the client converts this to an absolute URL using the normal
rules: <http://a.com/d/flower.gif> and again it checks to see if flower.gif is a named item (and
hence shadowing a separate file of this name), and then if it is not, fetches flower.gif from a.com.

8.11.10 Static Metadata

This section defines the storage of static (un-timed) metadata in the ISO file format family.

Reader support for metadata in general is optional, and therefore it is also optional for the formats defined
here or elsewhere, unless made mandatory by a derived specification.

ISO/IEC 14496-12:2008(E)

© ISO/IEC 2008 – All rights reserved PROOF/ÉPREUVE 77

8.11.10.1 Simple textual

There is existing support for simple textual tags in the form of the user-data boxes; currently only one is
defined – the copyright notice. Other metadata is permitted using this simple form if:

a) it uses a registered box-type or it uses the UUID escape (the latter is permitted today);

b) it uses a registered tag, the equivalent MPEG-7 construct must be documented as part of the
registration.

8.11.10.2 Other forms

When other forms of metadata are desired, then a ‘meta’ box as defined above may be included at the
appropriate level of the document. If the document is intended to be primarily a metadata document per se,
then the meta box is at file level. If the metadata annotates an entire presentation, then the meta box is at the
movie level; an entire stream, at the track level.

8.11.10.3 MPEG-7 metadata

MPEG-7 metadata is stored in meta boxes to this specification.

1) The handler-type is ‘mp7t’ for textual metadata in Unicode format;

2) The handler-type is ‘mp7b’ for binary metadata compressed in the BIM format. In this case, the
binary XML box contains the configuration information immediately followed by the binarized XML.

3) When the format is textual, there is either another box in the metadata container ‘meta’, called ‘xml
‘, which contains the textual MPEG-7 document, or there is a primary item box identifying the item
containing the MPEG-7 XML.

4) When the format is binary, there is either another box in the metadata container ‘meta’, called
‘bxml‘, which contains the binary MPEG-7 document, or a primary item box identifying the item
containing the MPEG-7 binarized XML.

5) If an MPEG-7 box is used at the file level, then the brand ‘mp71’ should be a member of the
compatible-brands list in the file-type box.

8.11.11 Item Data Box

8.11.11.1 Definition

Box Type: ‘idat’
Container: Metadata box (‘meta’)
Mandatory: No
Quantity: Zero or one

This box contains the data of metadata items that use the construction method indicating that an item’s data
extents are stored within this box.

8.11.11.2 Syntax

aligned(8) class ItemDataBox extends Box(‘idat’) {
 bit(8) data[];
}

8.11.11.3 Semantics

data is the contained meta data

ISO/IEC 14496-12:2008(E)

78 PROOF/ÉPREUVE © ISO/IEC 2008 – All rights reserved

8.11.12 Item Reference Box

8.11.12.1 Definition

Box Type: ‘iref’
Container: Metadata box (‘meta’)
Mandatory: No
Quantity: Zero or one

The item reference box allows the linking of one item to others via typed references. All the references for one
item of a specific type are collected into a single item type reference box, whose type is the reference type,
and which has a ‘from item ID’ field indicating which item is linked. The items linked to are then represented by
an array of ‘to item ID’s. All these single item type reference boxes are then collected into the item reference
box. The reference types defined for the track reference box defined in 8.3.3 may be used here if appropriate,
or other registered reference types.

NOTE: This design makes it fairly easy to find all the references of a specific type, or from a specific item.

8.11.12.2 Syntax

aligned(8) class SingleItemTypeReferenceBox(referenceType) extends
Box(referenceType) {
 unsigned int(16) from_item_ID;
 unsigned int(16) reference_count;
 for (j=0; j<reference_count; j++) {
 unsigned int(16) to_item_ID;
 }
}
aligned(8) class ItemReferenceBox extends FullBox(‘iref’, version=0, 0) {
 SingleItemTypeReferenceBox references[];
}

8.11.12.3 Semantics

reference_type contains an indication of the type of the reference
from_item_id contains the ID of the item that refers to other items
reference_count is the number of references
to_item_id contains the ID of the item referred to

8.11.13 Auxiliary video metadata

An auxiliary video track used for depth or parallax information may carry a meta-data item of type ‘auvd’
(auxiliary video descriptor); the data of that item is exactly one si_rbsp() as specified in ISO/IEC 23002-3.
(Note that si_rbsp() is externally framed, and the length is supplied by the item location information in the file
format). There may be more than one of these meta-data items (e.g. one for parallax info and one for depth, in
the case that the same stream serves).

8.12 Support for Protected Streams

This section documents the file-format transformations which are used for protected content. These
transformations can be used under several circumstances:

 They must be used when the content has been transformed (e.g. by encryption) in such a way that it
can no longer be decoded by the normal decoder;

 They may be used when the content should only be decoded when the protection system is
understood and implemented.

ISO/IEC 14496-12:2008(E)

© ISO/IEC 2008 – All rights reserved PROOF/ÉPREUVE 79

The transformation functions by encapsulating the original media declarations. The encapsulation changes the
four-character-code of the sample entries, so that protection-unaware readers see the media stream as a new
stream format.

Because the format of a sample entry varies with media-type, a different encapsulating four-character-code is
used for each media type (audio, video, text etc.). They are:

Stream (Track) Type Sample-Entry Code

Video encv

Audio enca

Text enct

System encs

The transformation of the sample description is described by the following procedure:

1) The four-character-code of the sample description is replaced with a four-character-code indicating
protection encapsulation: these codes vary only by media-type. For example, ‘mp4v’ is replaced with
‘encv’ and ‘mp4a’ is replaced with ‘enca’.

2) A ProtectionSchemeInfoBox (defined below) is added to the sample description, leaving all other
boxes unmodified.

3) The original sample entry type (four-character-code) is stored within the
ProtectionSchemeInfoBox, in a new box called the OriginalFormatBox (defined below);

There are then three methods for signalling the nature of the protection, which may be used individually or in
combination.

1) When MPEG-4 systems is used, then IPMP must be used to signal that the streams are protected.

2) IPMP descriptors may also be used outside the MPEG-4 systems context using boxes containing
IPMP descriptors.

3) The protection applied may also be described using the scheme type and information boxes.

When IPMP is used outside of MPEG-4 systems, then a ‘global’ IPMPControlBox may also occur within the
‘moov’ atom.

NOTE When MPEG-4 systems is used, an MPEG-4 systems terminal can effectively treat, for example,
‘encv’ with an Original Format of ‘mp4v’ exactly the same as ‘mp4v’, by using the IPMP descriptors.

8.12.1 Protection Scheme Information Box

8.12.1.1 Definition

Box Types: ‘sinf’
Container: Protected Sample Entry, or Item Protection Box (‘ipro’)
Mandatory: Yes
Quantity: Exactly oneOne or More

The Protection Scheme Information Box contains all the information required both to understand the
encryption transform applied and its parameters, and also to find other information such as the kind and
location of the key management system. It also documents the original (unencrypted) format of the media.
The Protection Scheme Information Box is a container Box. It is mandatory in a sample entry that uses a code
indicating a protected stream.

ISO/IEC 14496-12:2008(E)

80 PROOF/ÉPREUVE © ISO/IEC 2008 – All rights reserved

When used in a protected sample entry, this box must contain the original format box to document the original
format. At least one of the following signalling methods must be used to identify the protection applied:

a) MPEG-4 systems with IPMP: no other boxes, when IPMP descriptors in MPEG-4 systems streams
are used;

b) Scheme signalling: a SchemeTypeBox and SchemeInformationBox, when these are used (either
both must occur, or neither).

At least one protection scheme information box must occur in a protected sample entry. When more than one
occurs, they are equivalent, alternative, descriptions of the same protection. Readers should choose one to
process.

8.12.1.2 Syntax

aligned(8) class ProtectionSchemeInfoBox(fmt) extends Box('sinf') {
 OriginalFormatBox(fmt) original_format;

 SchemeTypeBox scheme_type_box; // optional
 SchemeInformationBox info; // optional
}

8.12.2 Original Format Box

8.12.2.1 Definition

Box Types: ‘frma’
Container: Protection Scheme Information Box (‘sinf’) or Restricted Scheme Information Box (‘rinf’)
Mandatory: Yes when used in a protected sample entry or in a restricted sample entry
Quantity: Exactly one

The Original Format Box ‘frma’ contains the four-character-code of the original un-transformed sample
description:

8.12.2.2 Syntax

aligned(8) class OriginalFormatBox(codingname) extends Box ('frma') {
 unsigned int(32) data_format = codingname;
 // format of decrypted, encoded data (in case of protection)
 // or un-transformed sample entry (in case of restriction)
}

8.12.2.3 Semantics

data_format is the four-character-code of the original un-transformed sample entry (e.g. “mp4v” if the
stream contains protected or restricted MPEG-4 visual material).

8.12.3 IPMPInfoBox

(empty sub-clause)

8.12.4 IPMP Control Box

(empty sub-clause)

ISO/IEC 14496-12:2008(E)

© ISO/IEC 2008 – All rights reserved PROOF/ÉPREUVE 81

8.12.5 Scheme Type Box

8.12.5.1 Definition

Box Types: ‘schm’
Container: Protection Scheme Information Box (‘sinf’), Restricted Scheme Information Box (‘rinf’),
 or SRTP Process box (‘srpp‘)
Mandatory: No
Quantity: Zero or one in ‘sinf’, depending on the protection structure; Exactly one in ‘rinf’ and ‘srpp’

The Scheme Type Box (‘schm’) identifies the protection or restriction scheme.

8.12.5.2 Syntax

aligned(8) class SchemeTypeBox extends FullBox('schm', 0, flags) {
 unsigned int(32) scheme_type; // 4CC identifying the scheme
 unsigned int(32) scheme_version; // scheme version
 if (flags & 0x000001) {
 unsigned int(8) scheme_uri[]; // browser uri
 }
}

8.12.5.3 Semantics

scheme_type is the code defining the protection or restriction scheme.
scheme_version is the version of the scheme (used to create the content)
scheme_URI allows for the option of directing the user to a web-page if they do not have the scheme

installed on their system. It is an absolute URI formed as a null-terminated string in UTF-8 characters.

8.12.6 Scheme Information Box

8.12.6.1 Definition

Box Types: ‘schi’
Container: Protection Scheme Information Box (‘sinf’), Restricted Scheme Information Box (‘rinf’),
 or SRTP Process box (‘srpp‘)
Mandatory: No
Quantity: Zero or one

The Scheme Information Box is a container Box that is only interpreted by the scheme being used. Any
information the encryption or restriction system needs is stored here. The content of this box is a series of
boxes whose type and format are defined by the scheme declared in the Scheme Type Box.

8.12.6.2 Syntax

aligned(8) class SchemeInformationBox extends Box('schi') {
 Box scheme_specific_data[];
}

8.13 File Delivery Format Support

8.13.1 Introduction

Files intended for transmission over ALC/LCT or FLUTE are stored as items in a top-level meta box (‘meta’).
The item location box (‘iloc’) specifies the actual storage location of each item within the container file as
well as the file size of each item. File name, content type (MIME type), etc., of each item are provided by
version 1 of the item information box (‘iinf’).

ISO/IEC 14496-12:2008(E)

82 PROOF/ÉPREUVE © ISO/IEC 2008 – All rights reserved

Pre-computed FEC reservoirs are stored as additional items in the meta box. If a source file is split into
several source blocks, FEC reservoirs for each source block are stored as separate items. The relationship
between FEC reservoirs and original source items is recorded in the partition entry box ('paen') located in
the FD item information box ('fiin').

Pre-composed File reservoirs are stored as additional items in the container file. If a source file is split into
several source blocks, each source block is stored as a separate item called a File reservoir. The relationship
between File reservoirs and original source items is recorded in the partition entry box ('paen') located in the
FD item information box ('fiin').

See subclause 9.2 for more details on the usage of the file delivery format.

8.13.2 FD Item Information Box

8.13.2.1 Definition

Box Type: ‘fiin’
Container: Meta Box (‘meta’)
Mandatory: No
Quantity: Zero or one

The FD item information box is optional, although it is mandatory for files using FD hint tracks. It provides
information on the partitioning of source files and how FD hint tracks are combined into FD sessions. Each
partition entry provides details on a particular file partitioning, FEC encoding and associated File and FEC
reservoirs. It is possible to provide multiple entries for one source file (identified by its item ID) if alternative
FEC encoding schemes or partitionings are used in the file. All partition entries are implicitly numbered and
the first entry has number 1.

8.13.2.2 Syntax

aligned(8) class PartitionEntry extends Box('paen') {
 FilePartitionBox blocks_and_symbols;
 FECReservoirBox FEC_symbol_locations; //optional
 FileReservoirBox File_symbol_locations; //optional
}

aligned(8) class FDItemInformationBox
 extends FullBox('fiin', version = 0, 0) {
 unsigned int(16) entry_count;
 PartitionEntry partition_entries[entry_count];
 FDSessionGroupBox session_info; //optional
 GroupIdToNameBox group_id_to_name; //optional
}

8.13.2.3 Semantics

entry_count provides a count of the number of entries in the following array.

The semantics of the boxes are described where the boxes are documented.

8.13.3 File Partition Box

8.13.3.1 Definition

Box Type: ‘fpar’
Container: Partition Entry (‘paen’)
Mandatory: Yes
Quantity: Exactly one

ISO/IEC 14496-12:2008(E)

© ISO/IEC 2008 – All rights reserved PROOF/ÉPREUVE 83

The File Partition box identifies the source file and provides a partitioning of that file into source blocks and
symbols. Further information about the source file, e.g., filename, content location and group IDs, is contained
in the Item Information box ('iinf'), where the Item Information entry corresponding to the item ID of the
source file is of version 1 and includes a File Delivery Item Information Extension ('fdel').

8.13.3.2 Syntax

aligned(8) class FilePartitionBox
 extends FullBox('fpar', version = 0, 0) {
 unsigned int(16) item_ID;
 unsigned int(16) packet_payload_size;
 unsigned int(8) reserved = 0;
 unsigned int(8) FEC_encoding_ID;
 unsigned int(16) FEC_instance_ID;
 unsigned int(16) max_source_block_length;
 unsigned int(16) encoding_symbol_length;
 unsigned int(16) max_number_of_encoding_symbols;
 string scheme_specific_info;
 unsigned int(16) entry_count;
 for (i=1; i <= entry_count; i++) {
 unsigned int(16) block_count;
 unsigned int(32) block_size;
 }
}

8.13.3.3 Semantics

item_ID references the item in the item location box ('iloc') that the file partitioning applies to.
packet_payload_size gives the target ALC/LCT or FLUTE packet payload size of the partitioning

algorithm. Note that UDP packet payloads are larger, as they also contain ALC/LCT or FLUTE
headers.

FEC_encoding_ID identifies the FEC encoding scheme and is subject to IANA registration (see
RFC 5052). Note that i) value zero corresponds to the "Compact No-Code FEC scheme" also known
as "Null-FEC" (RFC 3695); ii) value one corresponds to the “MBMS FEC” (3GPP TS 26.346); iii) for
values in the range of 0 to 127, inclusive, the FEC scheme is Fully-Specified, whereas for values in
the range of 128 to 255, inclusive, the FEC scheme is Under-Specified.

FEC_instance_ID provides a more specific identification of the FEC encoder being used for an Under-
Specified FEC scheme. This value should be set to zero for Fully-Specified FEC schemes and shall
be ignored when parsing a file with FEC_encoding_ID in the range of 0 to 127, inclusive.
FEC_instance_ID is scoped by the FEC_encoding_ID. See RFC 5052 for further details.

max_source_block_length gives the maximum number of source symbols per source block.
encoding_symbol_length gives the size (in bytes) of one encoding symbol. All encoding symbols of

one item have the same length, except the last symbol which may be shorter.
max_number_of_encoding_symbols gives the maximum number of encoding symbols that can be

generated for a source block for those FEC schemes in which the maximum number of encoding
symbols is relevant, such as FEC encoding ID 129 defined in RFC 5052. For those FEC schemes in
which the maximum number of encoding symbols is not relevant, the semantics of this field is
unspecified.

scheme_specific_info is a base64-encoded null-terminated string of the scheme-specific object
transfer information (FEC-OTI-Scheme-Specific-Info). The definition of the information depends on the
FEC encoding ID.

entry_count gives the number of entries in the list of (block_count, block_size) pairs that
provides a partitioning of the source file. Starting from the beginning of the file, each entry indicates
how the next segment of the file is divided into source blocks and source symbols.

block_count indicates the number of consecutive source blocks of size block_size.
block_size indicates the size of a block (in bytes). A block_size that is not a multiple of the

encoding_symbol_length symbol size indicates with Compact No-Code FEC that the last source
symbols includes padding that is not stored in the item. With MBMS FEC (3GPP TS 26.346) the
padding may extend across multiple symbols but the size of padding should never be more than
encoding_symbol_length.

ISO/IEC 14496-12:2008(E)

84 PROOF/ÉPREUVE © ISO/IEC 2008 – All rights reserved

8.13.4 FEC Reservoir Box

8.13.4.1 Definition

Box Type: ‘fecr’
Container: Partition Entry (‘paen’)
Mandatory: No
Quantity: Zero or One

The FEC reservoir box associates the source file identified in the file partition box ('fpar') with FEC
reservoirs stored as additional items. It contains a list that starts with the first FEC reservoir associated with
the first source block of the source file and continues sequentially through the source blocks of the source file.

8.13.4.2 Syntax

aligned(8) class FECReservoirBox
 extends FullBox('fecr', version = 0, 0) {
 unsigned int(16) entry_count;
 for (i=1; i <= entry_count; i++) {
 unsigned int(16) item_ID;
 unsigned int(32) symbol_count;
 }
}

8.13.4.3 Semantics

entry_count gives the number of entries in the following list. An entry count here should match the
total number of blocks in the corresponding file partition box.

item_ID indicates the location of the FEC reservoir associated with a source block.
symbol_count indicates the number of repair symbols contained in the FEC reservoir.

8.13.5 FD Session Group Box

8.13.5.1 Definition

Box Type: ‘segr’
Container: FD Information Box (‘fiin’)
Mandatory: No
Quantity: Zero or One

The FD session group box is optional, although it is mandatory for files containing more than one FD hint track.
It contains a list of sessions as well as all file groups and hint tracks that belong to each session. An FD
session sends simultaneously over all FD hint tracks (channels) that are listed in the FD session group box for
a particular FD session.

Only one session group should be processed at any time. The first listed hint track in a session group
specifies the base channel. If the server has no preference between the session groups, the default choice
should be the first session group. The group IDs of all file groups containing the files referenced by the hint
tracks shall be included in the list of file groups. The file group IDs can in turn be translated into file group
names (using the group ID to name box) that can be included by the server in FDTs.

ISO/IEC 14496-12:2008(E)

© ISO/IEC 2008 – All rights reserved PROOF/ÉPREUVE 85

8.13.5.2 Syntax

aligned(8) class FDSessionGroupBox extends Box('segr') {
 unsigned int(16) num_session_groups;
 for(i=0; i < num_session_groups; i++) {
 unsigned int(8) entry_count;
 for (j=0; j < entry_count; j++) {
 unsigned int(32) group_ID;
 }
 unsigned int(16) num_channels_in_session_group;
 for(k=0; k < num_channels_in_session_group; k++) {
 unsigned int(32) hint_track_id;
 }
 }
}

8.13.5.3 Semantics

num_session_groups specifies the number of session groups.
entry_count gives the number of entries in the following list comprising all file groups that the session

group complies with. The session group contains all files included in the listed file groups as specified
by the item information entry of each source file. Note that the FDT for the session group should only
contain those groups that are listed in this structure.

group_ID indicates a file group that the session group complies with.
num_channels_in_session_groups specifies the number of channels in the session group. The

value of num_channels_in_session_groups shall be a positive integer.
hint_track_ID specifies the track ID of the FD hint track belonging to a particular session group. Note

that one FD hint track corresponds to one LCT channel.

8.13.6 Group ID to Name Box

8.13.6.1 Definition

Box Type: ‘gitn’
Container: FD Information Box (‘fiin’)
Mandatory: No
Quantity: Zero or One

The Group ID to Name box associates file group names to file group IDs used in the version 1 item
information entries in the item information box ('iinf').

8.13.6.2 Syntax

aligned(8) class GroupIdToNameBox
 extends FullBox('gitn', version = 0, 0) {
 unsigned int(16) entry_count;
 for (i=1; i <= entry_count; i++) {
 unsigned int(32) group_ID;
 string group_name;
 }
}

8.13.6.3 Semantics

entry_count gives the number of entries in the following list.
group_ID indicates a file group.
group_name is a null-terminated string in UTF-8 characters containing a file group name.

ISO/IEC 14496-12:2008(E)

86 PROOF/ÉPREUVE © ISO/IEC 2008 – All rights reserved

8.13.7 File Reservoir Box

8.13.7.1 Definition

Box Type: ‘fire’
Container: Partition Entry (‘paen’)
Mandatory: No
Quantity: Zero or One

The File reservoir box associates the source file identified in the file partition box ('fpar') with File reservoirs
stored as additional items. It contains a list that starts with the first File reservoir associated with the first
source block of the source file and continues sequentially through the source blocks of the source file.

8.13.7.2 Syntax

aligned(8) class FileReservoirBox
 extends FullBox('fire', version = 0, 0) {
 unsigned int(16) entry_count;
 for (i=1; i <= entry_count; i++) {
 unsigned int(16) item_ID;
 unsigned int(32) symbol_count;
 }
}

8.13.7.3 Semantics

entry_count gives the number of entries in the following list. An entry count here should match the
total number or blocks in the corresponding file partition box.

item_ID indicates the location of the File reservoir associated with a source block.
symbol_count indicates the number of source symbols contained in the File reservoir.

8.14 Sub tracks

8.14.1 Introduction

Sub tracks are used to assign parts of tracks to alternate and switch groups in the same way as (entire) tracks
can be assigned to alternate and switch groups to indicate whether those tracks are alternatives to each other
and whether it makes sense to switch between them during a session. Sub tracks are suitable for layered
media, e.g., SVC and MVC, where media alternatives often are incommensurate with track structures. By
defining alternate and switch groups at sub-track level it is possible to use existing rules for media selection
and switching for such layered codecs. The over-all syntax is generic for all kinds of media and backward
compatible with track-level definitions. Sub-track level alternate and switch groups use the same numbering
as track level groups. The numberings are global over all tracks such that groups can be defined across track
and sub-track boundaries.

In order to define sub tracks, media-specific definitions are required. Definitions for SVC and MVC are
specified in the AVC file format (ISO/IEC 14496-15). Another way is to define sample groups and map them to
sub tracks using the Sub Track Sample Group box defined here. The syntax can also be extended to include
other media-specific definitions.

For each sub track that shall be defined a Sub Track box shall be included in the User Data box of the
corresponding track. The Sub Track box contains objects that define and provide information about a sub
track in the same track. The Track Selection box for this same track is already located here.

8.14.2 Backward compatibility

The default is to assign alternate and switch groups to 0 (zero) for (entire) tracks, which means that there is no
information on alternate and/or switch groups for those (entire) tracks. However, file readers that are aware of

ISO/IEC 14496-12:2008(E)

© ISO/IEC 2008 – All rights reserved PROOF/ÉPREUVE 87

sub-track definitions will be able to find sub-track information on alternate and switch groups even if the track
indication is set to 0. This way it is possible to indicate that a file can be used by legacy readers by including
the appropriate brand in the file type box. A file creator that requires a reader to be aware of sub-track
information should not include legacy brands.

The same method of assigning sub track information can also be applied if all parts of a track except a sub
track belong to the same alternate or switch group. Then the overall definitions can be made on track level as
usual and specific assignments can be made at sub-track level. For sub tracks without specific assignments,
track level assignments apply by default. As before, if a file creator requires a reader to be aware of sub-track
information it should not include legacy brands (which would otherwise indicate that sub track information can
be skipped).

8.14.3 Sub Track box

8.14.3.1 Definition

Box Type: ‘strk’
Container: User Data box (‘udta’) of the corresponding Track box (‘trak’)
Mandatory: No
Quantity: Zero or more

This box contains objects that define and provide information about a sub track in the present track.

8.14.3.2 Syntax

aligned(8) class SubTrack extends Box(‘strk’) {
}

8.14.4 Sub Track Information box

8.14.4.1 Definition

Box Type: ‘stri’
Container: Sub Track box (‘strk’)
Mandatory: Yes
Quantity: One

8.14.4.2 Syntax

aligned(8) class SubTrackInformation
 extends FullBox(‘stri’, version = 0, 0){
 template int(16) switch_group = 0;
 template int(16) alternate_group = 0;
 template unsigned int(32) sub_track_ID = 0;
 unsigned int(32) attribute_list[]; // to the end of the box
}

8.14.4.3 Semantics

switch_group is an integer that specifies a group or collection of tracks and/or sub tracks. If this field is
0 (default value), then there is no information on whether the sub track can be used for switching
during playing or streaming. If this integer is not 0 it shall be the same for tracks and/or sub tracks that
can be used for switching between each other. Tracks that belong to the same switch group shall
belong to the same alternate group. A switch group may have only one member.

alternate_group is an integer that specifies a group or collection of tracks and/or sub tracks. If this
field is 0 (default value), then there is no information on possible relations to other tracks/sub-tracks. If
this field is not 0, it should be the same for tracks/sub-tracks that contain alternate data for one

ISO/IEC 14496-12:2008(E)

88 PROOF/ÉPREUVE © ISO/IEC 2008 – All rights reserved

another and different for tracks/sub-tracks belonging to different such groups. Only one track/sub-
track within an alternate group should be played or streamed at any one time.

sub_track_ID is an integer. A non-zero value uniquely identifies the sub track locally within the track. A
zero value (default) means that sub track ID is not assigned.

attribute_list is a list, to the end of the box, of attributes. The attributes in this list should be used
as descriptions of sub tracks or differentiating criteria for tracks and sub tracks in the same alternate
or switch group.

The following attributes are descriptive:

Name Attribute Description
Temporal scalability ‘tesc’ The sub-track can be temporally scaled.
Fine-grain SNR
scalability

‘fgsc’ The sub-track can be scaled in terms of quality.

Coarse-grain SNR
scalability

‘cgsc’ The sub-track can be scaled in terms of quality.

Spatial scalability ‘spsc’ The sub-track can be spatially scaled.
Region-of-interest
scalability

‘resc’ The sub-track can be region-of-interest scaled.

View scalability ‘vwsc’ The sub-track can be scaled in terms of number of views.

The following attributes are differentiating:

Name Attribute Pointer
Bitrate ‘bitr’ Total size of the samples in the track divided by the

duration in the track header box
Frame rate ‘frar’ Number of samples in the track divided by duration in the

track header box
Number of views ‘nvws’ Number of views in the sub track

8.14.5 Sub Track Definition box

8.14.5.1 Definition

Box Type: ‘strd’
Container: Sub Track box (‘strk’)
Mandatory: Yes
Quantity: One

This box contains objects that provide a definition of the sub track.

8.14.5.2 Syntax

aligned(8) class SubTrackDefinition extends Box(‘strd’) {
}

8.14.6 Sub Track Sample Group box

8.14.6.1 Definition

Box Type: ‘stsg’
Container: Sub Track Definition box (‘strd’)
Mandatory: No
Quantity: Zero or more

ISO/IEC 14496-12:2008(E)

© ISO/IEC 2008 – All rights reserved PROOF/ÉPREUVE 89

This box defines a sub track as one or more sample groups by referring to the corresponding sample group
descriptions describing the samples of each group.

8.14.6.2 Syntax

aligned(8) class SubTrackSampleGroupBox
 extends FullBox(‘stsg’, 0, 0){
 unsigned int(32) grouping_type;
 unsigned int(16) item_count;
 for(i = 0; i< item_count; i++)
 unsigned int(32) group_description_index;
}

8.14.6.3 Semantics

grouping_type is an integer that identifies the sample grouping. The value shall be the same as in the
corresponding SampletoGroup and SampleGroupDescription boxes.

item_count counts the number of sample groups listed in this box.
group_description_index is an integer that gives the index of the sample group entry which

describes the samples in the group..

8.15 Post-decoder requirements on media

8.15.1 General

In order to handle situations where the file author requires certain actions on the player or renderer, this
Subclause specifies a mechanism that enables players to simply inspect a file to find out such requirements
for rendering a bitstream and stops legacy players from decoding and rendering files that require further
processing. The mechanism applies to any type of video codec. In particular it applies to AVC and for this
case specific signalling is defined in the AVC file format (ISO/IEC 14496-15) that allows a file author to list
occurring SEI message IDs and distinguish between required and non-required actions for the rendering
process.

The mechanism is similar to the content protection transformation where sample entries are hidden behind
generic sample entries, ‘encv’, ‘enca’, etc., indicating encrypted or encapsulated media. The analogous
mechanism for restricted video uses a transformation with the generic sample entry ‘resv’. The method may
be applied when the content should only be decoded by players that present it correctly.

8.15.2 Transformation

The method is applied as follows:

6) The four-character-code of the sample entry is replaced by a new sample entry code ‘resv’
meaning restricted video.

7) A Restricted Scheme Info box is added to the sample description, leaving all other boxes unmodified.

8) The original sample entry type is stored within an Original Format box contained in the Restricted
Scheme Info box.

A RestrictedSchemeInfoBox is formatted exactly the same as a ProtectionSchemeInfoBox, except
that is uses the identifier ‘rinf’ instead of ‘sinf’ (see below).

The original sample entry type is contained in the Original Format box located in the Restricted Scheme Info
box (in an identical way to the Protection Scheme Info box for encrypted media).

The exact nature of the restriction is defined in the SchemeTypeBox, and the data needed for that scheme is
stored in the SchemeInformationBox, again, analogously to protection information.

ISO/IEC 14496-12:2008(E)

90 PROOF/ÉPREUVE © ISO/IEC 2008 – All rights reserved

Note that restriction and protection can be applied at the same time. The order of the transformations follows
from the four-character code of the sample entry. For instance, if the sample entry type is ‘resv’, undoing
the above transformation may result in a sample entry type ‘encv’, indicating that the media is protected.

Note that if the file author only wants to provide advisory information without stopping legacy players from
playing the file, the Restricted Scheme Info box may be placed inside the sample entry without applying the
four-character-code transformation. In this case it is not necessary to include an Original Format box.

8.15.3 Restricted Scheme Information box

8.15.3.1 Definition

Box Types: ‘rinf’
Container: Restricted Sample Entry or Sample Entry
Mandatory: Yes
Quantity: Exactly one

The Restricted Scheme Information Box contains all the information required both to understand the restriction
scheme applied and its parameters. It also documents the original (un-transformed) sample entry type of the
media. The Restricted Scheme Information Box is a container Box. It is mandatory in a sample entry that uses
a code indicating a restricted stream, i.e., ‘resv’.

When used in a restricted sample entry, this box must contain the original format box to document the original
sample entry type and a Scheme type box. A Scheme Information box may be required depending on the
restriction scheme.

8.15.3.2 Syntax

aligned(8) class RestrictedSchemeInfoBox(fmt) extends Box('rinf') {
 OriginalFormatBox(fmt) original_format;
 SchemeTypeBox scheme_type_box;
 SchemeInformationBox info; // optional
}

8.15.4 Scheme for stereoscopic video arrangements

8.15.4.1 General

When stereo-coded video frames are decoded, the decoded frames either contain a representation of two
spatially packed constituent frames that form a stereo pair (frame packing) or only one view of a stereo pair
(left and right views in different tracks). Restrictions due to stereo-coded video are contained in the Stereo
Video box.

The SchemeType ‘stvi’ (stereoscopic video) is used.

8.15.4.2 Stereo video box

8.15.4.2.1 Definition

Box Type: `stvi’
Container: Scheme Information box (‘schi’)
Mandatory: Yes (when the SchemeType is ‘stvi’)
Quantity: One

The Stereo Video box is used to indicate that decoded frames either contain a representation of two spatially
packed constituent frames that form a stereo pair or contain one of two views of a stereo pair. The Stereo
Video box shall be present when the SchemeType is ‘stvi’.

ISO/IEC 14496-12:2008(E)

© ISO/IEC 2008 – All rights reserved PROOF/ÉPREUVE 91

8.15.4.2.2 Syntax

aligned(8) class StereoVideoBox extends extends FullBox(‘stvi’, version = 0, 0)
{
 template unsigned int(30) reserved = 0;
 unsigned int(2) single_view_allowed;
 unsigned int(32) stereo_scheme;
 unsigned int(32) length;
 unsigned int(8)[length] stereo_indication_type;
 Box[] any_box; // optional
}

8.15.4.2.3 Semantics

single_view_allowed is an integer. A zero value indicates that the content may only be displayed on
stereoscopic displays. When (single_view_allowed & 1) is equal to 1, it is allowed to display the
right view on a monoscopic single-view display. When (single_view_allowed & 2) is equal to 2, it
is allowed to display the left view on a monoscopic single-view display.

stereo_scheme is an integer that indicates the stereo arrangement scheme used and the stereo
indication type according to the used scheme. The following values for stereo_scheme are
specified:
1: the frame packing scheme as specified by the Frame packing arrangement Supplemental

Enhancement Information message of ISO/IEC 14496-10 [ISO/IEC 14496-10]
2: the arrangement type scheme as specified in Annex L of ISO/IEC 13818-2 [ISO/IEC 13818-

2:2000/Amd.4]
3: the stereo scheme as specified in ISO/IEC 23000-11 for both frame/service compatible and

2D/3D mixed services.
Other values of stereo_scheme are reserved.

length indicates the number of bytes for the stereo_indication_type field.
stereo_indication_type indicates the stereo arrangement type according to the used stereo

indication scheme. The syntax and semantics of stereo_indication_type depend on the value
of stereo_scheme. The syntax and semantics for stereo_indication_type for the following
values of stereo_scheme are specified as follows:
stereo_scheme equal to 1: The value of length shall be 4 and stereo_indication_type shall

be unsigned int(32) which contains the frame_packing_arrangement_type value from Table
D-8 of ISO/IEC 14496-10 [ISO/IEC 14496-10] (‘Definition of frame_packing_arrangement_type’).

stereo_scheme equal to 2: The value of length shall be 4 and stereo_indication_type shall
be unsigned int(32) which contains the type value from Table L-1 of ISO/IEC 13818-2
[ISO/IEC 13818-2:2000/Amd.4] (‘Definition of arrangement_type’).

stereo_scheme equal to 3: The value of length shall be 2 and stereo_indication_type shall
contain two syntax elements of unsigned int(8). The first syntax element shall contain the
stereoscopic composition type from Table 4 of ISO/IEC 23000-11:2009. The least significant bit of
the second syntax element shall contain the value of is_left_first as specified in 8.4.3 of
ISO/IEC 23000-11:2009, while the other bits are reserved and shall be set to 0.

The following applies when the Stereo Video box is used:

⎯ In the Track Header box

⎯ width and height specify the visual presentation size of a single view after unpacking.

⎯ In the Sample Description box

⎯ frame_count shall be 1, because the decoder physically outputs a single frame. In other words, the
constituent frames included within a frame-packed picture are not documented by frame_count.

⎯ width and height document the pixel counts of a frame-packed picture (and not the pixel counts of
a single view within a frame-packed picture).

ISO/IEC 14496-12:2008(E)

92 PROOF/ÉPREUVE © ISO/IEC 2008 – All rights reserved

⎯ the Pixel Aspect Ratio box documents the pixel aspect ratio of each view when the view is displayed
on a monoscopic single-view display. For example, in many spatial frame packing arrangements, the
Pixel Aspect Ratio box therefore indicates 2:1 or 1:2 pixel aspect ratio, as the spatial resolution of
one view of frame-packed video is typically halved along one coordinate axis compared to that of the
single-view video of the same format.

8.16 Segments

8.16.1 Introduction

Media presentations may be divided into segments for delivery, for example, it is possible (e.g. in HTTP
streaming) to form files that contain a segment – or concatenated segments – which would not necessarily
form ISO base media file format compliant files (e.g. they do not contain a movie box).

This Subclause defines specific boxes that may be used in such segments.

8.16.2 Segment Type Box

Box Type: `styp’
Container: File
Mandatory: No
Quantity: Zero or more

If segments are stored in separate files (e.g. on a standard HTTP server) it is recommended that these
‘segment files’ contain a segment-type box, which must be first if present, to enable identification of those files,
and declaration of the specifications with which they are compliant.

A segment type has the same format as an 'ftyp' box [4.3], except that it takes the box type 'styp'. The
brands within it may include the same brands that were included in the 'ftyp' box that preceded the
‘moov’ box, and may also include additional brands to indicate the compatibility of this segment with various
specification(s).

Valid segment type boxes shall be the first box in a segment. Segment type boxes may be removed if
segments are concatenated (e.g. to form a full file), but this is not required. Segment type boxes that are not
first in their files may be ignored.

8.16.3 Segment Index Box

8.16.3.1 Definition

Box Type: `sidx’
Container: File
Mandatory: No
Quantity: Zero or more

The Segment Index box ('sidx') provides a compact index of one media stream within the media segment to
which it applies. It is designed so that it can be used not only with media formats based on this specification
(i.e. segments containing sample tables or movie fragments), but also other media formats (for example,
MPEG-2 Transport Streams [ISO/IEC 13818-1]). For this reason, the formal description of the box given here
is deliberately generic, and then at the end of this Subclause the specific definitions for segments using movie
fragments are given.

Each Segment Index box documents how a (sub)segment is divided into one or more subsegments (which
may themselves be further subdivided using Segment Index boxes).

A subsegment is defined as a time interval of the containing (sub)segment, and corresponds to a single range
of bytes of the containing (sub)segment. The durations of all the subsegments sum to the duration of the
containing (sub)segment.

ISO/IEC 14496-12:2008(E)

© ISO/IEC 2008 – All rights reserved PROOF/ÉPREUVE 93

Each entry in the Segment Index box contains a reference type that indicates whether the reference points
directly to the media bytes of a referenced leaf subsegment, or to a Segment Index box that describes how
the referenced subsegment is further subdivided; as a result, the segment may be indexed in a ‘hierarchical’
or ‘daisy-chain’ or other form by documenting time and byte offset information for other Segment Index boxes
applying to portions of the same (sub)segment.

Each Segment Index box provides information about a single media stream of the Segment, referred to as the
reference stream. If provided, the first Segment Index box in a segment, for a given media stream, shall
document the entirety of that media stream in the segment, and shall precede any other Segment Index box in
the segment for the same media stream.

If a segment index is present for at least one media stream but not all media streams in the segment, then
normally a media stream in which not every access unit is independently coded, such as video, is selected to
be indexed. For any media stream for which no segment index is present, referred to as non-indexed stream,
the media stream associated with the first Segment Index box in the segment serves as a reference stream in
a sense that it also describes the subsegments for any non-indexed media stream.

NOTE 1 Further restrictions may be specified in derived specifications.

Segment Index boxes may be inline in the same file as the indexed media or, in some cases, in a separate file
containing only indexing information.

A Segment Index box contains a sequence of references to subsegments of the (sub)segment documented by
the box. The referenced subsegments are contiguous in presentation time. Similarly, the bytes referred to by a
Segment Index box are always contiguous in both the media file, and the separate index segment, or in the
single file if indexes are placed within the media file. The referenced size gives the count of the number of
bytes in the material referenced.

NOTE 2 A media segment may be indexed by more than one “top-level” Segment Index box that are independent of
each other, each of which indexes one media stream within the media segment. In segments containing multiple media
streams the referenced bytes may contain media from multiple streams, even though the Segment Index box provides
timing information for only one media stream.

In the file containing the Segment Index box, the anchor point for a Segment Index box is the first byte after
that box. If there are two files, the anchor point in the media file is the beginning of the top-level segment (i.e.
the beginning of the segment file if each segment is stored in a separate file). The material in the file
containing media (which may also be the file that contains the segment index boxes) starts at the indicated
offset from the anchor point. If there are two files, the material in the index file starts at the anchor point, i.e.
immediately following the Segment Index box.

Within the two constraints (a) that, in time, the subsegments are contiguous, that is, each entry in the loop is
consecutive from the immediately preceding one and (b) within a given file (integrated file, media file, or index
side file) the referenced bytes are contiguous, there are a number of possibilities, including:

1) a reference to a segment index box may include, in its byte count, immediately following Segment
Index boxes that document subsegments;

2) in an integrated file, using the first_offset field, it is possible to separate Segment Index boxes
from the media that they refer to;

3) in an integrated file, it is possible to locate Segment Index boxes for subsegments close to the media
they index;

4) when a separate file containing Segment Indexes is used, it is possible for the loop entries to be of
‘mixed type’, some to Segment Index boxes in the index segment, some to media subsegments in the
media file.

NOTE 3 Profiles may be used to restrict the placement of segment indexes, or the overall complexity of the indexing.

The Segment Index box documents the presence of Stream Access Points (SAPs), as specified in Annex I, in
the referenced subsegments. The annex specifies characteristics of SAPs, such as ISAU, ISAP and TSAP, as well

ISO/IEC 14496-12:2008(E)

94 PROOF/ÉPREUVE © ISO/IEC 2008 – All rights reserved

as SAP types, which are all used in the semantics below. A subsegment starts with a SAP when the
subsegment contains a SAP, and for the first SAP, ISAU is the index of the first access unit that follows ISAP,
and ISAP is contained in the subsegment.

For segments based on this specification (i.e. based on movie sample tables or movie fragments):

• an access unit is a sample;
• a subsegment is a self-contained set of one or more consecutive movie fragments; a self-contained

set contains one or more Movie Fragment boxes with the corresponding Media Data box(es), and a
Media Data Box containing data referenced by a Movie Fragment Box must follow that Movie
Fragment box and precede the next Movie Fragment box containing information about the same
track;

• Segment Index boxes shall be placed before subsegment material they document, that is, before any
Movie Fragment (‘moof’) box of the documented material of the subsegment;

• streams are tracks in the file format, and stream IDs are track IDs;
• a subsegment contains a stream access point if a track fragment within the subsegment for the track

with track_ID equal to reference_ID contains a stream access point;
• initialisation data for SAPs consists of the movie box;
• presentation times are in the movie timeline, that is they are composition times after the application of

any edit list for the track;
• the ISAP is a position exactly pointing to the start of a top-level box, such as a movie fragment box

'moof';
• a SAP of type 1 or type 2 is indicated as a sync sample, or by sample_is_not_sync_sample

equal to 0 in the movie fragment;
• a SAP of type 3 is marked as a member of a sample group of type ‘rap ‘;
• a SAP of type 4 is marked as a member of a sample group of type ‘roll‘ where the value of the

roll_distance field is greater than 0.

NOTE 4 For SAPs of type 5 and 6, no specific signalling in the ISO base media file format is supported.

8.16.3.2 Syntax

aligned(8) class SegmentIndexBox extends FullBox(‘sidx’, version, 0) {
 unsigned int(32) reference_ID;
 unsigned int(32) timescale;
 if (version==0) {
 unsigned int(32) earliest_presentation_time;
 unsigned int(32) first_offset;
 }
 else {
 unsigned int(64) earliest_presentation_time;
 unsigned int(64) first_offset;
 }
 unsigned int(16) reserved = 0;
 unsigned int(16) reference_count;
 for(i=1; i <= reference_count; i++)
 {
 bit (1) reference_type;
 unsigned int(31) referenced_size;
 unsigned int(32) subsegment_duration;
 bit(1) starts_with_SAP;
 unsigned int(3) SAP_type;
 unsigned int(28) SAP_delta_time;
 }
}

ISO/IEC 14496-12:2008(E)

© ISO/IEC 2008 – All rights reserved PROOF/ÉPREUVE 95

8.16.3.3 Semantics

reference_ID provides the stream ID for the reference stream; if this Segment Index box is referenced
from a “parent” Segment Index box, the value of reference_ID shall be the same as the value of
reference_ID of the “parent” Segment Index box;

timescale provides the timescale, in ticks per second, for the time and duration fields within this box; it
is recommended that this match the timescale of the reference stream or track; for files based on this
specification, that is the timescale field of the Media Header Box of the track;

earliest_presentation_time is the earliest presentation time of any access unit in the reference
stream in the first subsegment, in the timescale indicated in the timescale field;

first_offset is the distance in bytes, in the file containing media, from the anchor point, to the first
byte of the indexed material;

reference_count provides the number of referenced items;
reference_type: when set to 1 indicates that the reference is to a segment index (‘sidx’) box;

otherwise the reference is to media content (e.g., in the case of files based on this specification, to a
movie fragment box); if a separate index segment is used, then entries with reference type 1 are in
the index segment, and entries with reference type 0 are in the media file;

referenced_size: the distance in bytes from the first byte of the referenced item to the first byte of the
next referenced item, or in the case of the last entry, the end of the referenced material;

subsegment_duration: when the reference is to Segment Index box, this field carries the sum of the
subsegment_duration fields in that box; when the reference is to a subsegment, this field carries
the difference between the earliest presentation time of any access unit of the reference stream in the
next subsegment (or the first subsegment of the next segment, if this is the last subsegment of the
segment, or the end presentation time of the reference stream if this is the last subsegment of the
stream) and the earliest presentation time of any access unit of the reference stream in the referenced
subsegment; the duration is in the same units as earliest_presentation_time;

starts_with_SAP indicates whether the referenced subsegments start with a SAP. For the detailed
semantics of this field in combination with other fields, see the table below.

SAP_type indicates a SAP type as specified in Annex I, or the value 0. Other type values are reserved.
For the detailed semantics of this field in combination with other fields, see the table below.

SAP_delta_time: indicates TSAP of the first SAP, in decoding order, in the referenced subsegment for
the reference stream. If the referenced subsegments do not contain a SAP, SAP_delta_time is
reserved with the value 0; otherwise SAP_delta_time is the difference between the earliest
presentation time of the subsegment, and the TSAP (note that this difference may be zero, in the case
that the subsegment starts with a SAP).

ISO/IEC 14496-12:2008(E)

96 PROOF/ÉPREUVE © ISO/IEC 2008 – All rights reserved

Table 4 – Semantics of SAP and reference type combinations

starts_with_SAP SAP_type reference_type Meaning

0 0 0 or 1 No information of SAPs is provided.

0 1 to 6,
inclusive

0 (media) The subsegment contains (but may not
start with) a SAP of the given SAP_type
and the first SAP of the given SAP_type
corresponds to SAP_delta_time.

0 1 to 6,
inclusive

1 (index) All the referenced subsegments contain a
SAP of at most the given SAP_type and
none of these SAPs is of an unknown
type.

1 0 0 (media) The subsegment starts with a SAP of an
unknown type.

1 0 1 (index) All the referenced subsegments start with
a SAP which may be of an unknown type

1 1 to 6,
inclusive

0 (media) The referenced subsegment starts with a
SAP of the given SAP_type.

1 1 to 6,
inclusive

1 (index) All the referenced subsegments start with
a SAP of at most the given SAP_type
and none of these SAPs is of an
unknown type.

8.16.4 Subsegment Index Box

8.16.4.1 Definition

Box Type: `ssix’
Container: File
Mandatory: No
Quantity: Zero or more

The Subsegment Index box ('ssix') provides a mapping from levels (as specified by the Level Assignment box)
to byte ranges of the indexed subsegment. In other words, this box provides a compact index for how the data
in a subsegment is ordered according to levels into partial subsegments. It enables a client to easily access
data for partial subsegments by downloading ranges of data in the subsegment.

Each byte in the subsegment shall be assigned to a level. If the range is not associated with any information in
the level assignment, then any level that is not included in the level assignment may be used.

There shall be 0 or 1 Subsegment Index boxes per each Segment Index box that indexes only leaf
subsegments, i.e. that only indexes subsegments but no segment indexes. A Subsegment Index box, if any,
shall be the next box after the associated Segment Index box. A Subsegment Index box documents the
subsegment that is indicated in the immediately preceding Segment Index box.

In general, the media data constructed from the byte ranges is incomplete, i.e. it does not conform to the
media format of the entire subsegment.

For leaf subsegments based on this specification (i.e. based on movie sample tables and movie fragments):

• Each level shall be assigned to exactly one partial subsegment, i.e. byte ranges for one level shall be
contiguous.

• Levels of partial subsegments shall be assigned by increasing numbers within a subsegment, i.e.,
samples of a partial subsegment may depend on any samples of preceding partial subsegments in
the same subsegment, but not the other way around. For example, each partial subsegment contains

ISO/IEC 14496-12:2008(E)

© ISO/IEC 2008 – All rights reserved PROOF/ÉPREUVE 97

samples having an identical temporal level and partial subsegments appear in increasing temporal
level order within the subsegment.

• When a partial subsegment is accessed in this way, for any assignment_type other than 3, the
final Media Data box may be incomplete, that is, less data is accessed than the length indication of
the Media Data Box indicates is present. The length of the Media Data box may need adjusting, or
padding used. The padding_flag in the Level Assignment Box indicates whether this missing data
can be replaced by zeros. If not, the sample data for samples assigned to levels that are not accessed
is not present, and care should be taken not to attempt to process such samples.

NOTE assignment_type equal to 0 (specified in the subsegment index box ‘leva’) can be used, for example,
together with the temporal level sample grouping (‘tele’) when frames of a video bitstream are temporally ordered within
subsegments; assignment_type equal to 2 can be used, for example, when each view of a multiview video bitstream is
contained in a separate track and the track fragments for all the views are contained in a single movie fragment.
assignment_type equal to 3 may be used, for example, when audio and video movie fragments (including the
respective Media Data boxes) are interleaved. The first level can be specified to contain the audio movie fragments
(including the respective Media Data boxes), whereas the second level can be specified to contain both audio and video
movie fragments (including all Media Data boxes).

8.16.4.2 Syntax

aligned(8) class SubsegmentIndexBox extends FullBox(‘ssix’, 0, 0) {
 unsigned int(32) subsegment_count;
 for(i=1; i <= subsegment_count; i++)
 {
 unsigned int(32) ranges_count;
 for (j=1; j <= range_count; j++) {
 unsigned int(8) level;
 unsigned int(24) range_size;
 }
 }
}

8.16.4.3 Semantics

subsegment_count is a positive integer specifying the number of subsegments for which partial
subsegment information is specified in this box. subsegment_count shall be equal to
reference_count (i.e., the number of movie fragment references) in the immediately preceding
Segment Index box.

range_count specifies the number of partial subsegment levels into which the media data is grouped.
This value shall be greater than or equal to 2.

range_size indicates the size of the partial subsegment.
level specifies the level to which this partial subsegment is assigned.

8.16.5 Producer Reference Time Box

8.16.5.1 Definition

Box Type: `prft’
Container: File
Mandatory: No
Quantity: Zero or more

The producer reference time box supplies relative wall-clock times at which movie fragments, or files
containing movie fragments (such as segments) were produced. When these files are both produced and
consumed in real time, this can provide clients with information to enable consumption and production to
proceed at equivalent rates, thus avoiding possible buffer overflow or underflow.

ISO/IEC 14496-12:2008(E)

98 PROOF/ÉPREUVE © ISO/IEC 2008 – All rights reserved

This box is related to the next movie fragment box that follows it in bitstream order. It must follow any segment
type or segment index box (if any) in the segment, and occur before the following movie fragment box (to
which it refers). If a segment file contains any producer reference time boxes, then the first of them shall occur
before the first movie fragment box in that segment.

The box contains a time value measured on a clock which increments at the same rate as a UTC-
synchronized NTP [RFC 5905] clock, using NTP format. This is associated with a media time for one of the
tracks in the movie fragment. That media time should be in the range of times in that track in the associated
movie fragment.

Producer reference times should be associated with at most one track.

8.16.5.2 Syntax

aligned(8) class ProducerReferenceTimeBox extends FullBox(‘prft’, version, 0) {
 unsigned int(32) reference_track_ID;
 unsigned int(64) ntp_timestamp;
 if (version==0) {
 unsigned int(32) media_time;
 } else {
 unsigned int(64) media_time;
 }
}

8.16.5.3 Semantics

reference_track_ID provides the track_ID for the reference track.
ntp_timestamp indicates a UTC time in NTP format corresponding to decoding_time.
media_time corresponds to the same time as ntp_timestamp, but in the time units used for the

reference track, and is measured on this media clock as the media is produced.

NOTE in most cases this timestamp will not be equal to the timestamp of the first sample of the adjacent segment of
the reference track, but it is recommended it be in the range of the segment containing this producer reference time box.

9 Hint Track Formats

9.1 RTP and SRTP Hint Track Format

9.1.1 Introduction

RTP is the real-time transport protocol defined by the IETF (RFC 3550 and 3551) and is currently defined to
be able to carry a limited set of media types (principally audio and video) and codings. The packing of
MPEG-4 elementary streams into RTP is under discussion in both bodies. However, it is clear that the way the
media is packetized does not differ in kind from the existing techniques used for other codecs in RTP, and
supported by this scheme.

In standard RTP, each media stream is sent as a separate RTP stream; multiplexing is achieved by using IP’s
port-level multiplexing, not by interleaving the data from multiple streams into a single RTP session. However,
if MPEG is used, it may be necessary to multiplex several media tracks into one RTP track (e.g. when using
MPEG-2 transport in RTP, or FlexMux). Each hint track is therefore tied to a set of media tracks by track
references. The hint tracks extract data from their media tracks by indexing through this table. Hint track
references to media tracks have the reference type ‘hint’.

This design decides the packet size at the time the server hint track is created; therefore, in the declarations
for the hint track, we indicate the chosen packet size. This is in the sample-description. Note that it is valid for
there to be several RTP hint tracks for each media track, with different packet size choices. Similarly the time-
scale for the RTP clock is provided. The timescale of the server hint track is usually chosen to match the
timescale of the media tracks, or a suitable value is picked for the server. In some cases, the RTP timescale is

ISO/IEC 14496-12:2008(E)

© ISO/IEC 2008 – All rights reserved PROOF/ÉPREUVE 99

different (e.g. 90 kHz for some MPEG payloads), and this permits that variation. Session description
(SAP/SDP) information is stored in user-data boxes in the track.

RTP hint tracks do not use the composition time offset table (‘ctts’). Instead, the hinting process for server
hint tracks establishes the correct transmission order and time-stamps, perhaps using the transmission time
offset to set transmission times.

Hinted content may require the use of SRTP for streaming by using the hint track format for SRTP, defined
here. SRTP hint tracks are formatted identically to RTP hint tracks, except that:

1) the sample entry name is changed from ‘rtp ‘ to ‘srtp’ to indicate to the server that SRTP is
required;

2) an extra box is added to the sample entry which can be used to instruct the server in the nature of the
on-the-fly encryption and integrity protection that must be applied.

9.1.2 Sample Description Format

RTP server hint tracks are hint tracks (media handler ‘hint’), with an entry-format in the sample description
of ‘rtp ‘:

class RtpHintSampleEntry() extends SampleEntry (‘rtp ‘) {
 uint(16) hinttrackversion = 1;
 uint(16) highestcompatibleversion = 1;
 uint(32) maxpacketsize;
 box additionaldata[];
}

The hinttrackversion is currently 1; the highest compatible version field specifies the oldest version with
which this track is backward-compatible.

The maxpacketsize indicates the size of the largest packet that this track will generate.

The additional data is a set of boxes, from the following.

class timescaleentry() extends Box(‘tims’) {
 uint(32) timescale;
}

class timeoffset() extends Box(‘tsro’) {
 int(32) offset;
}

class sequenceoffset extends Box(‘snro’) {
 int(32) offset;
}

The timescale entry is required. The other two are optional. The offsets over-ride the default server behaviour,
which is to choose a random offset. A value of 0, therefore, will cause the server to apply no offset to the
timestamp or sequence number respectively.

An SRTP Hint Sample entry is used when it is required that SRTP processing is required.

class SrtpHintSampleEntry() extends SampleEntry (‘srtp‘) {
 uint(16) hinttrackversion = 1;
 uint(16) highestcompatibleversion = 1;
 uint(32) maxpacketsize;
 box additionaldata[];
}

ISO/IEC 14496-12:2008(E)

100 PROOF/ÉPREUVE © ISO/IEC 2008 – All rights reserved

Fields and boxes are defined as for the RtpHintSampleEntry (‘rtp ‘) of the ISO Base Media File Format.
However, an SRTP Process Box shall be included in an SrtpHintSampleEntry as one of the
additionaldata boxes.

9.1.2.1 SRTP Process box ‘srpp‘:

Box Type: ‘srpp’
Container: SrtpHintSampleEntry
Mandatory: Yes
Quantity: Exactly one

The SRTP Process Box may instruct the server as to which SRTP algorithms should be applied.

aligned(8) class SRTPProcessBox extends FullBox(‘srpp’, version, 0) {
 unsigned int(32) encryption_algorithm_rtp;
 unsigned int(32) encryption_algorithm_rtcp;
 unsigned int(32) integrity_algorithm_rtp;
 unsigned int(32) integrity_algorithm_rtcp;
 SchemeTypeBox scheme_type_box;
 SchemeInformationBox info;
}

The Scheme Type Box and Scheme Information Box have the syntax defined above for protected media
tracks. They serve to provide the parameters required for applying SRTP. The Scheme Type Box is used to
indicate the necessary key-management and security policy for the stream in extension to the defined
algorithmic pointers provided by the SRTPProcessBox. The key-management functionality is also used to
establish all the necessary SRTP parameters as listed in section 8.2 of the SRTP specification. The exact
definition of protection schemes is out of the scope of the file format.

The algorithms for encryption and integrity protection are defined by SRTP. The following format identifiers are
defined here. An entry of four spaces ($20$20$20$20) may be used to indicate that the choice of algorithm
for either encryption or integrity protection is decided by a process outside the file format.

Format Algorithm

$20$20$20$20 The choice of algorithm for either encryption or integrity protection is
decided by a process outside the file format

ACM1 Encryption using AES in Counter Mode with 128-bit key, as defined in
Section 4.1.1 of the SRTP specification.

AF81 Encryption using AES in F8-mode with 128-bit key, as defined in Section
4.1.2 of the SRTP specification.

ENUL Encryption using the NULL-algorithm as defined in Section 4.1.3 of the
SRTP specification

SHM2 Integrity protection using HMAC-SHA-1 with 160-bit key, as defined in
Section 4.2.1 of the SRTP specification.

ANUL Integrity protection not applied to RTP (but still applied to RTCP). Note: this
is valid only for integrity_algorithm_rtp

9.1.3 Sample Format

Each sample in a server hint track will generate one or more RTP packets, whose RTP timestamp is the same
as the hint sample time. Therefore, all the packets made by one sample have the same timestamp. However,
provision is made to ask the server to ‘warp’ the actual transmission times, for data-rate smoothing, for
example.

ISO/IEC 14496-12:2008(E)

© ISO/IEC 2008 – All rights reserved PROOF/ÉPREUVE 101

Each sample contains two areas: the instructions to compose the packets, and any extra data needed when
sending those packets (e.g. an encrypted version of the media data). Note that the size of the sample is
known from the sample size table.

aligned(8) class RTPsample {
 unsigned int(16) packetcount;
 unsigned int(16) reserved;
 RTPpacket packets[packetcount];
 byte extradata[];
}

9.1.3.1 Packet Entry format

Each packet in the packet entry table has the following structure:

aligned(8) class RTPpacket {
 int(32) relative_time;
 // the next fields form initialization for the RTP
 // header (16 bits), and the bit positions correspond
 bit(2) RTP_version;
 bit(1) P_bit;
 bit(1) X_bit;
 bit(4) CSRC_count;
 bit(1) M_bit;
 bit(7) payload_type;
 unsigned int(16) RTPsequenceseed;
 unsigned int(13) reserved = 0;
 unsigned int(1) extra_flag;
 unsigned int(1) bframe_flag;
 unsigned int(1) repeat_flag;
 unsigned int(16) entrycount;
 if (extra_flag) {
 uint(32) extra_information_length;
 box extra_data_tlv[];
 }
 dataentry constructors[entrycount];
}

The semantics of the fields for RTP server hint tracks is specified below. RTP reception hint tracks use the
same packet structure. The semantics of the fields when the packet structure is used in an RTP reception hint
track is specified in subclause 9.4.1.4.

In server hint tracks, the relative_time field ‘warps’ the actual transmission time away from the sample
time. This allows traffic smoothing.

The following 2 bytes exactly overlay the RTP header; they assist the server in making the RTP header (the
server fills in the remaining fields). Within these 2 bytes, the fields RTP_version and CSRC_count are
reserved in server (transmission) hint tracks and the server fills in these fields.

The sequence seed is the basis for the RTP sequence number. If a hint track causes multiple copies of the
same RTP packet to be sent, then the seed value would be the same for them all. The server normally adds a
random offset to this value (but see above, under ‘sequenceoffset’).

extra_flag equal to 1 indicates that there is extra information before the constructors, in the form of type-
length-value sets.

extra_information_length indicates the length in bytes of all extra information before the constructors,
which includes the four bytes of the extra information_length field. The subsequent boxes before the
constructors, referred to as the TLV boxes, are aligned on 32-bit boundaries. The box size of any TLV
box indicates the actual bytes used, not the length required for padding to 32-bit boundaries. The
value of extra_information_length includes the required padding for 32-bit boundaries.

ISO/IEC 14496-12:2008(E)

102 PROOF/ÉPREUVE © ISO/IEC 2008 – All rights reserved

The rtpoffsetTLV (‘rtpo’) gives a 32-bit signed integer offset to the actual RTP time-stamp to place in
the packet. This enables packets to be placed in the hint track in decoding order, but have their presentation
time-stamp in the transmitted packet be in a different order. This is necessary for some MPEG payloads.

The bframe_flag indicates a disposable ‘b-frame’. The repeat_flag indicates a ‘repeat packet’, one that
is sent as a duplicate of a previous packet. Servers may wish to optimize handling of these packets.

9.1.3.2 Constructor format

There are various forms of the constructor. Each constructor is 16 bytes, to make iteration easier. The first
byte is a union discriminator:

aligned(8) class RTPconstructor(type) {
 unsigned int(8) constructor_type = type;
}

aligned(8) class RTPnoopconstructor
 extends RTPconstructor(0)
{
 uint(8) pad[15];
}

aligned(8) class RTPimmediateconstructor
 extends RTPconstructor(1)
{
 unsigned int(8) count;
 unsigned int(8) data[count];
 unsigned int(8) pad[14 - count];
}

aligned(8) class RTPsampleconstructor
 extends RTPconstructor(2)
{
 signed int(8) trackrefindex;
 unsigned int(16) length;
 unsigned int(32) samplenumber;
 unsigned int(32) sampleoffset;
 unsigned int(16) bytesperblock = 1;
 unsigned int(16) samplesperblock = 1;
}

aligned(8) class RTPsampledescriptionconstructor
 extends RTPconstructor(3)
{
 signed int(8) trackrefindex;
 unsigned int(16) length;
 unsigned int(32) sampledescriptionindex;
 unsigned int(32) sampledescriptionoffset;
 unsigned int(32) reserved;
}

The immediate mode permits the insertion of payload-specific headers (e.g. the RTP H.261 header). For hint
tracks where the media is sent ‘in the clear’, the sample entry then specifies the bytes to copy from the media
track, by giving the sample number, data offset, and length to copy. The track reference may index into the
table of track references (a strictly positive value), name the hint track itself (-1), or the only associated media
track (0). (The value zero is therefore equivalent to the value 1.)

ISO/IEC 14496-12:2008(E)

© ISO/IEC 2008 – All rights reserved PROOF/ÉPREUVE 103

The bytesperblock and samplesperblock concern compressed audio, using a scheme prior to MP4, in
which the audio framing was not evident in the file. These fields have the fixed values of 1 for MP4 files.

The sampledescription mode allows sending of sample descriptions (which would contain elementary
stream descriptors), by reference, as part of an RTP packet. The index is the index of a SampleEntry in a
Sample Description Box, and the offset is relative to the beginning of that SampleEntry.

For complex cases (e.g. encryption or forward error correction), the transformed data would be placed into the
hint samples, in the extradata field, and then sample mode referencing the hint track itself would be used.

Notice that there is no requirement that successive packets transmit successive bytes from the media stream.
For example, to conform with RTP-standard packing of H.261, it is sometimes required that a byte be sent at
the end of one packet and also at the beginning of the next (when a macroblock boundary falls within a byte).

9.1.4 SDP Information

Streaming servers using RTSP and SDP usually use SDP as the description format; and there are necessary
relationships between the SDP information, and the RTP streams, such as the mapping of payload IDs to
MIME names. Provision is therefore made for the hinter to leave fragments of SDP information in the file, to
assist the server in forming a full SDP description. Note that there are required SDP entries, which the server
should also generate. The information here is only partial.

SDP information is formatted as a set of boxes within user-data boxes, at both the movie and the track level.
The text in the movie-level SDP box should be placed before any media-specific lines (before the first ‘m=’ in
the SDP file).

9.1.4.1 Movie SDP information

At the movie level, within the user-data (‘udta’) box, a hint information container box may occur:

aligned(8) class moviehintinformation extends box(‘hnti’) {
}

aligned(8) class rtpmoviehintinformation extends box(‘rtp ‘) {
 uint(32) descriptionformat = ‘sdp ‘;
 char sdptext[];
}

The hint information box may contain information for multiple protocols; only RTP is defined here. The RTP
box may contain information for various description formats; only SDP is defined here. The sdptext is
correctly formatted as a series of lines, each terminated by <crlf>, as required by SDP.

9.1.4.2 Track SDP Information

At the track level, the structure is similar; however, we already know that this track is an RTP hint track, from
the sample description. Therefore the child box merely specifies the description format.

aligned(8) class trackhintinformation extends box(‘hnti’) {
}

aligned(8) class rtptracksdphintinformation extends box(‘sdp ‘) {
 char sdptext[];
}

The sdptext is correctly formatted as a series of lines, each terminated by <crlf>, as required by SDP.

9.1.5 Statistical Information

In addition to the statistics in the hint media header, the hinter may place extra data in a hint statistics box, in
the track user-data box. This is a container box with a variety of sub-boxes that it may contain.

ISO/IEC 14496-12:2008(E)

104 PROOF/ÉPREUVE © ISO/IEC 2008 – All rights reserved

aligned(8) class hintstatisticsbox extends box(‘hinf’) {
}

aligned(8) class hintBytesSent extends box(‘trpy’) {
 uint(64) bytessent; } // total bytes sent, including 12-byte RTP headers
aligned(8) class hintPacketsSent extends box(‘nump’) {
 uint(64) packetssent; } // total packets sent
aligned(8) class hintBytesSent extends box(‘tpyl’) {
 uint(64) bytessent; } // total bytes sent, not including RTP headers

aligned(8) class hintBytesSent extends box(‘totl’) {
 uint(32) bytessent; } // total bytes sent, including 12-byte RTP headers
aligned(8) class hintPacketsSent extends box(‘npck’) {
 uint(32) packetssent; } // total packets sent
aligned(8) class hintBytesSent extends box(‘tpay’) {
 uint(32) bytessent; } // total bytes sent, not including RTP headers

aligned(8) class hintmaxrate extends box(‘maxr’) { // maximum data rate
 uint(32) period; // in milliseconds
 uint(32) bytes; } // max bytes sent in any period ‘period’ long
 // including RTP headers

aligned(8) class hintmediaBytesSent extends box(‘dmed’) {
 uint(64) bytessent; } // total bytes sent from media tracks
aligned(8) class hintimmediateBytesSent extends box(‘dimm’) {
 uint(64) bytessent; } // total bytes sent immediate mode
aligned(8) class hintrepeatedBytesSent extends box(‘drep’) {
 uint(64) bytessent; } // total bytes in repeated packets

aligned(8) class hintminrelativetime extends box(‘tmin’) {
 int(32) time; } // smallest relative transmission time, milliseconds
aligned(8) class hintmaxrelativetime extends box(‘tmax’) {
 int(32) time; } // largest relative transmission time, milliseconds

aligned(8) class hintlargestpacket extends box(‘pmax’) {
 uint(32) bytes; } // largest packet sent, including RTP header
aligned(8) class hintlongestpacket extends box(‘dmax’) {
 uint(32) time; } // longest packet duration, milliseconds

aligned(8) class hintpayloadID extends box(‘payt’) {
 uint(32) payloadID; // payload ID used in RTP packets
 uint(8) count;
 char rtpmap_string[count]; }

NOTE Not all these sub-boxes may be present, and that there may be multiple ‘maxr’ boxes, covering
different periods.

9.2 ALC/LCT and FLUTE Hint Track Format

9.2.1 Introduction

The file format supports multicast/broadcast delivery of files with FEC protection. Files to be delivered are
stored as items in a container file (defined by the file format) and the meta box is amended with information on
how the files are partitioned into source symbols. For each source block of a FEC encoding, additional parity
symbols can be pre-computed and stored as FEC reservoir items. The partitioning depends on the FEC
scheme, the target packet size, and the desired FEC overhead. Pre-composed source symbols can be stored
as File reservoir items to minimize duplicate information in the container file especially with MBMS-FEC. The
actual transmission is governed by hint tracks that contain server instructions that facilitate the encapsulation
of source and FEC symbols into packets.

FD hint tracks have been designed for the ALC/LCT (Asynchronous Layered Coding/Layered Coding
Transport) and FLUTE (File Delivery over Unidirectional Transport) protocols. LCT provides transport level

ISO/IEC 14496-12:2008(E)

© ISO/IEC 2008 – All rights reserved PROOF/ÉPREUVE 105

support for reliable content delivery and stream delivery protocols. ALC is a protocol instantiation of the LCT
building block, and it serves as a base protocol for massively scalable reliable multicast distribution of arbitrary
binary objects. FLUTE builds on top of ALC/LCT and defines a protocol for unidirectional delivery of files.

FLUTE defines a File Delivery Table (FDT), which carries metadata associated with the files delivered in the
ALC/LCT session, and provides mechanisms for in-band delivery and updates of FDT. In contrast, ALC/LCT
relies on other means for out-of-band delivery of file metadata, e.g., an electronic service guide that is
normally delivered to clients well in advance of the ALC/LCT session combined with update fragments that
can be sent during the ALC/LCT session.

File partitionings and FEC reservoirs can be used independently of FD hint tracks and vice versa. The former
aid the design of hint tracks and allow alternative hint tracks, e.g., with different FEC overheads, to re-use the
same FEC symbols. They also provide means to access source symbols and additional FEC symbols
independently for post-delivery repair, which may be performed over ALC/LCT or FLUTE or out-of-band via
another protocol. In order to reduce complexity when a server follows hint track instructions, hint tracks refer
directly to data ranges of items or data copied into hint samples.

It is recommended that a server sends a different set of FEC symbols for each retransmission of a file.

The syntax for using the meta box as a container file for source files is defined in 8.11, partitions, file and FEC
reservoirs are defined in 8.13, while the syntax for FD hint tracks is defined in 9.2.

9.2.2 Design principles

The support for file delivery is designed to optimize the server transmission process by enabling ALC/LCT or
FLUTE servers to follow simple instructions. It is enough to follow one pre-defined sequence of instructions
per channel in order to transmit one session. The file format enables storage of pre-computed source blocks
and symbol partitionings, i.e., files may be partitioned into symbols which fit an intended packet size, and pre-
computing a certain amount of FEC-symbols that also can be used for post-session repair. The file format also
allows storage of alternative ALC/LCT or FLUTE transmission session instructions that may lead to equivalent
end results. Such alternatives may be intended for different channel conditions because of higher FEC
protection or even by using different error correction schemes. Alternative sessions can refer to a common set
of symbols. The hint tracks are flexible and can be used to compose FDT fragments and interleaving of such
fragments within the actual object transmission. Several hint tracks can be combined into one or more
sessions involving simultaneous transmission over multiple channels.

It is important to make a difference between the definition of sessions for transmission and the scheduling of
such sessions. ALC/LCT and FLUTE server files only address optimization of the server transmission process.
In order to ensure maximal usage and flexibility of such pre-defined sessions, all details regarding scheduling
addresses, etc. are kept outside the definition of the file format. External scheduling applications decide such
details, which are not important for optimizing transmission sessions per se. In particular, the following
information is out-of-scope of the file format: time scheduling, target addresses and ports, source addresses
and ports, and so-called Transmission Session Identifiers (TSI).

The sample numbers associated with the samples of a file delivery hint track provide a numbered sequence.
Hint track sample times provide send times of ALC/LCT or FLUTE packets for a default bitrate. Depending on
the actual transmission bitrate, an ALC/LCT or FLUTE server may apply linear time scaling. Sample times
may simplify the scheduling process, but it is up to the server to send ALC/LCT or FLUTE packets in a timely
manner.

A schematic picture of a file containing three alternative hint tracks with different FEC overhead for a source
file is provided in Figure 6. In this example, each source block consists of only one sub-block.

ISO/IEC 14496-12:2008(E)

106 PROOF/ÉPREUVE © ISO/IEC 2008 – All rights reserved

Src Sym [0-5119]

FEC Sym#2 [0-511]Src Sym [5120-10240]FEC Sym #1 [0-511]
track #1

(10% FEC)

FEC Sym #2 [0-614]FEC Sym #1 [0-614]
track #2

(~12% FEC)

FEC Sym #2 [0-716]FEC Sym #1 [0-716]
track #3

(14% FEC)

File item

Storage Format of a single file

FEC reservoir items

FEC for Src Block #1

FEC for Src Block #2

Src Sym [0-5119]

Src Sym [0-5119]

Src Sym [5120-10240]

Src Sym [5120-10240]

Figure 4 —Different FEC overheads of a source file provided by alternative hint tracks.

The source file in the above figure is partitioned into 2 source blocks containing symbols of a fixed size. FEC
redundancy symbols are calculated for both source blocks and stored as FEC reservoir items. As the hint
tracks reference the same items in the file there is no duplication of information. The original source symbols
and FEC reservoirs can also be used by repair servers that don’t use hint tracks.
9.2.3 Sample Description Format

9.2.3.1 Definition

FD hint tracks are tracks with handler_type ‘hint’ and with the entry-format ‘fdp ' in the sample
description box. The FD hint sample entry is contained in the sample description box ('stsd').

9.2.3.2 Syntax

class FDHintSampleEntry() extends SampleEntry ('fdp ') {
 unsigned int(16) hinttrackversion = 1;
 unsigned int(16) highestcompatibleversion = 1;
 unsigned int(16) partition_entry_ID;
 unsigned int(16) FEC_overhead;
 Box additionaldata[]; //optional
}

9.2.3.3 Semantics

partition_entry_ID indicates the partition entry in the FD item information box. A zero value
indicates that no partition entry is associated with this sample entry, e.g., for FDT. If the corresponding
FD hint track contains only overhead data this value should indicate the partition entry whose
overhead data is in question.

ISO/IEC 14496-12:2008(E)

© ISO/IEC 2008 – All rights reserved PROOF/ÉPREUVE 107

FEC_overhead is a fixed 8.8 value indicating the percentage protection overhead used by the hint
sample(s). The intention of providing this value is to provide characteristics to help a server select a
session group (and corresponding FD hint tracks). If the corresponding FD hint track contains only
overhead data this value should indicate the protection overhead achieved by using all FD hint tracks
in a session group up to the FD hint track in question.

The hinttrackversion and highestcompatibleversion fields have the same interpretation as in the
RTP hint sample entry described in subclause 9.1.2. As additional data a time scale entry box may be
provided. If not provided, there is no indication given on timing of packets.

File entries needed for an FDT or an electronic service guide can be created by observing all sample entries
of a hint track and the corresponding item information boxes of the items referenced by the above partition
entry IDs. No sample entries shall be included in the hint track if they are not referenced by any sample.

9.2.4 Sample Format

9.2.4.1 Sample Container

Each FD sample in the hint track will generate one or more FD packets.

Each sample contains two areas: the instructions to compose the packets, and any extra data needed when
sending those packets (e.g., encoding symbols that are copied into the sample instead of residing in items for
source files or FEC). Note that the size of the sample is known from the sample size table.

aligned(8) class FDsample extends Box(‘fdsa’) {
 FDPacketBox packetbox[]
 ExtraDataBox extradata; //optional
}

Sample numbers of FD samples define the order they shall be processed by the server. Likewise, FD packet
boxes in each FD sample should appear in the order they shall be processed. If the time scale entry box is
present in the FD hint sample entry, then sample times are defined and provide relative send times of packets
for a default bitrate. Depending on the actual transmission bitrate, a server may apply linear time scaling.
Sample times may simplify the scheduling process, but it is up to the server to send packets in a timely
manner.

9.2.4.2 Packet Entry Format

Each packet in the FD sample has the following structure (References: RFC 3926, 3450, 3451):

aligned(8) class FDpacketBox extends Box(‘fdpa’) {
 LCTheaderTemplate LCT_header_info;
 unsigned int(16) entrycount1;
 LCTheaderExtension header_extension_constructors[entrycount1];
 unsigned int(16) entrycount2;
 dataentry packet_constructors[entrycount2];
}

The LCT header info contains LCT header templates for the current FD packet. Header extension
constructors are structures which are used for constructing the LCT header extensions. Packet constructors
are used for constructing the FEC payload ID and the source symbols in an FD packet.

ISO/IEC 14496-12:2008(E)

108 PROOF/ÉPREUVE © ISO/IEC 2008 – All rights reserved

9.2.4.3 LCT Header Template Format

The LCT header template is defined as follows:

aligned(8) class LCTheaderTemplate {
 unsigned int(1) sender_current_time_present;
 unsigned int(1) expected_residual_time_present;
 unsigned int(1) session_close_bit;
 unsigned int(1) object_close_bit;
 unsigned int(4) reserved;
 unsigned int(16) transport_object_identifier;
}

It can be used by a server to form an LCT header for a packet. Note that some parts of the header depend on
the server policy and are not included in the template. Some field lengths also depend on the LCT header bits
assigned by the server. The server may also need to change the value of the Transport Object Identifier (TOI).

9.2.4.4 LCT Header Extension Constructor Format

The LCT header extension constructor format is defined as follows:

aligned(8) class LCTheaderextension {
 unsigned int(8) header_extension_type;
 if (header_extension_type > 127) {
 unsigned int(8) content[3];
 }
 else {
 unsigned int(8) length;
 if (length > 0) {
 unsigned int(8) content[(length*4) - 2];
 }
}

A positive value of the length field specifies the length of the constructor content in multiples of 32 bit words. A
zero value means that the header is generated by the server.

The usage and rules for LCT header extensions are defined in RFC 3451 (LCT RFC). The
header_extension_type contains the LCT Header Extension Type (HET) value.

HET values between 0 and 127 are used for variable-length (multiple 32-bit word) extensions. HET values
between 128 and 255 are used for fixed length (one 32-bit word) extensions. If the
header_extension_type is smaller than 128, then the length field corresponds to the LCT Header
Extension Length (HEL) as defined in RFC 3451. The content field always corresponds to the Header
Extension Content (HEC).

NOTE A server can identify packets including FDT by observing whether EXT_FDT
(header_extension_type == 192) is present.

9.2.4.5 Packet Constructor Format

There are various forms of the constructor. Each constructor is 16 bytes in order to make iteration easier. The
first byte is a union discriminator. The packet constructors are used to include FEC payload ID as well as
source and parity symbols in an FD packet.

ISO/IEC 14496-12:2008(E)

© ISO/IEC 2008 – All rights reserved PROOF/ÉPREUVE 109

aligned(8) class FDconstructor(type) {
 unsigned int(8) constructor_type = type;
}

aligned(8) class FDnoopconstructor extends FDconstructor(0)
{
 unsigned int(8) pad[15];
}

aligned(8) class FDimmediateconstructor extends FDconstructor(1)
{
 unsigned int(8) count;
 unsigned int(8) data[count];
 unsigned int(8) pad[14 - count];
}

aligned(8) class FDsampleconstructor extends FDconstructor(2)
{
 signed int(8) trackrefindex;
 unsigned int(16) length;
 unsigned int(32) samplenumber;
 unsigned int(32) sampleoffset;
 unsigned int(16) bytesperblock = 1;
 unsigned int(16) samplesperblock = 1;
}

aligned(8) class FDitemconstructor extends FDconstructor(3)
{
 unsigned int(16) item_ID;
 unsigned int(16) extent_index;
 unsigned int(64) data_offset; //offset in byte within extent
 unsigned int(24) data_length; //non-zero length in byte within extent or
 //if (data_length==0) rest of extent
}

aligned(8) class FDxmlboxconstructor extends FDconstructor(4)
{
 unsigned int(64) data_offset; //offset in byte within XMLBox or BinaryXMLBox
 unsigned int(32) data_length;
 unsigned int(24) reserved;
}

9.2.4.6 Extra Data Box

Each sample of an FD hint track may include extra data stored in an extra data box:

aligned(8) class ExtraDataBox extends Box(‘extr’) {
 FECInformationBox feci;
 bit(8) extradata[];
}

9.2.4.7 FEC Information Box

9.2.4.7.1 Definition

Box Type: ‘feci’
Container: Extra Data Box (‘extr’)
Mandatory: No
Quantity: Zero or One

The FEC Information box stores FEC encoding ID, FEC instance ID and FEC payload ID which are needed
when sending an FD packet.

ISO/IEC 14496-12:2008(E)

110 PROOF/ÉPREUVE © ISO/IEC 2008 – All rights reserved

9.2.4.7.2 Syntax

aligned(8) class FECInformationBox extends Box('feci') {
 unsigned int(8) FEC_encoding_ID;
 unsigned int(16) FEC_instance_ID;
 unsigned int(16) source_block_number;
 unsigned int(16) encoding_symbol_ID;
}

9.2.4.7.3 Semantics

FEC_encoding_ID identifies the FEC encoding scheme and is subject to IANA registration (see RFC
5052), in which (i) value zero corresponds to the "Compact No-Code FEC scheme" also known as
"Null-FEC" (RFC 3695); (ii) value one corresponds to the “MBMS FEC” (3GPP TS 26.346); (iii) for
values in the range of 0 to 127, inclusive, the FEC scheme is Fully-Specified, whereas for values in
the range of 128 to 255, inclusive, the FEC scheme is Under-Specified.

FEC_instance_ID provides a more specific identification of the FEC encoder being used for an Under-
Specified FEC scheme. This value should be set to zero for Fully-Specified FEC schemes and shall
be ignored when parsing a file with FEC_encoding_ID in the range of 0 to 127, inclusive.
FEC_instance_ID is scoped by the FEC_encoding_ID. See RFC 5052 for further details.

source_block_number identifies from which source block of the object the encoding symbol(s) in the
FD packet are generated.

encoding_symbol_ID identifies which specific encoding symbol(s) generated from the source block
are carried in the FD packet.

9.3 MPEG-2 Transport Hint Track Format

9.3.1 Introduction

MPEG-2 TS (Transport Stream) is a stream multiplex which can carry one or more programs, consisting of
audio, video and other media. The file format supports the storage of MPEG-2 TS in a hint track. An MPEG-2
TS hint track can be used for both storage of received TS packets (as a reception hint track), and as a server
hint track used for the generation of an MPEG-2 TS.

The MPEG-2 TS hint track definition supports so-called “precomputed hints”. Precomputed hints make no use
of including data by reference from other tracks, but rather MPEG-2 TS packets are stored as such. This
allows reusing the MPEG-2 TS packets stored in a separate file. Furthermore, precomputed hints facilitate
simple recording operation.

In addition to precomputed hint samples, it is possible to include media data by reference to media tracks into
hint samples. Conversion of a received transport stream to media tracks would allow existing players
compliant with earlier versions of the ISO base media file format to process recorded files as long as the
media formats are also supported. Storing the original transport headers retains valuable information for error
concealment and the reconstruction of the original transport stream.

9.3.2 Design Principles

The design principles of the MPEG-2 TS Hint Track Format are as follows.

A sequence of samples in an MPEG-2 TS Hint Track is a set of precomputed and constructed MPEG-2 TS
packets. Precomputed packets are TS packets which are stored unchanged in the case of reception or will be
sent as is. This is especially important where data cannot be de-multiplexed and elementary streams cannot
be created – e.g. when the transport stream is encrypted and is not allowed to be stored decrypted. Therefore,
it is necessary to be able to store the MPEG-2 TS as such in a hint track. Constructed packets use the same
approach as RTP hint tracks, i.e., the sample contains instructions for a streaming server to construct the
packet. The actual media data is contained in other tracks. A track reference of type ‘hint’ is used.

ISO/IEC 14496-12:2008(E)

© ISO/IEC 2008 – All rights reserved PROOF/ÉPREUVE 111

9.3.2.1 Reusing existing Transport Streams

It was desired to reuse existing TS instances and therefore an additional mechanism exists to cover a wide
variety of existing TS recordings. These recordings may consist not only of TS packets but have preceding or
trailing data with each TS packet. A specific case for preceding data is a 4-byte timestamp in front of each TS
packet to remove the jitter of a transmission system. A specific case for trailing data is the addition of FEC
when a TS packet is transmitted over an error-prone channel.

9.3.2.2 Timing

MPEG-2 TS defines a single clock for each program, running at 27MHz, which sampling value is transported
as PCRs in the TS for clock recovery. The timescale of MPEG-2 TS Hint Tracks is recommended to be 90000,
or an integer division or multiple thereof.

The decoding time of a sample in a MPEG-2 TS Hint Track is the reception/transmission time of the first bit of
that packet or packet group which is recommended to be derived from the PCR timestamps of the TS, since if
the PCR times are used, piece-wise linearity can be assumed and the ‘stts’ table compacts sensibly. The
optional ‘tsti’ box in the sample description can be used to signal whether reception timing with or without
clock recovery was used when the hint track is a reception hint track. In the case of a server hint track PCR
timing is assumed.

NOTE: When there are multiple packets in a sample, they cannot be given independent transmission time offsets.

9.3.2.3 Packet Grouping

The sample format for MPEG-2 Transport Stream Hint Tracks allows multiple TS packets in one sample.
Specific applications, such as some IPTV applications, convey TS packets in an RTP stream. Only one
reception timestamp can be derived for all TS packets carried in one RTP packet. Another application for
storing multiple TS packets in a sample is SPTSs, where a sample contains all the TS packets for a GoP. In
this case every sample is a random access point.

Note that random-access to every TS packet is not possible by the means of the file format if multiple TS
packets per sample are used.

In the case of an MPTS only one packet per sample should be used. This facilitates the use of the sample
group mechanism on a per-packet basis.

9.3.2.4 Random-access points

A random access point is a point at which processing of a track may begin without error. Both MPTS and
SPTS are supported by MPEG-2 TS Hint Tracks, however a random access point, marked as a sync sample,
is normally only defined for SPTS, where it specifies the beginning of a packet that contains the first byte of an
independently decodable media access unit (e.g. MPEG-2 video I-frames or MPEG-4 AVC IDR pictures) of a
stream that uses differential coding. For MPTS, the sync sample table would normally be present but empty,
indicating that there is no point in the track at which processing of the entire track may begin without error. It is
recommended that the PSI/SI be in the Sample Description so that true random-access with just the media
data is possible.

Note that in the case of an MPTS, the sync sample table is present but empty (which means essentially that
no sample is a sync sample).

Note also that in case of an SPTS, samples including multiple TS packets should have a sync point (e.g. GoP
boundary) at the start of a sample. The sync sample table then marks the samples the sync points (e.g. the
start of GoPs); if the sync sample table is absent, all the samples are sync points. If the sync sample table is
present but empty, the sync sample positions are unknown and may be not at the start of samples.

NOTE: An application searching for a key frame can start reading at that location, but in general it also has to read
further MPEG-2 TS packets (regarding the file format these are subsequent samples) so that the decoder can
decode a complete frame.

ISO/IEC 14496-12:2008(E)

112 PROOF/ÉPREUVE © ISO/IEC 2008 – All rights reserved

9.3.2.5 Application as a Reception Hint Track

Reception hint tracks may be used when one or more packet streams of data are recorded. They indicate the
order, reception timing, and contents of the received packets among other things.

NOTE 1: Players may reproduce the packet stream that was received based on the reception hint tracks and process
the reproduced packet stream as if it was newly received.

Reception hint tracks have the same structure as hint tracks for servers.

The format of the reception hint samples is indicated by the sample description for the reception hint track.
Each protocol has its own reception hint sample format and name.

NOTE 2: Servers using reception hint tracks as hints for sending of the received streams should handle the potential
degradations of the received streams, such as transmission delay jitter and packet losses, gracefully and
ensure that the constraints of the protocols and contained data formats are obeyed regardless of the potential
degradations of the received streams.

NOTE 3: As with server hint tracks, the sample formats of reception hint tracks may enable construction of packets by
pulling data out of other tracks by reference. These other tracks may be hint tracks or media tracks. The exact
form of these pointers is defined by the sample format for the protocol, but in general they consist of four
pieces of information: a track reference index, a sample number, an offset, and a length. Some of these may
be implicit for a particular protocol. These 'pointers' always point to the actual source of the data, i.e., indirect
data referencing is disallowed. If a hint track is built 'on top' of another hint track, then the second hint track
must have direct references to the media track(s) used by the first where data from those media tracks is
placed in the stream.

If received data is extracted to media tracks, the de-hinting process must ensure that the media streams are
valid, i.e. the streams must be error-free (which requires e.g. error concealment).

A sample with a size of zero is permitted in reception hint tracks, and such samples may be ignored.

9.3.3 Sample Description Format

9.3.3.1 Introduction

The sample description for an MPEG2-TS reception hint track contains all static metadata that describe the
stream or a portion thereof, especially the PSI/SI tables. MPEG-2 TS reception hint tracks use an entry-format
in the sample description of 'rm2t' (which indicates MPEG-2 Transport Stream). The entry-format for
MPEG2-TS server hint tracks is 'sm2t'.

The static metadata documents e.g. PSI/SI tables. The presence of static metadata is optional. When present,
the static metadata shall be valid for the MPEG2-TS packets it describes. Consequently, if a piece of static
metadata changes in the stream, a new sample entry is needed for the first sample at or after the change. If
static metadata is not present in the sample entry, structures, such as PSI/SI tables, stored in the MPEG2-TS
packets are valid and the stream must be scanned in order to find out which values of static metadata are
valid for a particular sample.

9.3.3.2 Syntax

class MPEG2TSReceptionSampleEntry extends MPEG2TSSampleEntry(`rm2t´) {
}

class MPEG2TSServerSampleEntry extends MPEG2TSSampleEntry(`sm2t´) {
}

ISO/IEC 14496-12:2008(E)

© ISO/IEC 2008 – All rights reserved PROOF/ÉPREUVE 113

class MPEG2TSSampleEntry(name) extends HintSampleEntry(name) {
 uint(16) hinttrackversion = 1;
 uint(16) highestcompatibleversion = 1;
 uint(8) precedingbyteslen;
 uint(8) trailingbyteslen;
 uint(1) precomputed_only_flag;
 uint(7) reserved;
 box additionaldata[];
}

9.3.3.3 Semantics

hinttrackversion is currently 1; the highestcompatibleversion field specifies the oldest version with which
this track is backward-compatible.

precedingbyteslen indicates the number of bytes that are preceding each MPEG2-TS packet (which may
e.g. be a time-code from an external recording device).

trailingbyteslen indicates the number of bytes that are at the end of each MPEG2-TS packet (which may
e.g. contain checksums or other data that was added by a recording device).

precomputed_only_flag indicates whether the associated samples are purely precomputed if set to 1;
additionaldata is a set of boxes. This set can contain boxes that describe one common version of the

PSI/SI tables by means of the 'tPAT' box or the 'tPMT' box or other data, e.g. boxes that are only valid
for a sample (which contains multiple packets) and describe the initial conditions of the STC or boxes
that define the content of the preceding or trailing data. There shall be at most one of each of PATBox,
TSTimingBox, InitialSampleTimeBox present within additionaldata

The following optional boxes for additionaldata are defined:

aligned(8) class PATBox() extends Box(‘tPAT’) {
 uint(3) reserved;
 uint(13) PID;
 uint(8) sectiondata[];
}

aligned(8) class PMTBox() extends Box(‘tPMT’) {
 uint(3) reserved;
 uint(13) PID;
 uint(8) sectiondata[];
}

aligned(8) class ODBox () extends Box (‘tOD ’) {
 uint(3) reserved;
 uint(13) PID;
 uint(8) sectiondata[];
}

aligned(8) class TSTimingBox() extends Box(‘tsti’) {
 uint(1) timing_derivation_method;
 uint(2) reserved;
 uint(13) PID;
}

aligned(8) class InitialSampleTimeBox() extends Box(‘istm’) {
 uint(32) initialsampletime;
 uint(32) reserved;
}

The 'tPAT' box contains the section data of the PAT and each 'tPMT' box contains the section data of one of
the PMTs.

In the case of an SPTS, it is strongly recommended that the 'tPMT' box is present in the additionaldata. If the
PMT is not present in the sample data, then it shall be present in the additionaldata. If the 'tPMT' box is

ISO/IEC 14496-12:2008(E)

114 PROOF/ÉPREUVE © ISO/IEC 2008 – All rights reserved

present, it shall be the PMT for the program contained in the sample data (although the recorded stream may
contain other programs and be an MPTS).

PID is the PID of the MPEG2-TS packets from which the data was extracted. In the case of the 'tPAT' box
this value is always 0.

sectiondata extends to the end of the box and is the complete MPEG2-TS table, containing the
concatenated sections, of an identical version number.

initialsampletime specifies the initial value of the sample times in case the sample times do not start
from 0. Unlike media tracks, MPEG-2 TS hint track usually have sample times not starting from 0, e.g.,
PCR times and reception times. Since ‘stts’ only stores the delta between sample times, this field is
required for reconstructing the original sample times:
 OriginalSampleTime(n) = initialsampletime + STTS(n).
In case PCR times are used for sample times, the reconstructed sample time can be used to initialize
the STC when the sample is randomly accessed. Note that this field may need to be updated after
editing.

timing_derivation_method is a flag which specifies the method which was used to set the sample time for
a given PID. The values for timing_derivation_method are as follows:
0x0 reception time: the sample timing is derived from the reception time. It is not guaranteed that the

STC was recovered for derivation of the reception time.

0x1 piecewise linearity between PCRs: the sample time is derived from a reconstructed STC for this
program. Piecewise linearity between adjacent PCRs is assumed and all TS packets in the
samples have a constant duration in this range.

9.3.4 Sample Format

Each sample of an MPEG-2 TS Hint track consists of a set of

• pre-computed packets: one or more MPEG-2 TS packets with the associated headers and trailers

• constructed packets: instructions to compose one or more MPEG2-TS packets with the associated
headers and trailers by pointing to data of another track.

Note that each MPEG-2 TS packet in the sample may be preceded with a preheader (precedingbytes), or
followed by a posttrailer (trailingbytes), as detailed in the Sample Description Format. The size of the
preheader and the posttrailer are specified by precedingbyteslen and trailingbyteslen, respectively, in the
sample description to allow compact sample tables with fewer chunks.

It is possible for a mixture of precomputed and constructed samples to occur in the same track. If padding of
the transport stream packet is required, this can be accomplished with the adaptation_field or explicitly by
using the MPEG2TSImmediateConstructor as appropriate.

NOTE: The number of MPEG-2 TS packets in the sample can be derived from the sample size table directly if
the sample consists of pre-computed packets only, which is a conclusion if the precomputed_only_flag in the
sample entry is set. The number of MPEG-2 TS packets in the sample may be variable or restricted, e.g.
extensions of this file format may define a sample to contain exactly one packet.

9.3.4.1 Syntax

// Constructor format
aligned(8) abstract class MPEG2TSConstructor (uint(8) type) {
 uint(8) constructor_type = type;
}

aligned(8) class MPEG2TSImmediateConstructor
 extends MPEG2TSConstructor(1) {
 uint(8) immediatedatalen;
 uint(8) data[immediatedatalen];
}

ISO/IEC 14496-12:2008(E)

© ISO/IEC 2008 – All rights reserved PROOF/ÉPREUVE 115

aligned(8) class MPEG2TSSampleConstructor
 extends MPEG2TSConstructor(2) {
 uint(8) sampledatalen;
 uint(16) trackrefindex;
 uint(32) samplenumber;
 uint(32) sampleoffset;
}

// Packet format
aligned(8) class MPEG2TSPacketRepresentation {
 uint(8) precedingbytes[precedingbyteslen];
 uint(8) sync_byte;
 if (sync_byte == 0x47) {
 uint(8) packet[187];
 } else if (sync_byte == 0x00) {
 uint(8) headerdatalen;
 uint(4) reserved;
 uint(4) num_constructors;
 bit(1) transport_error_indicator;
 bit(1) payload_unit_start_indicator;
 bit(1) transport_priority;
 bit(13) PID;
 bit(2) transport_scrambling_control;
 bit(2) adaptation_field_control;
 bit(4) continuity_counter;
 if (adaptation_field_control == ´10´ ||
 adaptation_field_control == ´11´) {
 uint(8) adaptation_field[headerdatalen-3];
 }
 MPEG2TSConstructor constructors[num_constructors];
 }
 uint(8) trailingbytes[trailingbyteslen];
}

// Sample format
aligned(8) class MPEG2TSSample {
 MPEG2TSPacket packet[];
}

9.3.4.2 Semantics

precedingbytes contains any extra data preceding the packet, typically provided by the recording device.
For example, this may include a timestamp.

sync_byte: if this value is 0x47, then the sample is a transport stream packet (a precomputed reception
hint track sample), with the remaining bytes following in the field packet. If this value is 0x00, it
indicates that the associated sample points to a track indexed by trackrefindex in the track reference
box with reference type 'hint'. All other values are currently reserved. When the packet data is actually
put into a streaming channel, the value shall always be set to 0x47

trackrefindex indexes in the track reference box with reference type 'hint' to indicate with which media
track the current sample is associated. The samplenumber and sampleoffset fields in the
MPEG2TSSampleConstructor point into this media track. The trackrefindex starts from value 1. The
value 0 is reserved for future use.

packet: The MPEG-2 TS packet, apart from the sync byte (0x47).
The MPEG2TSConstructor array is a collection of one or more constructor entries, to allow for multiple

access units in one transport stream packet. An MPEG2TSImmediateConstructor can contain, amongst
others, the PES header. An MPEG2TSSampleConstructor references data in the associated media track.
The sum of headerdatalen and the datalen fields of all constructors of an MPEG2TSPacket must be equal
to the length of the transport stream packet being constructed, minus 1 byte, which is 187.

trailingbytes contains any extra data following the packet. For example, this may include a checksum.
samplenumber indicates the sample within the referred track contained in the packet and sampleoffset

indicates the starting byte position of the referred media sample contained in the packet of which
sampledatalen bytes are included. sampleoffset starts from value 0.

ISO/IEC 14496-12:2008(E)

116 PROOF/ÉPREUVE © ISO/IEC 2008 – All rights reserved

immediatedatalen indicates the number of bytes within the field data that are included in the sample rather
than data being included into the sample by reference to a media track.

headerdatalen indicates the length of the TS packet header (without the sync byte) in bytes. This field has
the value 3 if the adaptation_field is not present or the value (adaptation_field_length+3), where
adaptation_field_length is the first octet of the structure adaptation_field as defined in ISO/IEC 13818-1
[4].

Neither the format of precedingbytes nor trailingbytes are defined by this specification.

The remaining fields (transport_error_indicator, payload_unit_start_indicator, transport_priority, PID,
transport_scrambling_control, adaptation_field_control, continuity_counter, adaptation_field) of the
sample structure contain a copy of the packet header of the TS packet, as defined in ISO/IEC 13818-1 [4].

9.3.5 Protected MPEG 2 Transport Stream Hint Track

9.3.5.1 Introduction

This specification defines a mechanism for marking media streams as protected. This works by changing the
four character code of the SampleEntry, and appending boxes containing both details of the protection
mechanism and the original four character code. However, in this case the track is not protected; it is an ‘in
the clear’ hint track which contains protected data. This Subclause describes how hint tracks should be
marked as carrying protected data, using a similar mechanism, and utilizing the same boxes.

9.3.5.2 Syntax

class ProtectedMPEG2TransportStreamSampleEntry
 extends MPEG2TransportStreamSampleEntry(‘pm2t’) {
 ProtectionSchemeInfoBox SchemeInformation;
}

9.3.5.3 Semantics

The SchemeInformation ("sinf") box (defined in 8.12) shall contain details of the protection scheme applied.
This shall include the OriginalFormatBox which shall contain the original sample entry type of the MPEG-2
Transport StreamSampleEntry box.

9.4 RTP, RTCP, SRTP and SRTCP Reception Hint Tracks

9.4.1 RTP Reception Hint Track

9.4.1.1 Introduction

This Subclause specifies the reception hint track format for the real-time transport protocol (RTP), as defined
in IETF RFC 3550.

RTP is used for real-time media transport over the Internet Protocol. Each RTP stream carries one media type,
and one RTP reception hint track carries one RTP stream. Hence, recording of an audio-visual program
results into at least two RTP reception hint tracks.

The design of the RTP reception hint track format follows as much as possible the design of the RTP server
hint track format. This design should ensure that RTP packet transmission operates very similarly regardless
whether it is based on RTP reception hint tracks or RTP server hint tracks. Furthermore, the number of new
data structures in the file format was consequently kept as small as possible.

The format of the RTP reception hint tracks allow storing of the packet payloads in the hint samples, or
converting the RTP packet payloads to media samples and including them by reference to the hint samples,
or combining both approaches. As noted earlier, conversion of received streams to media tracks allows
existing players compliant with earlier versions of the ISO base media file format to process recorded files as

ISO/IEC 14496-12:2008(E)

© ISO/IEC 2008 – All rights reserved PROOF/ÉPREUVE 117

long as the media formats are also supported. Storing the original RTP headers retains valuable information
for error concealment and the reconstruction of the original RTP stream. It is noted that the conversion of
packet payloads to media samples may happen "off-line" after recording of the streams in precomputed RTP
reception hint tracks has been completed.

9.4.1.2 Sample Description Format

The entry-format in the sample description for the RTP reception hint tracks is 'rrtp'. The syntax of the sample
entry is the same as for RTP server hint tracks having the entry-format 'rtp '.

class ReceivedRtpHintSampleEntry() extends SampleEntry (‘rrtp‘) {
 uint(16) hinttrackversion = 1;
 uint(16) highestcompatibleversion = 1;
 uint(32) maxpacketsize;
 box additionaldata[];
}

The entry-format identifier in the sample description of the RTP reception hint track is different from the entry-
format in the sample description of the RTP server hint track, in order to avoid using an RTP reception hint
track that contains errors as a valid server hint track.

The additionaldata set of boxes may include the timescale entry ('tims') and time offset ('tsro') boxes.
Moreover, the additionaldata may contain a timestamp synchrony box.

The timescale entry box (‘tims’) shall be present and the value of timescale shall be set to match the clock
frequency of the RTP timestamps of the stream captured in the reception hint track.

The time offset box (‘tsro’) may be present. If the time offset box is not present, the value of the field offset
is inferred to be equal to 0. The value of the field offset is used for the derivation of the RTP timestamp, as
specified in 9.4.1.4.

RTP timestamps typically do not start from zero, especially if an RTP receiver 'tunes' into a stream. The time
offset box should therefore be present in RTP reception hint tracks and the value of offset in the time offset
box should be set equal to the first RTP timestamp of the RTP stream in reception order.

Zero or one timestampsynchrony boxes may be present in the additionaldata of the sample entry for a RTP
reception hint track. If a timestampsynchrony box is not present, the value of timestamp_sync is inferred to be
equal to 0.

class timestampsynchrony() extends Box(‘tssy’) {
 unsigned int(6) reserved;
 unsigned int(2) timestamp_sync;
}

timestamp_sync equal to 0 indicates that the RTP timestamps of the present RTP reception hint track
derived from the equation in 9.4.1.4 may or may not be synchronized with RTP timestamps of other
RTP reception hint tracks.

timestamp_sync equal to 1 indicates that the RTP timestamps of the present RTP reception hint track
derived from the equation in 9.4.1.4 reflect the received RTP timestamps exactly (without corrected
synchronization to any other RTP reception hint track).

timestamp_sync equal to 2 indicates that RTP timestamps of the present RTP reception hint track derived
from the equation in 9.4.1.4 are synchronized with RTP timestamps of other RTP reception hint tracks.

When timestamp_sync is equal to 0 or 1, a player should correct the inter-stream synchronization using stored
RTCP sender reports. When timestamp_sync is equal to 2, the media contained in the RTP reception hint
tracks can be played out synchronously according to the reconstructed RTP timestamps without
synchronization correction using RTCP Sender Reports. If it is expected that the RTP reception hint track will
be used for re-sending the recorded RTP stream, it is recommended that timestamp_sync be set equal to 0 or
1, because the stored RTCP sender reports can be reused.

ISO/IEC 14496-12:2008(E)

118 PROOF/ÉPREUVE © ISO/IEC 2008 – All rights reserved

timestamp_sync equal to 3 is reserved.

The value of timestamp_sync shall be identical for all RTP reception hint tracks present in a file.

When RTCP is also stored, using an RTCP hint track, the timestamp relationship between the RTP and RTCP
hint tracks can only be maintained if the RTP timestamps are anchored by using a set time offset (‘tsro’) in the
RTP track, and hence the time offset is mandatory if RTCP is stored in an RTCP hint track.

Zero or one ReceivedSsrcBox identified with the four-character code ‘rssr’ shall be present in the
additionaldata of a sample descriptor entry of a RTP reception hint track:

class ReceivedSsrcBox extends Box(‘rssr’) {
 unsigned int(32) SSRC
}

The SSRC value must equal the SSRC value in the header of all recorded SRTP packets described by the
sample description.

9.4.1.3 Sample Format

The sample format of RTP reception hint tracks is identical to the syntax of the sample format of the RTP
server hint tracks. Each sample in the reception hint track represents one or more received RTP packets. If
media frames are not both fragmented and interleaved in an RTP stream, it is recommended that each
sample represents all received RTP packets that have the same RTP timestamp, i.e., consecutive packets in
RTP sequence number order with a common RTP timestamp.

Each RTP reception hint sample contains two areas: the instructions to compose the packet, and any extra
data needed for composing the packet, such as a copy of the packet payload. Note that the size of the sample
is known from the sample size table.

Since the reception time for the packets may vary, this variation can be signalled for each packet as specified
subsequently.

A sample with a size of zero is permitted in reception hint tracks, and such samples may be ignored.

9.4.1.4 Packet Entry Format

Each packet in the packet entry table has same structure as for server (transmission) hint tracks, in 9.1.3.1.

Where i is the sample number of a sample, the sum of the sample time DT(i) as specified in 8.6.1.2 and
relative_time indicates the reception time of the packet. The clock source for the reception time is undefined
and may be, for instance, the wall clock of the receiver. If the range of reception times of a reception hint track
overlaps entirely or partly with the range of reception times of another reception hint track, the clock sources
for these hint tracks shall be the same.

It is recommended that receivers may use a constant value for sample_delta in the decoding time to sample
box ('stts') as much as reasonable and smooth out packet scheduling and end-to-end delay variation by
setting relative_time adaptively in stored reception hint samples. This arrangement of setting the values of
sample_delta and relative_time can facilitate a compact decoding time to sample box. In this case
timestamp_sync is set to 1, the sample durations are mostly constant, and the time offset (‘tsro’) is stored in
the sample entry.

The values of RTP_version, P_bit, X_bit, CSRC_count, M_bit, payload_type, and RTPsequenceseed shall be set
equal to the V, P, X, CC, M, PT and sequence number fields of the RTP packet captured in the sample.

The fields bframe_flag and repeat_flag are reserved in reception hint tracks and must be zero.

The semantics of extra_flag and extra_information_length are identical to those of specified for the RTP
server hint tracks.

ISO/IEC 14496-12:2008(E)

© ISO/IEC 2008 – All rights reserved PROOF/ÉPREUVE 119

The following TLV boxes are specified: rtphdrextTLV, rtpoffsetTLV, receivedCSRC.

If the X_bit is set a single rtphdrextTLV box shall be present for storing the received RTP Header Extension.

aligned(8) class rtphdrextTLV extends Box(‘rtpx’) {
 unsigned int(8) data[];
}

data is the raw RTP Header Extension which is application-specific.

The syntax of the rtpoffsetTLV box is specified in 9.1.3.1.

offset indicates a 32-bit signed integer offset to the RTP timestamp of the received RTP packet. Let i be the
sample number of a sample, DT(i) be equal to DT as specified in 8.6.1.2 for sample number i, tsro.offset be
the value of offset in the 'tsro' box of the referred reception hint sample entry, and % be the modulo operation.
The value of offset shall be such that the following equation is true:

€

RTPtimestamp = (DTi + tsro.offset + offset)mod232

Equation 1: RTP timestamp calculation
NOTE 1: When each reception hint sample represents all received RTP packets that have the same RTP

timestamp, the value of sample_delta in the decoding time to sample box can be set to match the
RTP timestamp. In other words, DT(i), as specified above, can be set equal to (the RTP timestamp –
tsro.offset – offset) (assuming that the resulting value would be greater than or equal to 0).
This is recommended.

NOTE 2: RTP timestamps do not necessarily increase as a function of RTP sequence number in all RTP streams,
i.e., transmission order and playback order of packets may not be identical. For example, many video
coding schemes allow bi-prediction from previous and succeeding pictures in playback order. As
samples appear in tracks in their decoding order, i.e., in reception order in case of RTP reception hint
tracks, offset in the rtpoffsetTLV box can be used to warp the RTP timestamp away from the
sample time DT(i).

For the purpose of edits in Edit List Boxes, the composition time of a received RTP packet is inferred to be the
sum of the sample time DT(i) and offset as specified above.

If the value of CSRC_count is not equal to zero, a receivedCSRC box may be present for storing the
received CSRC header fields for each RTP packet. The receivedCSRC box is identified with the four-
character code ‘rcsr’

aligned(8) class receivedCSRC extends Box('rcsr') {
 unsigned int(32) CSRC[]; //to end of the box
}

The number of entries in CSRC[] equals the CC value of received SRTP packets. The nth entry of CSRC[]
shall equal the nth CSRC value of the RTP packet header.

9.4.1.5 SDP information

Both movie and track SDP information may be present, as specified in 9.1.4.

9.4.2 RTCP Reception Hint Track

9.4.2.1 Introduction

This Subclause specifies the reception hint track format for the real-time control protocol (RTCP), defined in
IETF RFC 3550.

ISO/IEC 14496-12:2008(E)

120 PROOF/ÉPREUVE © ISO/IEC 2008 – All rights reserved

RTCP is used for real-time transport of control information for an RTP session over the Internet Protocol.
During streaming, each RTP stream typically has an accompanying RTCP stream that carries control
information for the RTP stream. One RTCP reception hint track carries one RTCP stream and is associated to
the corresponding RTP reception hint track through a track reference.

The format of the RTCP reception hint tracks allows the storage of RTCP Sender Reports in the hint samples.

The RTCP Sender Reports are of particular interest for stream recording, because they reflect the current
status of the server, e.g., the relationship of the media timing (RTP timestamp of audio/video packets) to the
server time (absolute time in NTP format). Knowledge of this relationship is also necessary for playback of
recorded RTP reception hint tracks to be able to detect and correct clock drift and jitter.

The timestamp synchrony box as specified in 9.4.1.2 makes it possible to correct clock drift and jitter before
playing a file, and therefore recording of RTCP streams is optional when timestamp_sync is equal to 2.

There is no server hint track equivalent for the RTCP reception hint track, since RTCP messages are
generated on-the-fly during transmission.

9.4.2.2 General

There shall be zero or one RTCP reception hint track for each RTP reception hint track. An RTCP reception
hint track shall contain a track reference box including a reference of type 'cdsc' to the associated RTP
reception hint track.

When i is the sample number of a sample, the sample time DT(i) as specified in 8.6.1.2 indicates the reception
time of the packet. The clock source for the reception time shall be the same as for the associated RTP
reception hint track. The value of timescale in the Media Header Box of an RTCP reception hint track shall be
equal to the value of timescale in the media header box of the associated RTP reception hint track.

9.4.2.3 Sample Description Format

The entry-format in the sample description for the RTCP reception hint tracks is 'rtcp'. It is otherwise identical
in structure to the sample entry format for RTP. There are no defined boxes for the additionaldata field.

9.4.2.4 Sample Format

9.4.2.4.1 Introduction

Each sample in the reception hint track represents one or more received RTCP packets. Each sample
contains two areas: the raw RTCP packets and any extra data needed. Note that the size of the sample is
known from the sample size table, and that the size of an RTCP packet is indicated within the packet itself (as
documented in RFC 3550), as a count one less than the number of 32-bit words in that packet.

9.4.2.4.2 Syntax

aligned(8) class receivedRTCPpacket {
 unsigned int(8) data[];
}

aligned(8) class receivedRTCPsample {
 unsigned int(16) packetcount;
 unsigned int(16) reserved;
 receivedRTCPpacket packets[packetcount];
}

ISO/IEC 14496-12:2008(E)

© ISO/IEC 2008 – All rights reserved PROOF/ÉPREUVE 121

9.4.2.4.3 Semantics

data contains a raw RTCP packet including the RTCP report header, the 20-byte sender information block
and any number of report blocks. Note that the size of each RTCP packet is known by parsing the 16-
bit length field of the RTCP header.

packetcount indicates the number of received RTCP packets contained in the sample.
packets contains the received RTCP packets.

9.4.3 SRTP Reception Hint Track

9.4.3.1 Introduction

This Subclause specifies the reception hint track formats for the secure real-time transport protocol (SRTP),
as defined in IETF RFC 3711.

SRTP is a secure extension of the real-time media transport (RTP) over the Internet Protocol. Each SRTP
stream carries one media type, and one SRTP reception hint track carries one SRTP stream. Hence,
recording of an audio-visual program results into at least two SRTP reception hint tracks.

The design of the SRTP reception hint track format follows the design of RTP reception hint tracks and reuses
most of the framework provided by RTP reception hint tracks. The major difference between RTP and SRTP
reception hint tracks is that the actual media payload is stored in an encrypted form for SRTP reception hint
tracks, whereas it is unencrypted for RTP reception hint tracks. SRTP reception hint tracks provide additional
boxes to store information necessary to decrypt encrypted content on playback. Additionally, all header fields
of the SRTP packet header shall be stored with the payload, as this information is necessary to check the
integrity of the received data. SRTP reception hint tracks are commonly used together with SRTCP reception
hint tracks.

SRTP reception hint tracks may, for example, be used to store protected mobile TV content.

9.4.3.2 Sample Description Format

9.4.3.2.1 Sample Description Entry

The sample description format for SRTP reception hint tracks is identical to that for RTP reception hint tracks
with the exception that the sample entry name is changed from ‘rrtp’ to ‘rsrp’ and that it may contain additional
boxes:

class ReceivedSrtpHintSampleEntry() extends SampleEntry (‘rsrp‘) {
 uint(16) hinttrackversion = 1;
 uint(16) highestcompatibleversion = 1;
 uint(32) maxpacketsize;
 box additionaldata[];
}

Fields and boxes are identical to those of the ReceivedRtpHintSampleEntry (‘rrtp‘). The
addtionaldata[] of each sample description entry of a SRTP Reception Hint Track shall contain exactly
one ReceivedSsrc Box (‘rssr’).

Additionally, the additionaldata[] may contain the Received Cryptographic Context ID box and the Rollover
Counter box defined below. Furthermore, a SRTP Process Box shall also be included as one of the
additionaldata boxes. As the content is stored encrypted, the integrity and the encryption algorithm fields
in the SRTP Process box specify the algorithm that was applied to the received stream. An entry of four
spaces ($20$20$20$20) may be used to indicate that the algorithm is defined by means outside the scope of
this document.

ISO/IEC 14496-12:2008(E)

122 PROOF/ÉPREUVE © ISO/IEC 2008 – All rights reserved

9.4.3.2.2 Received Cryptographic Context ID Box

Zero or one ReceivedCryptoContextIdBox, identified with the four-character code ‘ccid’, may be present
in the additionaldata of a sample descriptor entry of an SRTP reception hint track. Information to recover
the cryptographic context for the received SRTP stream may be stored here.

aligned(8) class ReceivedCryptoContextIdBox extends Box (‘ccid’) {
 unsigned int(16) destPort;
 unsigned int(8) ip_version;
 switch (ip_version) {
 case 4: // IPv4
 unsigned int(32) destIP;
 break;
 case 6: // IPv6
 unsigned int(64) destIP;
 break;
 }
}

The destPort and destIP parameters contain the port number and the IP address (as present in the
received IPv4 or IPv6 packages), respectively, of the SRTP session via which the recorded SRTP packets
were received. ip_version contains either 4 or 6 representing IPv4 or IPv6, respectively.

9.4.3.2.3 Rollover Counter Box

Zero or one RolloverCounterBox, identified with the four-character code ‘sroc’, may be present in the
additionaldata of a sample descriptor entry of an SRTP reception hint track. Typically, the rollover counter
value changes every 65536 SRTP package.

aligned(8) class RolloverCounterBox extends Box (‘sroc’) {
 unsigned int(32) rollover_counter;
 }

The rollover_counter is a non-zero integer that gives the value of the ROC field for all associated
received SRTP packets.

NOTE: The rollover counter (ROC) is an element of the cryptographic context of a SRTP stream and depends on
the absolute position of a packet in an RTP stream. Knowledge of the ROC value is necessary in order to decrypt
a received SRTP packet. It is optional to use the rollover counter box as RFC 4771 defines as an optional
mechanism to signal the ROC value explicitly in the authentication tag of a SRTP package.

9.4.3.3 Sample and Packet Entry Format

Both, sample format and packet Entry format for SRTP reception hint tracks are identical to those of RTP
reception hint tracks, defined in 9.4.1.3 and 9.4.1.4. The packet payload is stored as received in the SRTP
packets, i.e., all information received in the SRTP packet excluding the header or, in other words, the
encrypted payload together with the key identifier (MKI) and the authentication tag.

If the value of CSRC_count is not equal to zero for a received SRTP packet, the extra_data_tlv
corresponding to this receivedSRTPpacket shall contain exactly one receivedCSRC box (‘rcsr’).

9.4.4 SRTCP Reception Hint Tracks

9.4.4.1 Introduction

This Subclause specifies the reception hint track format for the secure real-time control protocol (SRTCP),
defined in IETF RFC 3711.

ISO/IEC 14496-12:2008(E)

© ISO/IEC 2008 – All rights reserved PROOF/ÉPREUVE 123

SRTCP is used for real-time transport of control information for a SRTP session over the Internet Protocol.
SRTCP takes for SRTP the role that RTCP takes for RTP, cf., 9.4.2. During streaming, each SRTP stream
typically has an accompanying SRTCP stream that carries control information for the SRTP stream. One
SRTCP reception hint track carries one SRTCP stream and is associated to the corresponding SRTP
reception hint track through a track reference.

The format of the SRTCP reception hint tracks allows the storage of SRTCP Packets in the hint samples, e.g.,
of SRTCP Sender Reports.

The SRTCP Sender Reports are of particular interest for stream recording, because they reflect the current
status of the server, e.g., the relationship of the media timing (SRTP timestamp of audio/video packets) to the
server time (absolute time in NTP format). Knowledge of this relationship is also necessary for playback of
recorded SRTP reception hint tracks in order to be able to detect and correct clock drift and jitter.

The timestamp synchrony box as specified in 9.4.1.2 makes it possible to correct clock drift and jitter before
playing a file, and therefore recording of SRTCP streams is optional.

There is no server hint track equivalent for the SRCTP reception hint track, since SRTCP messages are
generated on-the-fly during transmission.

9.4.4.2 General

There shall be zero or one SRTCP reception hint track for each SRTP reception hint track. An SRTCP
reception hint track shall contain a track reference box including a reference of type 'cdsc' to the associated
SRTP reception hint track.

When i is the sample number a sample, the sample time DT(i) as specified in 8.6.1.2 indicates the reception
time of the packet. The clock source for the reception time shall be the same as for the associated SRTP
reception hint track. The value of timescale in the Media Header Box of an SRTCP reception hint track shall
be equal to the value of timescale in the media header box of the associated SRTP reception hint track.

9.4.4.3 Sample Description Format

The entry-format in the sample description for the SRTCP reception hint tracks is 'stcp'. It is otherwise
identical in structure to the sample entry format for RTCP. The encryption and authentication method of the
SRTCP hint tracks are defined by the respective entries in SRTP Process box of the corresponding SRTP hint
track.

NOTE: An equivalent to the ROC boxes defined for SRTP is not necessary for SRTCP, as the SRTCP packet
contains an explicitly signalled initialization vector.

9.4.4.4 Sample Format

Sample format is the sample format for RTCP reception hint tracks as defined in 9.4.2.4.

9.4.5 Protected RTP Reception Hint Track

9.4.5.1 Introduction

This specification defines a mechanism for marking media streams as protected. This works by changing the
four character code of the SampleEntry, and appending boxes containing both details of the protection
mechanism and the original four character code. However, in this case the track is not protected; it is an ‘in
the clear’ hint track which contains protected data. This Subclause describes the how reception hint tracks
should be marked as carrying protected data, using a similar mechanism, and utilizing the same boxes.

ISO/IEC 14496-12:2008(E)

124 PROOF/ÉPREUVE © ISO/IEC 2008 – All rights reserved

9.4.5.2 Syntax

Class ProtectedRtpReceptionHintSampleEntry
 extends RtpReceptionHintSampleEntry (‘prtp‘) {
 ProtectionSchemeInfoBox SchemeInformation;
}

9.4.5.3 Semantics

The SchemeInformation (‘sinf‘) box shall contain details of the protection scheme applied. This shall include the
OriginalFormatBox which shall contain the four character code ’rrtp‘ (the four character code of the original
RTPReceptionHintSampleEntry box).

9.4.6 Recording Procedure

See Annex H.

9.4.7 Parsing Procedure

See Annex H.

10 Sample Groups

10.1 Random Access Recovery Points

10.1.1.1 Definition

In some coding systems it is possible to random access into a stream and achieve correct decoding after
having decoded a number of samples. This is known as gradual decoding refresh. For example, in video, the
encoder might encode intra-coded macroblocks in the stream, such that it knows that within a certain period
the entire picture consists of pixels that are only dependent on intra-coded macroblocks supplied during that
period.

Samples for which such gradual refresh is possible are marked by being a member of this group. The
definition of the group allows the marking to occur at either the beginning of the period or the end. However,
when used with a particular media type, the usage of this group may be restricted to marking only one end (i.e.
restricted to only positive or negative roll values). A roll-group is defined as that group of samples having the
same roll distance.

10.1.1.2 Syntax

class VisualRollRecoveryEntry() extends VisualSampleGroupEntry (’roll’)
{
 signed int(16) roll_distance;
}

class AudioRollRecoveryEntry() extends AudioSampleGroupEntry (’roll’)
{
 signed int(16) roll_distance;
}

10.1.1.3 Semantics

roll_distance is a signed integer that gives the number of samples that must be decoded in order for
a sample to be decoded correctly. A positive value indicates the number of samples after the sample
that is a group member that must be decoded such that at the last of these recovery is complete, i.e.
the last sample is correct. A negative value indicates the number of samples before the sample that is

ISO/IEC 14496-12:2008(E)

© ISO/IEC 2008 – All rights reserved PROOF/ÉPREUVE 125

a group member that must be decoded in order for recovery to be complete at the marked sample.
The value zero must not be used; the sync sample table documents random access points for which
no recovery roll is needed.

10.2 Rate Share Groups

10.2.1 Introduction

Rate share instructions are used by players and streaming servers to help allocating bitrates dynamically
when several streams share a common bandwidth resource. The instructions are stored in the file as sample
group entries and apply when scalable or alternative media streams at different bitrates are combined with
other scalable or alternative tracks. The instructions are time-dependent as samples in a track may be
associated with different sample group entries. In the simplest case, only one target rate share value is
specified per media and time range as illustrated in Figure 5.

A
/V

 R
at

e
Sh

ar
e

(%
)

time
Higher audio rate

required

Audio

Video

Figure 5 — Audio/Video rate share as function of time

In order to accommodate for rate share values that vary with the available bitrate, it is possible to specify more
than one operation range. One may for instance indicate that audio requires a higher percentage (than video)
at low available bitrates. Technically this is done by specifying two operation points as shown in Figure 6.

ISO/IEC 14496-12:2008(E)

126 PROOF/ÉPREUVE © ISO/IEC 2008 – All rights reserved

A

ud
io

 R
at

e
S

ha
re

 (%
)

Available bitrate

Higher audio
rate required

Lower audio
rate required

OP 1 OP 2

Figure 6 — Audio rate share as function of available bitrate

Operation points are defined in terms of total available bandwidth. For more complex situations it is possible to
specify more operation points.

In addition to target rate share values, it is also possible to specify maximum and minimum bitrates for a
certain media, as well as discard priority.

10.2.2 Rate Share Sample Group Entry

10.2.2.1 Definition

Each sample of a track may be associated to (zero or) one of a number of sample group descriptions, each of
which defines a record of rate-share information. Typically the same rate-share information applies to many
consecutive samples and it may therefore be enough to define two or three sample group descriptions that
can be used at different time intervals.

The grouping type 'rash' (short for rate share) is defined as the grouping criterion for rate share information.
Zero or one sample-to-group box ('sbgp') for the grouping type 'rash' can be contained in the sample
table box ('stbl') of a track. It shall reside in a hint track, if a hint track is used, otherwise in a media track.

Target rate share may be specified for several operation points that are defined in terms of the total available
bitrate, i.e., the bitrate that should be shared. If only one operation point is defined, the target rate share
applies to all available bitrates. If several operation points are defined, then each operation point specifies a
target rate share. Target rate share values specified for the first and the last operation points also specify the
target rate share values at lower and higher available bitrates, respectively. The target rate share between two
operation points is specified to be in the range between the target rate shares of those operation points. One
possibility is to estimate with linear interpolation.

ISO/IEC 14496-12:2008(E)

© ISO/IEC 2008 – All rights reserved PROOF/ÉPREUVE 127

10.2.2.2 Syntax

class RateShareEntry() extends SampleGroupDescriptionEntry('rash') {
 unsigned int(16) operation_point_count;
 if (operation_point_count == 1) {
 unsigned int(16) target_rate_share;
 }
 else {
 for (i=0; i < operation_point_count; i++) {
 unsigned int(32) available_bitrate;
 unsigned int(16) target_rate_share;
 }
 }
 unsigned int(32) maximum_bitrate;
 unsigned int(32) minimum_bitrate;
 unsigned int(8) discard_priority;
}

10.2.2.3 Semantics

operation_point_count is a non-zero integer that gives the number of operation points.
available_bitrate is a positive integer that defines an operation point (in kilobits per second). It is the

total available bitrate that can be allocated in shares to tracks. Each entry shall be greater than the
previous entry.

target_rate_share is an integer. A non-zero value indicates the percentage of available bandwidth
that should be allocated to the media for each operation point. The value of the first (last) operation
point applies to lower (higher) available bitrates than the operation point itself. The target rate share
between operation points is bounded by the target rate shares of the corresponding operation points.
A zero value indicates that no information on the preferred rate share percentage is provided.

maximum_bitrate is an integer. A nonzero value indicates (in kilobits per second) an upper threshold
for which bandwidth should be allocated to the media. A higher bitrate than maximum bitrate should
only be allocated if all other media in the session has fulfilled their quotas for target rate-share and
maximum bitrate, respectively. A zero value indicates that no information on maximum bitrate is
provided.

minimum_bitrate is an integer. A nonzero value indicates (in kilobits per second) a lower threshold for
which bandwidth should be allocated to the media. If the allocated bandwidth would correspond to a
smaller value, then no bitrate should be allocated. Instead preference should be given to other media
in the session or alternate encodings of the same media. Zero minimum bitrate indicates that no
information on minimum bitrate is provided.

discard_priority is an integer indicating the priority of the track when tracks are discarded to meet
the constraints set by target rate share, maximum bitrate and minimum bitrate. Tracks are discarded
in discard priority order and the track that has the highest discard priority value is discarded first.

10.2.3 Relationship between tracks

The purpose of defining rate share information is to aid a server or player extracting data from a track in
combination with other tracks. Note that a server/player streams/plays tracks simultaneously if they belong to
different alternate groups and can switch between tracks that belong to the same switch group within an
alternate group. By default, all tracks are served/played simultaneously if no alternate groups are defined.

Rate share information should be provided for each track. A track that does not include rate share information
has one operation point and can be treated as a constant-bitrate track with discard priority 128. Target rate
share, minimum and maximum bitrates do not apply in this case.

Tracks that are alternates to each other shall (at each instance of time) define the same number of operation
points at the same set of total available bitrates and have the same discard priorities. Note that the number
and definition of operation points may depend on time. Alternate tracks may have different target rate shares,
minimum and maximum bitrates.

ISO/IEC 14496-12:2008(E)

128 PROOF/ÉPREUVE © ISO/IEC 2008 – All rights reserved

10.2.4 Bitrate allocation

Rate share information on maximum bitrate, minimum bitrate, and target rate share can be combined for a
track. If this is the case, the target rate share shall be applied to find an allocated bitrate before the impact of
the maximum and minimum bitrates is considered.

When allocating bandwidth to several tracks, the following considerations apply:

1. In the case all tracks have explicit target rate share values and they don’t sum up to 100 per cent,
treat them as weights, i.e., normalize them.

2. The total allocation shall not exceed total available bitrate.
3. In a choice between alternate tracks, the chosen track should be the track that causes the alternate

group to have an allocation most closely in accord with its target rate share, or the track that desires
the highest bitrate that can be allocated without discarding other tracks (see below).

4. Tracks must have an allocation between their minimum and maximum bitrates, or be discarded.
5. Tracks should have an allocation in accord with their target rate shares, but this may be distorted to

allow some tracks to achieve their minima, or in case some have reached their maxima.
6. If an allocation cannot be done including a track from every alternate group, then tracks should be

discarded in discard priority order.
7. The allocation must be re-calculated whenever the operating set for an active track (one that has

been selected from an alternate group) changes or the available bitrate changes.

10.3 Alternative Startup Sequences

10.3.1 Definition

An alternative startup sequence contains a subset of samples of a track within a certain period starting from a
sync sample or a sample marked by 'rap ' sample grouping, which are collectively referred to as the initial
sample below. By decoding this subset of samples, the rendering of the samples can be started earlier than in
the case when all samples are decoded.

An 'alst' sample group description entry indicates the number of samples in any of the respective
alternative startup sequences, after which all samples should be processed.

Either version 0 or version 1 of the Sample to Group Box may be used with the alternative startup sequence
sample grouping. If version 1 of the Sample to Group Box is used, grouping_type_parameter has no
defined semantics but the same algorithm to derive alternative startup sequences should be used consistently
for a particular value of grouping_type_parameter.

A player utilizing alternative startup sequences could operate as follows. First, an initial sync sample from
which to start decoding is identified by using the Sync Sample Box, the sample_is_non_sync_sample flag
for samples enclosed in track fragments, or the 'rap ' sample grouping. Then, if the initial sync sample is
associated to a sample group description entry of type 'alst' where roll_count is greater than 0, the
player can use the alternative startup sequence. The player then decodes only those samples that are
mapped to the alternative startup sequence until the number of samples that have been decoded is equal to
roll_count. After that, all samples are decoded.

ISO/IEC 14496-12:2008(E)

© ISO/IEC 2008 – All rights reserved PROOF/ÉPREUVE 129

10.3.2 Syntax

class AlternativeStartupEntry() extends VisualSampleGroupEntry (’alst’)
{
 unsigned int(16) roll_count;
 unsigned int(16) first_output_sample;
 for (i=1; i <= roll_count; i++)
 unsigned int(32) sample_offset[i];
 j=1;
 do { // optional, until the end of the structure
 unsigned int(16) num_output_samples[j];
 unsigned int(16) num_total_samples[j];
 j++;
 }
}

10.3.3 Semantics

roll_count indicates the number of samples in the alternative startup sequence. If roll_count is
equal to 0, the associated sample does not belong to any alternative startup sequence and the
semantics of first_output_sample are unspecified. The number of samples mapped to this
sample group entry per one alternative startup sequence shall be equal to roll_count.

first_output_sample indicates the index of the first sample intended for output among the samples in
the alternative startup sequence. The index of the sync initial sample starting the alternative startup
sequence is 1, and the index is incremented by 1, in decoding order, per each sample in the
alternative startup sequence.

sample_offset[i] indicates the decoding time delta of the i-th sample in the alternative startup
sequence relative to the regular decoding time of the sample derived from the Decoding Time to
Sample Box or the Track Fragment Header Box. The sync initial sample starting the alternative
startup sequence is its first sample.

num_output_samples[j] and num_total_samples[j] indicate the sample output rate within the
alternative startup sequence. The alternative startup sequence is divided into k consecutive pieces,
where each piece has a constant sample output rate which is unequal to that of the adjacent pieces.
The first piece starts from the sample indicated by first_output_sample.
num_output_samples[j] indicates the number of the output samples of the j-th piece of the
alternative startup sequence. num_total_samples[j] indicates the total number of samples,
including those that are not in the alternative startup sequence, from the first sample in the j-th piece
that is output to the earlier one (in composition order) of the sample that ends the alternative startup
sequence and the sample that immediately precedes the first output sample of the (j+1)th piece.

10.3.4 Examples

Hierarchical temporal scalability (e.g., in AVC and SVC) improves compression efficiency but increases the
decoding delay due to reordering of the decoded pictures from the (de)coding order to output order. Deep
temporal hierarchies have been demonstrated to useful in terms of compression efficiency in some studies.
When the temporal hierarchy is deep and the operation speed of the decoder is limited (to no faster than real-
time processing), the initial delay from the start of the decoding to the start of rendering is substantial and may
affect the end-user experience negatively.

Figure 7 illustrates a typical hierarchically scalable bitstream with five temporal levels. Figure 7a shows the
example sequence in output order. Values enclosed in boxes indicate the frame_num value of the picture.
Values in italics indicate a non-reference picture while the other pictures are reference pictures. Figure 7b
shows the example sequence in decoding order. Figure 7c shows the example sequence in output order when
assuming that the output timeline coincides with that of the decoding timeline and the decoding of one picture
lasts one picture interval. It can be seen that playback of the stream starts five picture intervals later than the
decoding of the stream started. If the pictures were sampled at 25 Hz, the picture interval is 40 msec, and the
playback is delayed by 0.2 sec.

ISO/IEC 14496-12:2008(E)

130 PROOF/ÉPREUVE © ISO/IEC 2008 – All rights reserved

0
2

1

3
4 5 7

6
8

5 5 6 6 8 8 9 9

0
1
2
3
4

10
9

11
12 13 15

14
16

13 13 14 14 16 16 17 17

0
2

1

3
4 5 7

6
8

5 5 6

6

8 8 9 9

0
1
2
3
4

10
9

11
12 13 15

14
16

13 13 14 14 1616 17 17

0
2

1

3
4 5 7

6
8

5 5 6 6 8 8 9 9

10
9

11
12 13 15

14
16

13 13 14 14 16 16 17 17

a) Example sequence in output order

0 Reference picture

5 Non-reference picture

Legend

frame_num

b) Example sequence in decoding order

c) Example sequence at decoder output (delayed output order)

te
m

po
ra

l l
ev

el
te

m
po

ra
l l

ev
el

0
1
2
3
4

te
m

po
ra

l l
ev

el

Figure 7 — Decoded picture buffering delay of an example sequence with five temporal levels.

Thanks to the temporal hierarchy, it is possible to decode only a subset of the pictures at the beginning of the
sequence. Consequently, rendering can be started faster but the displayed picture rate is lower at the
beginning. In other words, a player can make a trade-off between the duration of the initial startup delay and
the initial displayed picture rate. Figure 8 and Figure 9 show two examples of alternative startup sequences
where a subset of the bitstream of Figure 7 is decoded.

The samples selected for decoding and the decoder output are presented in Figure 8a and Figure 8b,
respectively. The reference picture having frame_num equal to 4 and the non-reference pictures having
frame_num equal to 5 are not decoded. In this example, the rendering of pictures starts four picture intervals
earlier than in Figure 7. When the picture rate is 25 Hz, the saving in startup delay is 160 msec. The saving in
the startup delay comes with the disadvantage of a lower displayed picture rate at the beginning of the
bitstream.

0
2

1

7
6

8
8 8 9 9

10
9

11
12 13 15

14
16

13 13 14 14 16 16 17 17

b) Example sequence at decoder output

0
1
2
3
4

te
m

po
ra

l l
ev

el

0
2

1

7 8
6

8 8 9 9

0
1
2
3
4

10
9

11
12 13 15

14
16

13 13 14 14 1616 17 17

a) Processing of the example sequence

te
m

po
ra

l l
ev

el

3

3

5
6 6

5
6 6

Figure 8 — An example of an alternative startup sequence.

In the example of Figure 9, another way of selecting the pictures for decoding is presented. The decoding of
the pictures that depend on the picture with frame_num equal to 3 is omitted and the decoding of non-
reference pictures within the second half of the first group of pictures is omitted too. The decoded picture
resulting from the sample with frame_num equal to 2 is the first one that is output. As a result, the output
picture rate of the first group of pictures is half of normal picture rate, but the display process starts two frame
intervals (80 msec in 25 Hz picture rate) earlier than in the conventional solution illustrated in Figure 7.

ISO/IEC 14496-12:2008(E)

© ISO/IEC 2008 – All rights reserved PROOF/ÉPREUVE 131

2
1

7
6

8

10
9

11
12 13 15

14
16

13 13 14 14 16 16 17 17

b) Example sequence at decoder output

0
1
2
3
4

te
m

po
ra

l l
ev

el

0
2

1

7 8
6

0
1
2
3
4

10
9

11
12 13 15

14
16

13 13 14 14 1616 17 17

a) Processing of the example sequence

te
m

po
ra

l l
ev

el

Figure 9 — Another example of an alternative startup sequence.

10.4 Random Access Point (RAP) Sample Grouping

10.4.1 Definition

For some coding systems a sync sample is specified to be a random access point after which all samples in
decoding order can be correctly decoded. However, it may be possible to encode an “open” random access
point, after which all samples in output order can be correctly decoded, but some samples following the
random access point in decoding order and preceding the random access point in output order need not be
correctly decodable. For example, an intra picture starting an open group of pictures can be followed in
decoding order by (bi-)predicted pictures that however precede the intra picture in output order; though they
possibly cannot be correctly decoded if the decoding starts from the intra picture, they are not needed.

Such “open” random-access samples can be marked by being a member of this group. Samples marked by
this group must be random access points, and may also be sync points (i.e. it is not required that samples
marked by the sync sample table be excluded).

10.4.2 Syntax

class VisualRandomAccessEntry() extends VisualSampleGroupEntry (’rap ’)
{
 unsigned int(1) num_leading_samples_known;
 unsigned int(7) num_leading_samples;
}

10.4.3 Semantics

num_leading_samples_known equal to 1 indicates that the number of leading samples is known for
each sample in this group, and the number is specified by num_leading_samples. A leading sample is
such a sample associated with an “open” random access point (RAP). It precedes the RAP in
presentation order and immediate follows the RAP or another leading sample in decoding order, and
when decoding starts from the RAP, the sample cannot be correctly decoded.

num_leading_samples specifies the number of leading samples for each sample in this group. When
num_leading_samples_known is equal to 0, this field should be ignored.

10.5 Temporal level sample grouping

10.5.1 Definition

Many video codecs support temporal scalability where it is possible to extract one or more subsets of frames
that can be independently decoded. A simple case is the extraction of I frames for a bitstream with a regular I-
frame interval, e.g,, IPPPIPPP…, where every 4th picture is an I frame. Also subsets of these I frames can be
extracted for even lower frame rates. More elaborate situations with several temporal levels can be
constructed using hierarchical B or P frames.

ISO/IEC 14496-12:2008(E)

132 PROOF/ÉPREUVE © ISO/IEC 2008 – All rights reserved

The Temporal Level sample grouping ('tele') provides a codec-independent sample grouping that can be used
to group samples (access units) in a track (and potential track fragments) according to temporal level, where
samples of one temporal level have no coding dependencies on samples of higher temporal levels. The
temporal level equals the sample group description index (taking values 1, 2, 3, etc). The bitstream containing
only the access units from the first temporal level to a higher temporal level remains conforming to the coding
standard.

A grouping according to temporal level facilitates easy extraction of temporal subsequences, for instance
using the Subsegment Indexing box in 8.16.4.

10.5.2 Syntax

class TemporalLevelEntry() extends SampleGroupDescriptionEntry('tele')
{
 bit(1) level_independently_decodable;
 bit(7) reserved=0;
}

10.5.3 Semantics

The temporal level of samples in a sample group equals to the sample group description index.

level_independently_decodable is a flag. 1 indicates that all samples of this level have no coding
dependencies on samples of other levels. 0 indicates that no information is provided.

11 Extensibility

11.1 Objects

The normative objects defined in this specification are identified by a 32-bit value, which is normally a set of
four printable characters from the ISO 8859-1 character set.

To permit user extension of the format, to store new object types, and to permit the inter-operation of the files
formatted to this specification with certain distributed computing environments, there are a type mapping and
a type extension mechanism that together form a pair.

Commonly used in distributed computing are UUIDs (universal unique identifiers), which are 16 bytes. Any
normative type specified here can be mapped directly into the UUID space by composing the four byte type
value with the twelve byte ISO reserved value, 0xXXXXXXXX-0011-0010-8000-00AA00389B71. The four
character code replaces the XXXXXXXX in the preceding number. These types are identified to ISO as the
object types used in this specification.

User objects use the escape type ‘uuid’. They are documented above in subclause 6.2. After the size and
type fields, there is a full 16-byte UUID.

Systems which wish to treat every object as having a UUID could employ the following algorithm:

size := read_uint32();
type := read_uint32();
if (type==‘uuid’)
 then uuid := read_uuid()
 else uuid := form_uuid(type, ISO_12_bytes);

Similarly when linearizing a set of objects into files formatted to this specification, the following is applied:

ISO/IEC 14496-12:2008(E)

© ISO/IEC 2008 – All rights reserved PROOF/ÉPREUVE 133

write_uint32(object_size(object));
uuid := object_uuid_type(object);
if (is_ISO_uuid(uuid))
 write_uint32(ISO_type_of(uuid))
 else { write_uint32(‘uuid’); write_uuid(uuid); }

A file containing boxes from this specification that have been written using the ‘uuid’ escape and the full
UUID is not compliant; systems are not required to recognize standard boxes written using the ‘uuid’ and
an ISO UUID.

11.2 Storage formats

The main file containing the metadata may use other files to contain media-data. These other files may
contain header declarations from a variety of standards, including this one.

If such a secondary file has a metadata declaration set in it, that metadata is not part of the overall
presentation. This allows small presentation files to be aggregated into a larger overall presentation by
building new metadata and referencing the media-data, rather than copying it.

The references into these other files need not use all the data in those files; in this way, a subset of the media-
data may be used, or unwanted headers ignored.

11.3 Derived File formats

This specification may be used as the basis as the specific file format for a restricted purpose: for example,
the MP4 file format for MPEG-4 and the Motion JPEG 2000 file format are both derived from it. When a
derived specification is written, the following must be specified:

The name of the new format, and its brand and compatibility types for the File Type Box. Generally a new file
extension will be used, a new MIME type, and Macintosh file type also, though the definition and registration
of these are outside the scope of this specification.

Any template fields used must be explicitly declared; their use must be conformant with the specification here.

The exact ‘codingname’ and ‘protocol’ identifiers as used in the Sample Description must be defined. The
format of the samples that these code-points identify must also be defined. However, it may be preferable to fit
the new coding systems into an existing framework (e.g. the MPEG-4 systems framework), than to define new
coding points at this level. For example, a new audio format could use a new codingname, or could use
‘mp4a’ and register new identifiers within the MPEG-4 audio framework.

New boxes may be defined, though this is discouraged.

If the derived specification needs a new track type other than visual or audio, then a new handler-type must be
registered. The media header required for this track must be identified. If it is a new box, it must be defined
and its box type registered. In general, it is expected that most systems can use existing track types.

Any new track reference types should be registered and defined.

As defined above, the Sample Description format may be extended with optional or required boxes. The usual
syntax for doing this would be to define a new box with a specific name, extending (for example) Visual
Sample Entry, and containing new boxes.

ISO/IEC 14496-12:2008(E)

134 PROOF/ÉPREUVE © ISO/IEC 2008 – All rights reserved

Annex A
(informative)

Overview and Introduction

A.1 Section Overview

This section provides an introduction to the file format, that potentially assists readers in understanding the
overall concepts underlying the file format. It forms an informative annex to this specification.

A.2 Core Concepts

In the file format, the overall presentation is called a movie. It is logically divided into tracks; each track
represents a timed sequence of media (frames of video, for example). Within each track, each timed unit is
called a sample; this might be a frame of video or audio. Samples are implicitly numbered in sequence. Note
that a frame of audio may decompress into a sequence of audio samples (in the sense this word is used in
audio); in general, this specification uses the word sample to mean a timed frame or unit of data. Each track
has one or more sample descriptions; each sample in the track is tied to a description by reference. The
description defines how the sample may be decoded (e.g. it identifies the compression algorithm used).

Unlike many other multi-media file formats, this format, with its ancestors, separates several concepts that are
often linked. Understanding this separation is key to understanding the file format. In particular:

The physical structure of the file is not tied to the physical structures of the media itself. For example, many
file formats ‘frame’ the media data, putting headers or other data immediately before or after each frame of
video; this file format does not do this.

Neither the physical structure of the file, nor the layout of the media, is tied to the time ordering of the media.
Frames of video need not be laid down in the file in time order (though they may be).

This means that there are file structures that describe the placement and timing of the media; these file
structures permit, but do not require, time-ordered files.

All the data within a conforming file is encapsulated in boxes (called atoms in predecessors of this file format).
There is no data outside the box structure. All the metadata, including that defining the placement and timing
of the media, is contained in structured boxes. This specification defines the boxes. The media data (frames of
video, for example) is referred to by this metadata. The media data may be in the same file (contained in one
or more boxes), or can be in other files; the metadata permits referring to other files by means of URLs. The
placement of the media data within these secondary files is entirely described by the metadata in the primary
file. They need not be formatted to this specification, though they may be; it is possible that there are no boxes,
for example, in these secondary media files.

Tracks can be of various kinds. Three are important here. Video tracks contain samples that are visual;
audio tracks contain audio media. Hint tracks are rather different; they contain instructions for a streaming
server in how to form packets for a streaming protocol, from the media tracks in a file. Hint tracks can be
ignored when a file is read for local playback; they are only relevant to streaming.

A.3 Physical structure of the media

The boxes that define the layout of the media data are found in the sample table. These include the data
reference, the sample size table, the sample to chunk table, and the chunk offset table. Between them, these
tables allow each sample in a track to be both located, and its size to be known.

ISO/IEC 14496-12:2008(E)

© ISO/IEC 2008 – All rights reserved PROOF/ÉPREUVE 135

The data references permit locating media within secondary media files. This allows a composition to be built
from a ‘library’ of media in separate files, without actually copying the media into a single file. This greatly
facilitates editing, for example.

The tables are compacted to save space. In addition, it is expected that the interleave will not be sample by
sample, but that several samples for a single track will occur together, then a set of samples for another track,
and so on. These sets of contiguous samples for one track are called chunks. Each chunk has an offset into
its containing file (from the beginning of the file). Within the chunk, the samples are contiguously stored.
Therefore, if a chunk contains two samples, the position of the second may be found by adding the size of the
first to the offset for the chunk. The chunk offset table provides the offsets; the sample to chunk table provides
the mapping from sample number to chunk number.

Note that in between the chunks (but not within them) there may be ‘dead space’, un-referenced by the media
data. Thus, during editing, if some media data is not needed, it can simply be left unreferenced; the data need
not be copied to remove it. Likewise, if the media data is in a secondary file formatted to a ‘foreign’ file format,
headers or other structures imposed by that foreign format can simply be skipped.

A.4 Temporal structure of the media

Timing in the file can be understood by means of a number of structures. The movie, and each track, has a
timescale. This defines a time axis which has a number of ticks per second. By suitable choice of this number,
exact timing can be achieved. Typically, this is the sampling rate of the audio, for an audio track. For video, a
suitable scale should be chosen. For example, a media TimeScale of 30000 and media sample durations of
1001 exactly define NTSC video (often, but incorrectly, referred to as 29.97) and provide 19.9 hours of time in
32 bits.

The time structure of a track may be affected by an edit list. These provide two key capabilities: the
movement (and possible re-use) of portions of the time-line of a track, in the overall movie, and also the
insertion of ‘blank’ time, known as empty edits. Note in particular that if a track does not start at the beginning
of a presentation, an initial empty edit is needed.

The overall duration of each track is defined in headers; this provides a useful summary of the track. Each
sample has a defined duration. The exact presentation time (its time-stamp) of a sample is defined by
summing the durations of the preceding samples.

A.5 Interleave

The temporal and physical structures of the file may be aligned. This means that the media data has its
physical order within its container in time order, as used. In addition, if the media data for multiple tracks is
contained in the same file, this media data would be interleaved. Typically, in order to simplify the reading of
the media data for one track, and to keep the tables compact, this interleave is done at a suitable time interval
(e.g. 1 second), rather than sample by sample. This keeps the number of chunks down, and thus the chunk
offset table small.

A.6 Composition

If multiple audio tracks are contained in the same file, they are implicitly mixed for playback. This mixing is
affected by the overall track volume, and the left/right balance.

Likewise, video tracks are composed, by following their layer number (from back to front), and their
composition mode. In addition, each track may be transformed by means of a matrix, and also the overall
movie transformed by matrix. This permits both simple operations (e.g. pixel doubling, correction of 90º
rotation) as well as more complex operations (shearing, arbitrary rotation, for example).

ISO/IEC 14496-12:2008(E)

136 PROOF/ÉPREUVE © ISO/IEC 2008 – All rights reserved

Derived specifications may over-ride this default composition of audio and video with more powerful systems
(e.g. MPEG-4 BIFS).

A.7 Random access

This section describes how to seek. Seeking is accomplished primarily by using the child boxes contained in
the sample table box. If an edit list is present, it must also be consulted.

If you want to seek a given track to a time T, where T is in the time scale of the movie header box, you could
perform the following operations:

1) If the track contains an edit list, determine which edit contains the time T by iterating over the edits.
The start time of the edit in the movie time scale must then be subtracted from the time T to generate
T', the duration into the edit in the movie time scale. T' is next converted to the time scale of the
track's media to generate T''. Finally, the time in the media scale to use is calculated by adding the
media start time of the edit to T''.

2) The time-to-sample box for a track indicates what times are associated with which sample for that
track. Use this box to find the first sample prior to the given time.

3) The sample that was located in step 1 may not be a random access point. Locating the nearest
random access point requires consulting two boxes. The sync sample table indicates which samples
are in fact random access points. Using this table, you can locate which is the first sync sample prior
to the specified time. The absence of the sync sample table indicates that all samples are
synchronization points, and makes this problem easy. The shadow sync box gives the opportunity for
a content author to provide samples that are not delivered in the normal course of delivery, but which
can be inserted to provide additional random access points. This improves random access without
impacting bitrate during normal delivery. This box maps samples that are not random access points to
alternate samples that are. You should also consult this table if present to find the first shadow sync
sample prior to the sample in question. Having consulted the sync sample table and the shadow sync
table, you probably wish to seek to whichever resultant sample is closest to, but prior to, the sample
found in step 1.

4) At this point you know the sample that will be used for random access. Use the sample-to-chunk table
to determine in which chunk this sample is located.

5) Knowing which chunk contained the sample in question, use the chunk offset box to figure out where
that chunk begins.

6) Starting from this offset, you can use the information contained in the sample-to-chunk box and the
sample size box to figure out where within this chunk the sample in question is located. This is the
desired information.

A.8 Fragmented movie files

This section introduces a technique that may be used in ISO files, where the construction of a single Movie
Box in a movie is burdensome. This can arise in at least the following cases:

• Recording. At the moment, if a recording application crashes, runs out of disk, or some other incident
happens, after it has written a lot of media to disk but before it writes the Movie Box, the recorded
data is unusable. This occurs because the file format insists that all metadata (the Movie Box) be
written in one contiguous area of the file.

• Recording. On embedded devices, particularly still cameras, there is not the RAM to buffer a Movie
Box for the size of the storage available, and re-computing it when the movie is closed is too slow.
The same risk of crashing applies, as well.

ISO/IEC 14496-12:2008(E)

© ISO/IEC 2008 – All rights reserved PROOF/ÉPREUVE 137

• HTTP fast-start. If the movie is of reasonable size (in terms of the Movie Box, if not time), the Movie
Box can take an uncomfortable period to download before fast-start happens.

The basic 'shape' of the movie is set in initial Movie Box: the number of tracks, the available sample
descriptions, width, height, composition, and so on. However the Movie Box does not contain the information
for the full duration of the movie; in particular, it may have few or no samples in its tracks.

To this minimal or empty movie, extra samples are added, in structure called movie fragments.

The basic design philosophy is the same as in the Movie Box; data is not 'framed'. However, the design is
such that it can be treated as a 'framing' design if that is needed. The structures map readily to the Movie Box,
so an fragmented presentation can be rewritten as a single Movie Box.

The approach is that defaults are set for each sample, both globally (once per track) and within each fragment.
Only those fragments that have non-default values need include those values. This makes the common case
— regular, repeating, structures — compact, without disabling the incremental building of movies that have
variations.

The regular Movie Box sets up the structure of the movie. It may occur anywhere in the file, though it is best
for readers if it precedes the fragments. (This is not a rule, as trivial changes to the Movie Box that force it to
the end of the file would then be impossible). This Movie Box:

• must represent a valid movie in its own right (though the tracks may have no samples at all);

• has an box in it to indicate that fragments should be found and used;

• is used to contain the complete edit list (if any).

Note that software that doesn't understand fragments will play just this initial movie. Software that does
understand fragments and gets a non-fragmented movie won't scan for fragments as the fragment indication
box won't be found.

ISO/IEC 14496-12:2008(E)

138 PROOF/ÉPREUVE © ISO/IEC 2008 – All rights reserved

Annex B
(informative)

Patent Statements

The International Organization for Standardization and the International Electrotechnical Commission (IEC)
draw attention to the fact that it is claimed that compliance with this part of ISO/IEC 14496 and ISO/IEC 15444
may involve the use of patents.

ISO and IEC take no position concerning the evidence, validity and scope of these patent rights.

The holders of these patent rights have assured the ISO and IEC that they are willing to negotiate licenses
under reasonable and non-discriminatory terms and conditions with applicants throughout the world. In this
respect, the statements of the holders of these patents right are registered with ISO and IEC. Information may
be obtained from the companies listed below.

Attention is drawn to the possibility that some of the elements of this part of ISO/IEC 14496 and
ISO/IEC 15444 may be the subject of patent rights other than those identified in this annex. ISO and IEC shall
not be held responsible for identifying any or all such patent rights.

Please note that Patent statements that apply to the ISO Base Media File Format may not apply to an
implementation of ISO/IEC 15444-3 (Motion JPEG 2000). ISO/IEC 15444-3 uses a subset of
ISO/IEC 15444-12 (The ISO Base Media File Format).

 Company
1. Apple
2. Matsushita Electric Industrial Co., Ltd
3. Telefonaktiebolaget LM Ericsson

ISO/IEC 14496-12:2008(E)

© ISO/IEC 2008 – All rights reserved PROOF/ÉPREUVE 139

Annex C
(informative)

Guidelines on deriving from this specification

C.1 Introduction

This Annex provides informative text to explain how to derive a specific file format from the ISO Base Media
File Format.

ISO/IEC 14496-12 | ISO/IEC 15444-12 ISO Base Media Format defines the basic structure of the file format.
Media-specific and user-defined extensions can be provided in other specifications that are derived from the
ISO Base Media File Format.

C.2 General Principles

C.2.1 General

A number of existing file formats use the ISO Base Media File Format, not least the MPEG-4 MP4 File Format
(ISO/IEC 14496-14), and the Motion JPEG 2000 MJ2 File Format (ISO/IEC 15444-3). When considering a
new specification derived from the ISO Base Media File format, all the existing specifications should be used
both as examples and a source of definitions and technology. Check with the registration authority to find what
might already exist, and what specifications exist.

In particular, if an existing specification already covers how a particular media type is stored in the file format
(e.g. MPEG-4 video in MP4), that definition should be used and a new one should not be invented. In this way
specifications which share technology will also share the definition of how that technology is represented.

Be as permissive as possible with respect to the presence of other information in the file; indicate that
unrecognized boxes and media may be ignored (not “should be ignored”). This permits the creation of hybrid
files, drawing from more than one specification, and the creation of multi-format players, capable of handling
more than one specification.

When layering on this specification, it's worth observing that there are some characteristics that are
intentionally ‘parameters’ to the lower (Part 12) specification, that need to be specified. Equally, there are
some characteristics of the Part 12 file format specification that are internal and should rarely be discussed by
other specifications. Of course, there are some characteristics in a grey area in between.

Derived specifications are ideally written solely in terms of the parameters of the Part 12 file format; what a
sample is, what its timestamps mean, and so on. Mentioning specific existing boxes in a derived specification
may often turn out to be an error, except in limited cases (e.g. adding a user-data box, or an extension box).

C.2.2 Base layer operations

It should be possible to perform some operations on a Part 12 file without knowing anything about any
potential derived specifications. These operations might include the obvious reading tracks, finding the data
and timing for samples, and their sample description and track type, and so on. This might be done, for
example, by a file-format inspector or general library like the reference software.

Less obvious are a class of manipulations of the files:
a) re-interleaving the data; making the media data in time order, with the samples for various tracks

grouped into chunks of a sensible size, with the chunks interleaved;

ISO/IEC 14496-12:2008(E)

140 PROOF/ÉPREUVE © ISO/IEC 2008 – All rights reserved

b) making files that use data references self-contained, by copying the data from external files into the
new file;

c) removing free space atoms and compacting the atom structure;
d) removing data from ‘mdat’ atoms that appears to be un-referenced by tracks or meta-data atoms;
e) removing sample entries that have no associated samples;
f) removing sample groups that have no associated samples;
g) extracting some tracks and making a new file with just those (e.g. an audio track from an audio/video

presentation);
h) inserting, or removing, movie fragments, or re-fragmenting a movie.

This list is not exhaustive, of course.

C.3 Boxes

You can add boxes to the file format, but be careful about how they interact with other boxes. In particular, if
they ‘cross-link’ into existing boxes, you might not be able to mark such files as compliant with Part 12.

You must register all new boxes, except those using the ‘uuid’ type. Likewise, you should register codec
(sample entry) names, brands, track reference types, handlers (media types), group types, and protection
scheme types. It really is a bad idea to use one of these without registration, as collisions may occur – or
someone else may register the same identifier with a different meaning.

You should not write a box using the ‘UUID escape’ (the reserved ISO UUID pattern 0xXXXXXXXX-0011-
0010-8000-00AA00389B71, where the four-character code replaces the X’s) if a simple four-character-code
can be used, and ideally you shouldn’t design to use a UUID box; it’s better to place your data in known
‘expansion points’ of the file format if at all possible, or register a new box type if really needed.

Don’t forget that all data in ISO files must be, or be contained in, boxes. You can introduce a signature, but it
must ‘look like’ a box.

Do not require that any existing or new boxes you define be in a particular position, if at all possible. For
example, the existing JPEG 2000 specifications require a signature box and that it be first in the file. If another
specification also defines a signature box and also requires that it be first, then a file conformant to both
specifications cannot be constructed.

It must be possible to ‘walk’ the top-level of a file by finding box lengths. Don’t forget that ‘implied length’ is
permitted at file level.

Unless absolutely unavoidable, boxes should contain either data (e.g. in fields), or other boxes, but not both.
All boxes containing data should be a full box to allow later changes to syntax and semantics. Boxes
containing other boxes are known as container boxes, and are normally a plain (non-full) box, since their
semantics will never change if they are documented to contain only boxes.

C.4 Brand Identifiers

C.4.1 Introduction

This section covers the use of brand identifiers in the file-type box, including:
- Introduction of a new brand.
- Player’s behaviour depending on the brand.
- Setting of the brand on the creation of the ISO Base Media file.

Brands identify a specification and make a simple set of statements:

ISO/IEC 14496-12:2008(E)

© ISO/IEC 2008 – All rights reserved PROOF/ÉPREUVE 141

a) the file conforms to all requirements of the identified specification;
b) the file contains nothing contrary to the identified specification;
c) a reader implementing potentially that single specification may read, interpret, and possibly present

the file, ignoring data it does not recognize.

Specifications should therefore say (if they need a brand) “the brand that identifies files conformant to this
specification is XXXX”, and register the brand.

C.4.2 Usage of the Brand

In order to identify the specifications to which the file complies, brands are used as identifiers in the file format.
These brands are set win the File Type Box.

For example, a brand might indicate:
(1) the codecs that may be present in the file,
(2) how the data of each codec is stored,
(3) constraints and extensions that are applied to the file.

New brands may be registered if it is necessary to make a new specification that is not fully conformant to the
existing standards. For example, 3GPP allows using AMR and H.263 in the file format. Since these codecs
were not supported in any standards at that time, 3GPP specified the usage of the SampleEntry and template
fields in the ISO Base Media Format as well as defining new boxes to which these codecs refer. Considering
that the file format is used more widely in the future, it is expected that more brands will be needed.

Brands are not additive; they stand alone. You cannot say: “this brand indicates that support for Y is also
required” because the ‘also’ has no referent.

Systems that re-write files should remove brands that they do not recognize, as they do not know whether the
file still conforms to that brand’s requirements (e.g. re-interleaving a file may take it out of conformance with a
specification that requires a certain style of interleaving).

Note that the major brand usually implies the file extension, which in turn implies the MIME type. But these are
not rules. In addition, when serving under a MIME type do not forget that MIME types can take parameters,
and the list of compatible brands would often be useful to the receiving system.

C.4.3 Introduction of a new brand

A new brand can be defined if conformance to a new specification must be indicated. This generally means
that for the definition of a new brand at least one of the following conditions should be satisfied:

1. Use of a codec that is not supported in any existing brands.

2. Use more than one codec in a combination that is not supported in any existing brands. In addition, the
playback of the file is allowed only when decoding of all the media in the file is supported by the player.

3. Use constraints and/or extensions (Boxes, template fields, etc.) that are user-specific.

However, the file format contains both a major_brand field and a compatible_brands array. These fields are
owned by the file author and the part 12 specification. Do not write a specification that talks about these fields,
merely about brands and what they mean. In particular, do not claim the major_brand field (“files conformant
to this specification must set the major_brand to XXXX”) as a file could never be conformant to two such
specifications written that way, and you also block someone also from deriving a specification from yours.
However, brands that are only permitted as compatible brands may be defined.

Brands can be used as a tracer, however. It’s perfectly legal to have a brand which has no requirements, and
is placed in a file as an ‘I was there’ point (or strictly “this brand requires that the file was last written by ZZZZ”).

ISO/IEC 14496-12:2008(E)

142 PROOF/ÉPREUVE © ISO/IEC 2008 – All rights reserved

C.4.4 Player Guideline

If more than one brand is present in the list of the compatible_brands, and one or more brands are supported
by the player, the player shall play those aspects of the file that comply with those specifications. In this case,
the player may not be able to decode unsupported media.

C.4.5 Authoring Guideline

If the author wants to create a file that complies with more than one specification, the following considerations
apply:

1. There must be nothing contrary to the specification identified by a brand within the file. For example,
if a specification requires that files be self-contained, then the brand indication of that specification
must not be used on non-self-contained files.

2. If the author is satisfied that a player compliant with only one of the specifications play only that
media compliant with that specification, then that brand may be indicated.

3. If the author requires that the media from more than one specification be played, then a new brand
would be needed as this represents a new conformance requirement for the player.

C.4.6 Example

In this section, we take the example case when a new brand can be defined.

First of all, we explain about the two currently existing brands. If the brand ‘3gp5’ is in the list of the
compatible_brands, it indicates that the file contains the media defined in 3GPP TS 26.234 (Release 5) in the
way specified by the standard. For example, the file of ‘3gp5’ brand may contain H.263. Likewise, if the brand
‘mp42’ is in the list of the compatible_brands, it indicate that the file contains the media defined in the
ISO/IEC 14496-14 in the specified way. For example, the file of ‘mp42’ brand may contain MP3. However,
MP3 is not supported in ‘3gp5’ brand.

Given that the file contains H.263 and MP3, and has ‘3gp5’ and ‘mp42’ as the compatible_brands. If the player
complies only with ‘3gp5’ and does not support MP3, recommended behaviour of the player is to play only
H.263. If the content’s author does not expect such behaviour, a new brand is defined to indicate that both
H.263 and MP3 are supported in the file. By specifying the newly defined brand in the list of the
compatible_brands, it can prevent the above behaviour and the file is played only when the player supports
both H.263 and MP3.

C.5 Storage of new media types

There are two choices in the definition of how a new media type should be stored.

First, if MPEG-4 systems constructs are desired or acceptable, then:
a) a new ObjectTypeIndication should be requested and used;
b) the decoderspecificinformation for this codec should be defined as an MPEG-4 descriptor;
c) the access unit format should be defined for this media.

The media then uses the MPEG-4 code-points in the file format; for example, a new video codec would use a
sampleentry of type ‘mp4v’.

If the MPEG-4 systems layer is not suitable or otherwise not desired, then:
a) a new sampleentry four-character code should be requested and used;
b) any additional information needed by the decoder should be defined as boxes to be stored within

the sampleentry;
c) the file-format sample format should be defined for this media.

ISO/IEC 14496-12:2008(E)

© ISO/IEC 2008 – All rights reserved PROOF/ÉPREUVE 143

Note that in the second case, the registration authority will also allocate an objecttypeindication for use in
MPEG-4 systems.

C.6 Use of Template fields

Template fields are defined in the file format. If any are used in a derived specification, the use must be
compatible with the base definition, and that use explicitly documented.

C.7 Tracks

C.7.1 Data Location

A track is a timed sequence of samples; each sample is defined by its data (the bytes it contains), their length
and location. The length and data of a sample are external parameters to the file format; the location of the
bytes is not.

The exact way that the data is stored is internal to the Part 12 file format. When defining what a sample in
your format is, you should define the length and the data of a sample.

You should not mention the following boxes, however, as the way that they are structured is open to change,
and the information that they store may be stored in other ways (e.g. sample size information may be in an
stsz box, an stz2 box, or a movie fragment):

 sample size (stsz), compact sample size(stz2)

Samples are, in fact, stored in contiguous runs of samples for one track; these runs are called chunks, and it
is chunks from different tracks that are interleaved. But files may be re-interleaved or re-chunked; the following
boxes are about how chunking is done:

 chunk offsets (stco or co64), sample-to-chunk (stsc)

Most critically, locating data in a Part 12 file must be done through these boxes (or their equivalent in movie
fragments). The media data box (‘mdat’) is merely one possible location, and looked at by itself, it can only be
considered an un-ordered bag of un-identifiable bits. There is no assurance that the desirable material in a
media-data box is the only data in the box or in any particular order, and, especially if data references are
used, there is no assurance that any particular sample is even in a media-data box at all. Mentioning the
media-data (‘mdat’) box in a derived specification is almost certainly a mistake, and attempting to define (or
assume) its structure is usurping the Part 12 specification, and is an error.

It is perfectly permissible to require a certain style, duration, or size of interleaving in an integration
specification (“this specification requires that the file be self-contained, and that the media-data be in decoding
time order, interleaved on a granularity of no greater than one second”).

C.7.2 Time

Similarly, samples are parameterized in time in the file format by their decoding timestamp, and optionally by
their composition timestamp. You should define what these mean for your media. However, the way that these
are stored is again internal to the part 12 file format.

You should not mention the following boxes, however, as the way that they are structured is open to change,
and the information that they store may be stored in other ways:

 time-to-sample box (stts), composition offsets (ctts)

ISO/IEC 14496-12:2008(E)

144 PROOF/ÉPREUVE © ISO/IEC 2008 – All rights reserved

Likewise, the time-structure effect of edits should be preserved by the file format, but there a Part 12 file
simplifier may, for example, merge two adjacent edits that in fact belong together (e.g. two empty edits, or an
edit that selects time A-B followed by one that selects B-C).

C.7.3 Media Types

There are a number of media types in the Part 12 specification: video, audio, meta-data, and so on. These are
represented by track handler types and by media-specific media headers. It is possible to register new media
handlers, but this is rarely required. It might be needed, for example, if a track type were needed for say,
laboratory instrument traces, or for a ‘timed aroma’ track. The registration authority should also be checked;
the needed handler might be already defined in another derived specification.

C.7.4 Coding Types

The name of a sample entry identifies the coding format used. This is one of the principal ways that the
Part 12 specification is parameterized; AVC (MPEG-4 Part 10) uses ‘avc1’ for example, as a sample entry
type. Defining this name for a codec, and registering it, and then defining what extra boxes are in a sample
entry for this codec, are primary ways that the Part 12 format is used. You should define these for your coding
system. Note that technically the coding type is ‘scoped’ by the media type (though we try not to define the
same four-character-code as two different codecs in two media types, such as video and audio, in order to
avoid confusion).

C.7.5 Sub-sample information

The part 12 specification can carry information about ‘sub-sample’ boundaries for each sample. However, the
definition of what a sub-sample is, is specific to a coding system. You might wish to define it when defining
how a coding system is stored.

C.7.6 Sample Dependency

The part 12 format allows you to identify some of the decoding dependency information for a coding system.
In particular, you should identify what constitutes a valid ‘sync’ or random access point (points from which
decoding may be started). They can be marked in the file format (in the sync sample table, or by flags in
movie fragments). How sync sample are marked should be of less concern.

Similarly, it is possible to indicate which samples:
a) depend on others, or can be decoded independently;
b) are depended on by others, or can be discarded without affecting decoding;
c) contain multiple encodings of the same information, possibly with different dependencies (are

redundantly coded).

For most coding systems the meanings of these are self-evident and do not need spelling out; however, they
may need explicit statement for some coding systems.

C.7.7 Sample Groups

Sample groups provide another way to describe samples and their characteristics. To use sample groups, you
can define a group type, and then how a group is defined (the group description). The file format can then
map a given sample to a single definition of a group of any given type. Defining new grouping types and the
way that they are parameterized is an important way to parameterize the file format.

C.7.8 Track-level

Tracks can be associated with each other in the file format, in two important ways. Track references are a
typed link indicating a reference or dependency of one track to or on another (e.g. a meta-data track that
describes a media track has a dependency on that media track, as it makes no sense without it). New track
reference types can be registered and used in derived specifications.

ISO/IEC 14496-12:2008(E)

© ISO/IEC 2008 – All rights reserved PROOF/ÉPREUVE 145

Similarly tracks may be grouped into sets of alternatives, where the reader is expected to be able to pick one
that suits it (e.g. on the basis of supported codecs, bit-rates, screen sizes, and so on). 3GPP 26.234 has taken
this concept and included user-data (a permitted extension) to give a hint as to why a track is a member of a
group (‘I contain a different codec’).

Lastly, tracks may be enabled or disabled in the file format. Disabled tracks might be used, for example, for
optional features (e.g. closed captions).

C.7.9 Protection

Similarly to the parameterization of coding schemes by using the same entry type, and extra boxes in the
sample entry, the part 12 format allows protection to be applied to tracks, parameterized by the scheme type
and the contents of the scheme information box. The scheme information box is ‘owned’ by the scheme type –
to the extent that contained boxes there do not need to be registered, as they are already scoped by the
scheme type.

Protection can be subtle; many encryption systems, for example, ‘chain’ together. It’s tempting to encrypt ‘the
contents of the mdat box’, but that is very badly non-resilient to minor changes to the file. It’s also tempting to
protect chunks – they do seem to represent contiguous runs of media data for one track. But again, re-
chunking the file may break the ability to de-protect.

Instead, consider modifying the sample, or introducing time-parallel meta-data, or use sample groups, to
introduce enough context to enable both file-based manipulation and decryption. Time-parallel meta-data
would be in a track, and a track reference should be used to indicate that the protected data depends on the
parallel encryption-context track.

C.8 Construction of fragmented movies

When constructing a fragmented file for playback, there are some recommendations for structuring the
content which would optimize playback and random access. The recommendations are as follows:

• The file should consist of boxes in the following order:
- 'ftyp'
- 'moov'
- pair of 'moof' and 'mdat' (arbitrary number)
- 'mfra'

• A 'moof' box consists of at most one 'traf' for each media. When the file contains a single video track and
a single audio track, the 'moof' will contain two 'traf', one for the video and one for the audio.

• For video, random accessible samples are stored as the first sample of each 'traf'. In the case of gradual
decoder refresh, a random accessible sample and the corresponding recovery point are stored in the
same movie fragment. For audio, samples having the closest presentation time for every video random
accessible sample are stored as the first sample of each 'traf'. Hence, the first samples of each media in
the 'moof' have the approximately equal presentation times.

• First (random accessible) samples are recorded in the 'mfra' for both video and audio.

• All samples in ‘mdat’ are interleaved with an appropriate interleave depth.

The offset and the initial presentation time of every 'moof' are given in the 'mfra' for both audio and video.

The player will load the 'moov' and 'mfra' initially, and hold them in memory during playback. When random
access is needed, the player will search 'mfra' in order to find the random access point having the closest
presentation time for the indicated time.

ISO/IEC 14496-12:2008(E)

146 PROOF/ÉPREUVE © ISO/IEC 2008 – All rights reserved

Since the first sample in the 'moof' is random accessible, the player can directory jump in on the random
access point. The player can read the 'moof' of the random access point from the beginning. The subsequent
'mdat' starts from the random accessible sample. As such, a two-step seeking would not be necessary for
random access.

Note that an ‘mfra’ box is optional, and might never occur in a given file.

C.9 Meta-data

Much of what is said above about tracks and their data applies to meta-data items, except that, of course,
meta-data items have no time structure. In particular, the division of items into extents – allowing them to be
interleaved – is again, a property of the file format. It would be a mistake to design some new support based
on extent structure.

C.10 Registration

Register! If in doubt, contact the registration authority at http://www.mp4ra.org. Registration is free, and so is
the advice and help you will get. Not registering means that your use may conflict with someone else, and
your use is also un-traceable and therefore effectively undocumented. The RA is aware of many brands (at
least) being cheerfully invented and used, but not registered. These people are ‘flying dangerously’; don’t join
them.

C.11 Guidelines on the use of sample groups, timed metadata tracks, and sample
auxiliary information

The ISO Base Media File Format contains three mechanisms for timed metadata that can be associated with
particular samples: sample groups, timed metadata tracks, and sample auxiliary information. Derived
specification may provide similar functionality with one or more of these three mechanisms. This Clause
provides guidelines for derived specifications to choose between the three mechanisms.

Sample groups and timed metadata are less tightly coupled to the media data and are typically ‘descriptive’,
whereas sample auxiliary information might be required for decoding.

Sample auxiliary information is only intended for use where the information is directly related to the sample on
a one-to-one basis, and is required for the media sample processing and presentation. For general content,
the existing solution of additional tracks should be used. Sample auxiliary information and sample media data
are both addressed using byte pointers and size information, and so when the same bytes form the data for
more than one sample it may be possible to share that data by re-using the same byte pointer.

Sample groups may be useful in the following occasions.

- When several samples share the same metadata values, it is space-efficient to specify the metadata
in a Sample Group Description box and the association of samples to metadata in Sample to Group
box(es).

- As the sample group information is stored in Movie box and Movie Fragment box(es), they provide an
index to the data in the Media Data boxes. No data from the Media Data boxes need to be fetched,
which may therefore reduce disk accesses when compared to timed metadata tracks and sample
auxiliary information.

Timed metadata tracks may be useful in the following occasions.

- The same timed metadata track may be associated to more than one track. In other words, a timed
metadata track may be more independent of the content of the associated tracks than sample groups
and sample auxiliary information.

ISO/IEC 14496-12:2008(E)

© ISO/IEC 2008 – All rights reserved PROOF/ÉPREUVE 147

- It may be easier to append a file with a timed metadata track than with sample auxiliary information or
sample groups, because sample auxiliary information and Sample to Group boxes have to reside in
the same Track Fragment box as the associated samples, whereas timed metadata may reside in its
own Movie Fragment box(es). For example, it may be easier to provide an additional subtitle track as
timed metadata than use sample auxiliary information.

- The duration of timed metadata samples need not match the duration of associated media or hint
samples. In cases where the duration of timed metadata samples spans over multiple associated
media or hint samples, timed metadata tracks may be more space-efficient than sample auxiliary
information.

Sample auxiliary information may be useful in the following occasions.

- The data associated with samples is changing sufficiently frequently such that specifying sample
groups may not be justified from storage space point of view.

- The amount of data associated with samples is such large that its carriage within the Movie box or
Movie Fragment box (as required by sample grouping) would cause disadvantages. For example, in
progressive downloading, it may be beneficial to make the size of Movie box small in order to keep
the initial buffering time small.

- When each sample is associated with metadata, sample auxiliary information provides a more
straightforward association of the auxiliary information to samples when compared to the same
functionality with timed metadata tracks, which typically requires resolving sample decoding time to
establish the association between timed metadata samples and media/hint samples.

ISO/IEC 14496-12:2008(E)

148 PROOF/ÉPREUVE © ISO/IEC 2008 – All rights reserved

Annex D
(informative)

Registration Authority

D.1 Code points to be registered

The code-points within the file format are all 32-bit fields, normally four printable characters (commonly known
as four-character-codes or 4CCs). An objecttype identifier is an 8-bit integer.

The code-points that may be registered are:

1) File format box identifiers. Note that in some specifications boxes were known as atoms. Note that the
introduction of new atom types is discouraged; in general other extensibility features of the file format
should be used if possible.

2) File format track type identifiers. A pair of identifiers is usually used here, to identify the track type
(audio, video, etc.) and, if required, a media-specific header atom (video media header, etc.). It is
expected that the need for new track types is rare, however; most media should fall into existing types
(e.g. video codecs should use video tracks, hint protocols use hint tracks, and so on).

3) File format sample description and sample format identifiers (also known as codec names). This
includes audio and video codecs, and also protocol identifiers for hint tracks. Any registration of a new
sample format will automatically be issued an object-type identifier also (see below), thus making the
identification of the carriage of this format within the MPEG-4 systems object descriptor framework
possible.

4) File format track reference identifiers. Dependencies between tracks are typed in the file format (for
example, hint tracks depend on the media tracks they hint, using a track dependency of type ‘hint’).

5) This specification includes a ‘file type’ atom which includes a list of ‘brands’ which identify which
specifications the file is conformant to. Bodies defining standards based on the structural definition of
this file format would normally use a new brand to identify files conformant to their specification. Any
registration of a new brand must specify the precise specification which the brand identifies.

6) Within the MPEG-4 object descriptor framework, the objecttype value is used to identify the format
of the streams. An objecttype identifier may be requested independently of the file format
identifiers above.

7) Sample groups associate typed information with groups of samples. The grouping type may be
registered.

8) Both media and metadata can be protected and the protection scheme used identified with a
registered protection scheme type.

These code-points are referred to in the rest of this annex as registered identifiers, abbreviated as RIDs.

D.2 Procedure for the request of an MPEG-4 registered identifier value

Requesters of an MPEG-4 code-points as detailed above value to identify a private data format shall apply to
the Registration Authority. Registration forms shall be available from the Registration Authority. The requester
shall provide the information specified in D.4. Companies and organizations are eligible to apply.

ISO/IEC 14496-12:2008(E)

© ISO/IEC 2008 – All rights reserved PROOF/ÉPREUVE 149

D.3 Responsibilities of the Registration Authority

The primary responsibilities of the Registration Authority administrating the registration of the private data
format identifiers are outlined in this annex; certain other responsibilities may be found in the JTC 1 Directives.
The Registration Authority shall:

a) implement a registration procedure for application for a unique RID in accordance with the JTC 1
Directives;

b) receive and process the applications for allocation of an identifier from application providers;

c) ascertain which applications received are in accordance with this registration procedure, and to inform
the requester within 30 days of receipt of the application of their assigned RID;

d) inform application providers whose request is denied in writing with 30 days of receipt of the
application, and to consider resubmissions of the application in a timely manner;

e) maintain an accurate register of the allocated identifiers. Revisions to format specifications shall be
accepted and maintained by the Registration Authority;

f) make the contents of this register available upon request to National Bodies of JTC 1 that are
members of ISO or IEC, to liaison organizations of ISO or IEC and to any interested party;

g) maintain a data base of RID request forms, granted and denied. Parties seeking technical information
on the format of private data which has a RID shall have access to such information which is part of
the data base maintained by the Registration Authority;

h) report its activities annually to JTC 1, the ITTF, and the SC 29 Secretariat, or their respective
designees; and

i) accommodate the use of existing RIDs whenever possible.

D.4 Contact information for the Registration Authority

Apple Computer Inc.

One Infinite Loop, M/S 301-4B
Cupertino, California 95014
USA
E-mail: mp4reg@group.apple.com
Web: http://www.mp4ra.org/

D.5 Responsibilities of Parties Requesting a RID

The party requesting a format identifier shall:

a) apply using the Form and procedures supplied by the Registration Authority;

b) include a description of the purpose of the registered identifier, and the required technical details as
specified in the application form;

c) provide contact information describing how a complete description can be obtained on a non-
discriminatory basis;

d) agree to institute the intended use of the granted RID within a reasonable time frame; and

e) to maintain a permanent record of the application form and the notification received from the
Registration Authority of a granted RID.

ISO/IEC 14496-12:2008(E)

150 PROOF/ÉPREUVE © ISO/IEC 2008 – All rights reserved

D.6 Appeal Procedure for Denied Applications

The Registration Management Group is formed to have jurisdiction over appeals to denied request for a RID.
The RMG shall have a membership who is nominated by P- and L-members of the ISO technical committee
responsible for ISO/IEC 14496. It shall have a convenor and secretariat nominated from its members. The
Registration Authority is entitled to nominate one non-voting observing member.

The responsibilities of the RMG shall be:

a) to review and act on all appeals within a reasonable time frame;

b) to inform, in writing, organizations which make an appeal for reconsideration of its petition of the
RMGs disposition of the matter;

c) to review the annual report of the Registration Authorities summary of activities; and

d) to supply Member Bodies of ISO and National Committees of IEC with information concerning the
scope of operation of the Registration Authority.

D.7 Registration Application Form

D.7.1 Contact Information of organization requesting a RID

Organization Name:

Address:

Telephone:

Fax:

E-mail:

Telex:

D.7.2 Request for a specific RID

NOTE — If the system has already been implemented and is in use, fill in this item and item D.7.3 and skip to D.7.5,
otherwise leave this space blank and skip to D.7.3)

ISO/IEC 14496-12:2008(E)

© ISO/IEC 2008 – All rights reserved PROOF/ÉPREUVE 151

D.7.3 Short description of RID that is in use and date system was implemented

D.7.4 Statement of an intention to apply the assigned RID

D.7.5 Date of intended implementation of the RID

D.7.6 Authorized representative

Name:

Title:

Address:

Email:

Signature __________________________________

D.7.7 For official use of the Registration Authority

Attachment 1 ⎯ Attachment of technical details of the registered data format.

Attachment 2 ⎯ Attachment of notification of appeal procedure for rejected applications.

 Registration Rejected _____

 Reason for rejection of the application:

 Registration Granted Registration Value ____________________

ISO/IEC 14496-12:2008(E)

152 PROOF/ÉPREUVE © ISO/IEC 2008 – All rights reserved

Annex E
(normative)

File format brands

E.1 Introduction

The presence of a brand in the compatible_brands list of the ftyp box is a claim and a permission. It is a
claim that the file conforms to all the requirements of that brand, and a permission to a reader implementing
potentially only that brand to read the file.

In general, readers are required to implement all features documented for a brand unless one of the following
applies:

a) the media they are using does not use or require a feature: for example, I-frame video does not need
a sync sample table, and if composition re-ordering is not used, then no composition time offset table
is needed; similarly, if content protection is not needed, then support for the structures of content
protection is not required.

b) another specification with which the file is conformant forbids the use of a feature (for example, some
derived specifications explicitly forbid use of movie fragments);

c) the context in which the product operates means that some structures are not relevant; for example,
hint track structures are only relevant to products preparing content for, or performing, file delivery
(such as streaming) for the protocol in the hint track.

The following sections document the brands defined in this specification. Other brands may be defined in
other specifications. Note that if one brand is a subset of another (e.g., ‘isom’ requirements are a subset of
the ‘iso2’ requirements) then:

a) files labelled as compatible with the subset can always be labelled as also compatible with the
superset; a file compatible with ‘isom’ can always be labelled as compatible with ‘iso2’;

b) products supporting the superset automatically can support the subset; a product that supports
‘iso2’ also necessarily supports ‘isom’.

No brands defined here require support for any particular media type (e.g., video, audio, meta-data) or media
encoding (e.g., a particular codec), or structures supporting a specific media type (e.g., Visual Sample Entries
or the boxes contained in a specific kind of sample entry).

More specific identifiers can be used to identify precise versions of specifications providing more detail. These
brands should not be used as the major brand; this base file format should be derived into another
specification to be used. There is therefore no defined normal file extension, or mime type assigned to these
brands, nor definition of the minor version when one of these brands is the major brand.

ISO/IEC 14496-12:2008(E)

© ISO/IEC 2008 – All rights reserved PROOF/ÉPREUVE 153

E.2 The ‘isom’ brand

The type ‘isom’ (ISO Base Media file) is defined in this section of this specification, as identifying files that
conform to the first version of ISO Base Media File Format.

Support for the following structural boxes is required:

moov container for all the meta-data
 mvhd movie header, overall declarations
 iods object descriptor
 trak container for an individual track or stream
 tkhd track header, overall information about the track
 tref track reference container
 edts edit list container
 elst an edit list
 mdia container for the media information in a track
 mdhd media header, overall information about the media
 hdlr handler, at this level, the media (handler) type
 minf media information container
 vmhd video media header, overall information (video track only)
 smhd sound media header, overall information (sound track only)
 hmhd hint media header, overall information (hint track only)
 <mpeg> mpeg stream headers
 dinf data information atom, container
 dref data reference atom, declares source(s) of media in track
 stbl sample table atom, container for the time/space map
 stts (decoding) time-to-sample
 ctts composition time-to-sample table
 stss sync (key, I-frame) sample map
 stsd sample descriptions (codec types, initialization etc.)
 stsz sample sizes (framing)
 stsc sample-to-chunk, partial data-offset information
 stco chunk offset, partial data-offset information
 co64 64-bit chunk offset
 stsh shadow sync
 stdp degradation priority
mdat Media data container
free free space
skip free space
udta user-data, copyright etc.
ftyp file type and compatibility
 stz2 compact sample sizes (framing)
 padb sample padding bits
 mvex movie extends box
 mehd movie extends header box
 trex track extends defaults
moof movie fragment
 mfhd movie fragment header
 traf track fragment
 tfhd track fragment header
 trun track fragment run
mfra movie fragment random access
 tfra track fragment random access
 mfro movie fragment random access offset

NOTE the ‘iods’ box is defined in ISO/IEC 14496-14

ISO/IEC 14496-12:2008(E)

154 PROOF/ÉPREUVE © ISO/IEC 2008 – All rights reserved

Hint tracks must be recognized, and in hint tracks, RTP protocol hint tracks.

Note that some requirements of the Track Header Box do not apply to this brand; see sub-clause 8.3.2.1.

Support for only version 0 of the ‘ctts’ box is required here; version 1 support is not required.

Support for only version 0 of the ‘trun’ box is required here; version 1 support is not required.

NOTE The default-base-is-moof flag (8.8.7.1) cannot be set where a file is marked with this brand.

E.3 The ‘avc1’ brand

The brand ‘avc1’ shall be used to indicate that the file is conformant with the ‘AVC Extensions’ in
subclauses 8.6.4 and 8.9. If used without other brands, this implies that support for those extensions is
required. The use of ‘avc1’ as a major-brand may be permitted by specifications; in that case, that
specification defines the file extension and required behaviour.

The ‘avc1’ brand requires support for the ‘isom’ brand. In addition, support of the following boxes is
required:

 sdtp independent and disposable samples
 sbgp sample-to-group
 sgpd sample group description

Within the sample groups, support for roll groups (grouping type ‘roll’) is required.

NOTE The default-base-is-moof flag (8.8.7.1) cannot be set where a file is marked with this brand.

Support of SampleGroupDescription boxes in movie fragments is not required.

E.4 The ‘iso2’ brand

The brand ‘iso2’ shall be used to indicate compatibility with the second version of the ISO Base Media File
Format; it may be used in addition to or instead of the ‘isom’ brand and the same usage rules apply. If used
without the brand 'isom' identifying the first version of this specification, it indicates that support for some or all
of the technology introduced by this amendment is required, such as the functionality in subclauses 8.6.4, 8.9,
8.11.1 through 8.11.7, 8.11.10, 8.12, or the SRTP support in subclause 9.1, is required.

The ‘iso2’ brand requires support for all features of the ‘avc1’ brand.

In addition, support for the following boxes is required:

pdin progressive download information
 subs sub-sample information
meta metadata
 iloc item location
 ipro item protection
 sinf protection scheme information box
 frma original format box
 schm scheme type box
 schi scheme information box
 iinf item information (version field set to 0)
 xml XML container
 bxml binary XML container
 pitm primary item reference

ISO/IEC 14496-12:2008(E)

© ISO/IEC 2008 – All rights reserved PROOF/ÉPREUVE 155

In the context of RTP hint tracks, SRTP hint tracks must now be recognized. Content protection and
generalized meta-data boxes support is required.

Only support for version 0 of the item information box, and version 0 of the item location box, is required.

Note that some requirements of the Track Header Box do not apply to this brand; see sub-clause 8.3.2.1.

NOTE The default-base-is-moof flag (8.8.7.1) cannot be set where a file is marked with this brand.

E.5 The ‘mp71’ brand

If a Meta-box with an MPEG-7 handler type is used at the file level, then the brand ‘mp71’ should be a
member of the compatible-brands list in the file-type box.

NOTE The default-base-is-moof flag (8.8.7.1) cannot be set where a file is marked with this brand.

E.6 The ‘iso3’ brand

The brand ‘iso3’ requires support for all features of the ‘iso2’ brand.

In addition, support for the following is required:

 fiin file delivery item information
 paen partition entry
 fpar file partition
 fecr FEC reservoir
 segr file delivery session group
 gitn group id to name
meco additional metadata container
 mere metabox relation

Support for version 0 and version 1 of the item information box is required. Within the sample groups, support
for rate share information (grouping type ‘rash’) is required. File delivery hint tracks (sample entry ‘fdp ’)
must be recognized.

NOTE The default-base-is-moof flag (8.8.7.1) cannot be set where a file is marked with this brand.

E.7 The ‘iso4’ brand

The brand ‘iso4’ requires support for all features of the ‘iso3’ brand.

Support for version 1 of the composition offset (‘ctts’ and ‘iloc’) boxes is required under this brand.

Support for version 1 of the item location box, version 2 of the item info box, and the new item data (‘idat’) and
item reference (‘iref’) boxes is required.

In addition, support for the following is required:

 trgr track grouping indication
 cslg composition to decode timeline mapping
 idat item data
 iref item reference

NOTE The default-base-is-moof flag (8.8.7.1) cannot be set where a file is marked with this brand.

ISO/IEC 14496-12:2008(E)

156 PROOF/ÉPREUVE © ISO/IEC 2008 – All rights reserved

E.8 The ‘iso5’ brand

The brand ‘iso5’ requires support for all features of the ‘iso4’ brand.

Support for the default-base-is-moof flag is required under this brand.

Processing of restricted sample entries (i.e. ‘resv’) is required under this brand.

E.9 The ‘iso6’ brand

The brand ‘iso6’ requires support for all features of the ‘iso5’ brand.

Support for the following boxes is required under this brand:

 saiz 8.7.8 sample auxiliary information sizes
 saio 8.7.9 sample auxiliary information offsets
 tfdt 8.8.12 track fragment decode time
styp 8.16.2 segment type
sidx 8.16.3 segment index
ssix 8.16.4 subsegment index
prft 8.16.5 producer reference time

Support for the following is required under this brand:

• SampleGroupDescription boxes in movie fragments;

• Signed composition offsets in track run boxes (i.e. version 1 of track run boxes);

• Within the sample groups, support for random access point information (grouping type ‘rap ’) is
required.

ISO/IEC 14496-12:2008(E)

© ISO/IEC 2008 – All rights reserved PROOF/ÉPREUVE 157

Annex F
(informative)

Document Cross-Reference

After the 2nd Edition was produced, this International Standard was re-organized and the previous clause 8
(‘Box Structure’) was and subsequent clauses were re-organized, with consequent re-numbering of sections.
In order to make it possible to follow references that have section numbers in that previous version of this
International Standard, the following table may be used.

2nd Edition This Edition Subject

1 1 Scope
2 2 Normative references
3 3 Definitions
4 4 Object-structured File Organization
5 5 Design Considerations
6 6 ISO Base Media File organization
6.3 6.3, Annex E File format brands
7 7 Streaming Support
8.1 8.2.1 Movie Box
8.2 8.1.1 Media Data Box
8.3 8.2.2 Movie Header Box
8.4 8.3.1 Track Box
8.5 8.3.2 Track Header Box
8.6 8.3.3 Track Reference Box
8.7 8.4.1 Media Box
8.8 8.4.2 Media Header Box
8.9 8.4.3 Handler Reference Box
8.10 8.4.4 Media Information Box
8.11 8.4.5 Media Information Header Boxes
8.12 8.7.1 Data Information Box
8.13 8.7.2 Data Reference Box
8.14 8.5.1 Sample Table Box
8.15 8.6.1 Time to Sample Boxes
8.16 8.5.2 Sample Description Box
8.17 8.7.3 Sample Size Boxes
8.18 8.7.4 Sample To Chunk Box
8.19 8.7.5 Chunk Offset Box
8.20 8.6.2 Sync Sample Box
8.21 8.6.3 Shadow Sync Sample Box
8.22 8.5.3 Degradation Priority Box
8.23 8.7.6 Padding Bits Box
8.24 8.1.2 Free Space Box
8.25 8.6.5 Edit Box
8.26 8.6.6 Edit List Box
8.27 8.10.1 User Data Box
8.28 8.10.2 Copyright Box
8.29 through 39 8.8.1 through 8.8.11 Movie Fragments
8.40.2 8.6.4 Independent and Disposable Samples Box
8.40.3 8.9.1 through 8.9.4 Sample Group Structures
8.40.4 10.1 Random Access Recovery Points
8.42 8.7.7 Sub-Sample Information Box
8.43 8.1.3 Progressive Download Information Box
8.44 8.11 Metadata Support
8.45 8.12 Support for Protected Streams

ISO/IEC 14496-12:2008(E)

158 PROOF/ÉPREUVE © ISO/IEC 2008 – All rights reserved

8.46 8.13 File Delivery Format
8.47 10.2 Rate Share Groups
8.48 8.10.3 Track Selection Box
9 11 Extensibility
10 9.1 RTP and SRTP Hint Track Format
11 9.2 ALC/LCT and FLUTE Hint Track Format

ISO/IEC 14496-12:2008(E)

© ISO/IEC 2008 – All rights reserved PROOF/ÉPREUVE 159

Annex G:
(informative)

URI-labelled metadata forms

G.1 UUID-labelled metadata

The format of the URI for UUID-labelled metadata is defined in IETF RFC 4122: A Universally Unique
IDentifier (UUID) URN Namespace (July 2005).

There are no general statements about the form of the primary metadata, the initialization data for temporal
metadata, or the temporal metadata itself. The form of all of these depends on the precise UUID and its
definition.

Note that UUIDs cannot easily be traced to their point of origin, and so they may be unsuitable if it is desired
that recipients of metadata be able to find, if needed, the associated documentation.

If traceability is needed, then a standardized metadata framework, such as MPEG-7, or a registered
framework, such as SMPTE, or a de-referencable URL should be used.

G.2 ISO OID-labelled metadata

The format of the URI for OID-labelled metadata is defined in RFC 3061: A URN Namespace of Object
Identifiers (February 2001).

There are no general statements about the form of the primary metadata, the initialization data for temporal
metadata, or the temporal metadata itself. The form of all of these depends on the precise object identifier and
its definition.

A number of more specific labelling systems can also be expressed as object identifiers. The more specific
UUID form should be used.

Object identifiers starting {joint-iso-itu(2) uuid(25)} (i.e. starting urn:oid:2.25) should not be used; UUID URIs
should be used directly.

Object identifiers starting {iso(1) identified-organizations(3) SMPTE(52) metadata-dictionary(1)} (i.e.
urn:oid:1.3.52.1) should not be used, nor should any other OID being used as a label according to SMPTE
298M or 336M; the more specific SMPTE URI form should be used.

Object Identifiers are registered to specific organizations, and so it may be possible to identify the organization
owning a particular identifier. However, some sections of the object identifier tree are delegated to
unregistered uses (such as UUIDs, as noted above), and traceability is then lost.

If traceability is needed, then a standardized metadata framework, such as MPEG-7, or a registered
framework, such as SMPTE, or a de-referencable URL should be used.

G.3 SMPTE-labelled metadata

The format of the URI for SMPTE-labelled metadata is in RFC 5119; A Uniform Resource Name (URN)
Namespace for the Society of Motion Picture and Television Engineers (SMPTE).

ISO/IEC 14496-12:2008(E)

160 PROOF/ÉPREUVE © ISO/IEC 2008 – All rights reserved

The primary metadata is exactly the value (V) part of a KLV (key, length, value) triplet as defined in SMPTE
336M, with the key being the label given in the URN, and the length (L) being derived from the item length.

Similarly, each temporal metadata sample is the value (V) part of a KLV, where the key is the URN label given
in the matching sample entry, and the length (L) is derived from the sample size (as given in the sample size
or compact sample size tables).

The initialization data may be present. It contains the key (K) and value (V) of a KLV that provides an
initialization context for the KLVs formed from the samples, with the length (L) being derived from the DataBox
size. The first 16 bytes are a SMPTE label of the initialization data, stored as defined in SMPTE 336M,
followed by the data.

The typical value of these bytes, as defined in SMPTE 377M, is ‘primer pack’ (in hexadecimal): 06 0E 2B 34
02 05 01 01 0D 01 02 01 01 05 01 00. If the label of the initialization data does not, in fact, identify a
structure giving context information (such as a primer pack), the behaviour is undefined. This enables each
sample to be a local set. The rules for the construction of local sets, as defined in SMPTE 377M, must be
followed.

SMPTE 377M uses locators to locate other resources outside the metadata itself. For static metadata, these
should use the item location box in the meta-box. For temporal metadata, external pointers may be used
directly.

The initialization data may be absent, and the label then identifies a specific metadata item (e.g. a geographic
locator) not needing a context.

ISO/IEC 14496-12:2008(E)

© ISO/IEC 2008 – All rights reserved PROOF/ÉPREUVE 161

Annex H
(Informative)

Processing of RTP streams and reception hint tracks

H.1 Introduction

H.1.1 Overview

This Annex provides recommendations for recording of RTP streams and the use of recorded RTP streams
for playback and re-sending.

H.1.2 Structure

This Annex is organized as follows:

- H.2 introduces the potential sources why the playback of RTP streams might become unsynchronized
and provides an overview how proper synchronization is facilitated in recording and playback. It
precedes the other Clauses, because both the recording unit and the player have to take actions to
achieve proper synchronization.

- H.3 provides recommendations for storing RTP streams.

- H.4 provides recommendations how to play files containing recorded RTP streams.

- H.5 provides recommendations for re-sending received RTP streams stored in files as described in
H.3.

H.1.3 Terms and definitions

For the purposes of this annex, the following terms and definitions apply.

H.1.3.1 player
entity that parses a file, decodes at least a subset of the tracks in the file, and renders the decoded tracks

H.1.3.2 recording unit
entity that receives one or more packet streams of encapsulated and compressed media and stores the
received media into a file

H.1.3.3 re-sending unit
entity that parses a file containing media that originates from one or more received packet streams of
encapsulated and compressed media and transmits at least a subset of the media stored in the file

H.2 Synchronization of RTP streams

There are several potential sources of unsynchronized playback for received RTP streams. When RTP
streams are recorded as RTP reception hint tracks, the necessary information for guaranteeing synchronized
playback is also recorded. When RTP streams are recorded as media tracks, the synchronization of the
playback of the media tracks has to be guaranteed by creating the composition times of the media samples
appropriately. The following list describes the sources of unsynchronized playback for received RTP streams,
summarizes the recommended synchronization means, and points to the relevant Clauses for further
information.

ISO/IEC 14496-12:2008(E)

162 PROOF/ÉPREUVE © ISO/IEC 2008 – All rights reserved

1. The RTP timestamp of the first packet of the stream has a random offset. Hence, the RTP timestamps
of two streams are shifted by the difference of their initial random offsets even if the potentially
different clock rate of the RTP timestamps of the different streams were compensated. The random
offset should be reflected in the value of the offset field of the 'tsro' box of the referred reception hint
sample entry as described in H.3.5.

2. The first received and recorded packet of the different streams may not have an identical playback
time as discussed in H.3.2. The unequal start time of the different recorded streams is compensated
by parsing one or more RTCP Sender Reports to derive the playback time as the wallclock time of the
sender and creating an initial offset of the playback using the Edit List box as described in H.3.2. The
Edit List box is interpreted by the player as described in H.4.4.

3. There is no guarantee that the clock for producing the RTP timestamps of a certain RTP stream runs
at the same pace as the wallclock time of the sender, which is used to create the RTCP Sender
Reports. For example, the RTP timestamps may be generated on the basis of a constant sampling
frequency, e.g. 44.1 kHz for audio, and hence governed by the clock rate of the audio capturing
hardware. However, the RTCP Sender Reports may be generated according to the system clock
running at a different pace than the clock of the audio capturing hardware. Moreover, the clock used
to generate RTP timestamps for audio might run at a different pace than the clock used to generate
RTP timestamps for video (when both a normalized to the same clock tick frequency).

A similar problem in the player arises if the clock pacing the output of a decoded stream runs at a
different pace than the wallclock of the player or the clocks pacing the rendering of different decoded
streams are not synchronized.

The recommended approach for all these potential problems of clocks running at a different pace is to
use RTCP Sender Reports to align the RTP timestamps of different streams onto the same wallclock
timeline, which is used for inter-stream synchronization. This alignment can be done while recording
the streams by modifying the representation of the recorded RTP timestamps or while playing the
recorded streams by using the recorded RTCP Sender Reports as described in H.3.6. Moreover, it is
recommended to pace the playback according to the audio playout rate as described in H.4.4.

4. The wallclock of the sender may run at a different pace than the wallclock of the player.

It is recommended to play a recorded program at the pace of the wallclock of the player and to use
the audio playout clock as the wallclock of the player. Consequently, the audio timescale does not
typically have to be modified. Even if the wallclock of the player ran at a different pace than the
wallclock of the sender, it is typically unnoticeable.

Pacing of the output of decoded media samples is described in H.4.4.

H.3 Recording of RTP streams

H.3.1 Introduction

Recording of RTP streams can result into three basic file structures.

1. A file containing only RTP reception hint tracks. No media tracks are included. This file structure
enables efficient processing of packet losses, but only players capable of parsing RTP reception hint
tracks can play the file.

2. A file containing only media tracks. No RTP reception hint tracks are included. This file structure
allows existing players compliant with the earlier versions of the ISO base media file format process
recorded files as long as the media formats are also supported. However, sophisticated processing of
transmission errors is not possible due to reasons explained in subsequent clauses.

3. A file containing both RTP reception hint tracks and media tracks. This file structure has both the
benefits mentioned above and should be used when for as good interoperability as possible with other
file formats derived from the ISO base media file format.

ISO/IEC 14496-12:2008(E)

© ISO/IEC 2008 – All rights reserved PROOF/ÉPREUVE 163

If an RTP stream being recorded is protected, a protected RTP reception hint track is used instead of an RTP
reception hint track, while the operation of the recording unit remains unchanged otherwise. At the time of
playback, the data included in the protected RTP reception hint track is unprotected first and then processed
similarly to a conventional unprotected RTP stream. Alternatively, the RTP stream may be unprotected before
storing it as a RTP reception hint track, but then care has to be taken that the rights to use the content in the
protected RTP stream are obeyed.

Some of the recording operations are common for all the three file structures, while others differ. Table H.1
indicates which recording operations are required for the basic file structures.

Table H.1

 File containing only
RTP reception hint
tracks

File containing only
media tracks

File containing both
RTP reception hint
tracks and media tracks

Compensation for
unequal starting position
of received RTP
streams
(H.3.2)

no, when RTCP
reception hint tracks
are stored;
yes, otherwise

yes no, when RTCP
reception hint tracks
are stored;
yes, otherwise

Recording of SDP
(H.3.3)

yes no yes, for RTP reception
hint tracks only

Creation of a sample
within an RTP reception
hint track (H.3.4)

yes no yes, for RTP reception
hint tracks only

Representation of RTP
timestamps
(H.3.5)

yes no yes, for RTP reception
hint tracks only

Recording operations to
facilitate inter-stream
synchronization in
playback
(H.3.6)

yes yes, the composition
times of media tracks
should be compensated
as described in H.3.6.3

yes

Representation of
reception times
(H.3.7)

yes no yes, for RTP reception
hint tracks only

Creation of media
samples
(H.3.8)

no yes yes, for media tracks
only

Creation of hint samples
referring to media
samples
(H.3.9)

no no yes

Some implementations may record first to RTP reception hint tracks only and create a file with a combination
of media tracks and RTP reception hint tracks off-line.

ISO/IEC 14496-12:2008(E)

164 PROOF/ÉPREUVE © ISO/IEC 2008 – All rights reserved

H.3.2 Compensation for unequal starting for position of received RTP streams

When the recording of RTP streams is started, it can happen that the presentation time of the first media
sample in one RTP stream is not equal to the presentation time of the first media sample in another RTP
stream at least due to the following reasons:

- The sampling frequency of audio and video typically differ.

- Audio and video streams may not be perfectly interleaved in terms of presentation times in
transmission order.

If RTCP reception hint tracks are stored, the compensation for unequal starting position of received RTP
streams should be done at playback time and no Edit List box concerning RTP reception hint tracks should be
created. If RTCP reception hint tracks are not stored or if media tracks are stored it is essential that the
recording unit indicates the relative initial delay of the streams in order to synchronize audio and video
correctly at the beginning of the playback of the streams as described subsequently in this Clause. The
recording unit should perform the following operations.

1. An RTCP Sender Report indicates which RTP timestamp corresponds to the wallclock time of the
time instant the report was sent. At least the first RTCP Sender Report for each RTP stream should
be parsed in order to establish an equivalence of an RTP timestamp of each RTP stream and a
wallclock time of the sender. The wallclock timestamp of the earliest received RTP packet, in
presentation order, is derived for each RTP stream by simple linear extrapolation.

2. The smallest wallclock timestamp derived above among all the received RTP streams is mapped to
presentation timestamp zero in the movie timeline, i.e., is presented immediately at the beginning of
the playback of the recorded file. The movie timeline is the master timeline for the playback of the file.

3. The media timeline for each track starts from 0. In order to shift the media timeline to a correct starting
position in the movie timeline, an Edit box and an Edit List box are created for each of the other RTP
tracks (which do not contain a packet having the earliest wallclock timestamp) as follows:

The Edit List box contains two entries:

a) The first entry is an empty edit (indicated by media_time equal to -1), and its duration
(segment_duration) is equal to the difference of the presentation times of the earliest media
sample among all the RTP streams and the earliest media sample of the track. Figure H.1
presents an example of how the segment_duration of the first entry in an Edit List box is derived.

b) The value of media_time of the second entry is equal to the composition time of the earliest
sample in presentation order, and the value of segment_duration of the second entry spans over
the entire track. As the actual duration of the track might not be known at the time of creating the
Edit List box, it is recommended to set the segment_duration equal to the maximum possible value
(either the maximum 32-bit unsigned integer or the maximum 64-bit unsigned integer, depending
on which version of the box is used).

The value of media_rate_integer is equal to 1 in both the entries of the Edit List box.

ISO/IEC 14496-12:2008(E)

© ISO/IEC 2008 – All rights reserved PROOF/ÉPREUVE 165

RTP reception hint track
for audio stream

RTP reception hint track
for video stream

Movie timeline

1
st audio sam

ple

1
st video sam

ple

segment_duration

Edit List box

Figure H.1 — An example of an Edit List box to compensate the unequal starting of the received RTP
streams, segment_duration is copied to the first entry of the Edit List box

Some recording units may detect packets from which decoding can be started, such as IDR pictures of
H.264/AVC streams, which are here referred to as random access points. If a stream contains a packet having
the earliest wallclock timestamp among all the received streams and the same stream contains packets
preceding, in decoding order, the first random access point of the stream, it is recommended not to store the
packets preceding the first random access point of the stream and not to consider them when determining the
earliest wallclock timestamp among all the received streams.

H.3.3 Recording of SDP

The SDP should be stored as follows. Session-level SDP, i.e., all lines before the first media-specific line
(“m=” line), should be stored as Movie SDP information within the User Data box, as specified in 9.1.4.1. Each
media-level section within the SDP description starts with an 'm=' line and continues to the next media-level
section or the end of the whole session description. Each media-level section should be stored as Track SDP
information within the User Data box of the corresponding RTP reception hint track.

H.3.4 Creation of a sample within an RTP reception hint track

It is recommended that each sample represents all received RTP packets that have the same RTP timestamp,
i.e., consecutive packets in RTP sequence number order with a common RTP timestamp. The RTPsample
structure is set to contain one RTPpacket structure per each received RTP packet having the same RTP
timestamp. Each RTPpacket is recommended to contain one packet constructor of type 2
(RTPsampleconstructor). An RTPsampleconstructor copies a particular byte range, indicated by the
sampleoffset and length fields of the constructor, of a particular sample, indicated by the samplenumber field of
the constructor, by reference into the packet payload being constructed. The payload of each received RTP
packet having the same RTP timestamp is copied to the extradata section of the sample. The track reference
of each constructor is set to point to the hint track itself, i.e., is set equal to -1, and sampleoffset and length
are set to match to the location and size of the packet payload within the sample.

Figure H.2 presents a pseudo-code example of an RTP reception hint sample, which contains two RTP
packets.

ISO/IEC 14496-12:2008(E)

166 PROOF/ÉPREUVE © ISO/IEC 2008 – All rights reserved

aligned(8) class RTPsample {
unsigned int(16) packetcount = 2;
unsigned int(16) reserved;
RTPpacket packets[packetcount]
{

RTPpacket {
int(32) relative_time;
...
unsigned int(16) entrycount = 1;
RTPconstructor(2)
{

signed int(8) trackrefindex = -1;
unsigned int(16) length; // number of bytes in the payload
unsigned int(32) samplenumber; // samplenumber of this sample
unsigned int(32) sampleoffset;
unsigned int(16) bytesperblock = 1;
unsigned int(16) samplesperblock = 1;

}
}
RTPpacket {

int(32) relative_time;
...
unsigned int(16) entrycount = 1;
RTPconstructor(2)
{

signed int(8) trackrefindex = -1;
unsigned int(16) length; // number of bytes in the payload
unsigned int(32) samplenumber; // samplenumber of this sample
unsigned int(32) sampleoffset;
unsigned int(16) bytesperblock = 1;
unsigned int(16) samplesperblock = 1;

}
}

}
byte extradata
{

byte rtppayload1[];
byte rtppayload2[];

}
}

Figure H.2 — An example of a RTP reception hint sample containing two packets (their header and
payload).

The use of an error occurrence indexing event to indicate an RTP packet loss is not recommended, because
the RTPsequenceseed field can be used for detecting packet losses without any increase in the storage space.
Furthermore, the minimum unit the error occurrence event can refer to is a sample (in an RTP reception hint
track). Since a sample can contain many packets, it is ambiguous which ones of these packets the error
occurrence indexing event concerns.

H.3.5 Representation of RTP timestamps

RTP timestamps are represented in a RTP reception hint track by a sum of three values, one of which is the
decoding time DT in the media timeline of the track. The decoding time is run-length coded into the Decoding
Time to Sample box and additionally to one or more Track Fragment Run boxes, if a sample resides in a
movie fragment. The Decoding Time to Sample box includes a number of sample_count and sample_delta
pairs, where sample_delta is the decoding time increment (i.e., the sample duration in terms of decoding time)
for each sample in a set of consecutive samples, the number of which equals to sample_count. The Track
Fragment Run box indicates one pair of sample_count and sample_duration, where sample_duration is the
decoding time increment (i.e., the sample duration) for each sample in a set of consecutive samples, the
number of which equals to sample_count. Each Track Fragment box can contain a number of Track Fragment
Run boxes. The decoding time DT(i) for sample number i is derived by summing up the sample durations of all
the samples preceding sample i from the Decoding Time to Sample box and, if needed, the Track Fragment
Run boxes referring to any sample preceding sample i.

The RTP timestamp for sample i, RTPTS(i), is represented by a sum of three values specified as follows:

ISO/IEC 14496-12:2008(E)

© ISO/IEC 2008 – All rights reserved PROOF/ÉPREUVE 167

 RTPTS(i) = (DT(i) + tsro.offset + offset) mod 232 (1)

where tsro.offset is the value of offset in the 'tsro' box of the referred reception hint sample entry and offset
is the value included in the rtpoffsetTLV box in the RTPpacket structure, and mod is the modulo operation.

A 'tsro' box should be present in RTP reception hint sample entries. The value of offset in any 'tsro' box of
a track should be equal to the RTP timestamp of the first packet of the respective stream in RTP sequence
number order.

Provided that no wrap-around of the RTP timestamp values over the maximum 32-bit unsigned integer
happened between sample i-1 and i, the difference between consecutive unequal RTP timestamps, in RTP
sequence number order, is

 RTPTS_DIFF(i) = RTPTS(i) – RTPTS(i – 1) for any i > 1 (2)

RTPTS_DIFF(i) remains unchanged, when the frame rate is constant, the number of frames in any packet is
constant, and the transmission order is the same as the presentation order. These constraints are typically
met by audio streams and temporally non-scalable video streams. If RTPTS_DIFF(i) is a constant denoted as
RTPTS_DIFF, the following is recommended. The value of sample_delta in the Decoding Time to Sample box
and, if movie fragments are used, the value of sample_duration in the Track Fragment Run box or boxes are
set to RTPTS_DIFF, which results into compact Decoding Time to Sample and Track Fragment Run boxes.
The rtpoffsetTLV box should not be used within the RTP reception hint samples, if RTCP reception hint tracks
are used (see H.3.6). Otherwise (if RTCP reception hint tracks are not used), offset in the rtpoffsetTLV box
should be set to 0.

When temporal scalability is used in a video stream, the transmission order and the playback order of packets
are not identical, RTP timestamps do not increase as a function of RTP sequence number, and
RTPTS_DIFF(i) is not constant. However, RTP timestamps typically have a constant behaviour in periods
determined by the GOP_size, which is one plus the number of pictures between two consecutive pictures in
the lowest temporal level in RTP sequence number order. For example, if two non-reference pictures are
coded for each pair of reference pictures as illustrated in Figure H.3, GOP_size is equal to 3. Figure H.4
presents an example of a hierarchically temporally scalable bitstream with GOP_size equal to 4.

IDR

B B

P

B B

P

B B

P

...

...0

1

Temporal
level

0 12 3 45 6 78 9RTP SN ...

RTP TS 0 31 2 64 5 97 8 ...
(x clock tick of one

frame interval)

Figure H.3 — An example of a temporally scalable bitstream with GOP_size equal to 3.

(RTP sequence numbers (SN) are normalized to start from 0, and one packet per
frame is assumed.
RTP timestamps (TS) are normalized to start from 0 and indicated as clock ticks
lasting one frame interval. Inter prediction arrows are indicated for the first GOP
only, while pictures in other GOPs are predicted similarly.)

ISO/IEC 14496-12:2008(E)

168 PROOF/ÉPREUVE © ISO/IEC 2008 – All rights reserved

IDR

B

B

P

B B

B

B

P

...

...0

1

Temporal
level

0 43 2 61 7 8 5RTP SN ...

RTP TS 0 31 2 64 5 7 8 ...
(x clock tick of one

frame interval)

2 ...

Figure H.4 — An example of a hierarchically temporally scalable bitstream with GOP_size equal to 4.

(RTP sequence numbers (SN) are normalized to start from 0, and one packet per frame is
assumed.
RTP timestamps (TS) are normalized to start from 0 and indicated as clock ticks lasting one
frame interval.)

The RTP timestamp increment caused by one GOP is derived as follows, when no wrap-around of the RTP
timestamp values over the maximum 32-bit unsigned integer happened between sample i and i + GOP_size,
inclusive:

 RTPTS_GOP_DIFF(i) = RTPTS(i + GOP_size) – RTPTS(i) (3)

If RTPTS_GOP_DIFF(i) is a constant equal to RTPTS_GOP_DIFF, when no sample i, i + 1, …, i + GOP_size
is a picture starting a so-called closed group of pictures, such as an IDR picture of H.264/AVC streams, the
following is recommended. The value of sample_delta in the Decoding Time to Sample Box and, if movie
fragments are used, the value of sample_duration in the Track Fragment Run box or boxes are set to
RTPTS_GOP_DIFF / GOP_size. The rtpoffsetTLV box should not be used for pictures in the lowest temporal
level, if RTCP reception hint tracks are used (see H.3.6). Otherwise (if RTCP reception hint tracks are not
used), offset in the rtpoffsetTLV box should be set to 0. The value of offset in the rtpoffsetTLV box should
be set for pictures in other temporal levels to such that Equation (1) is fulfilled. Figure H.5 indicates how the
decoding time and offset are set for a hierarchically temporally scalable video bitstream presented in Figure
H.4.

IDR

B

B

P

B B

B

B

P

...

...0

1

Temporal
level

0 43 2 61 7 8 5DT ...

RTP TS 0 31 2 64 5 7 8 ...
(x clock tick of one frame interval)

2 ...

offset 0 -1-2 0 03 -2 -1 3 ...

Figure H.5 — An example of setting the decoding time (DT) and the value of offset in the rtpoffsetTLV
box of a hierarchically temporally scalable bitstream with GOP_size equal to 4.

 (In this example, the decoding time increment between samples is set equal to
RTPTS_GOP_DIFF / GOP_size to have a compact encoding decoding times. The
value of offset in the rtpoffsetTLV box is adjusted for each sample to store a
representation of the RTP timestamp. For this illustration, RTP timestamps and
decoding times are normalized to start from 0 and indicated as clock ticks lasting one
frame interval.)

ISO/IEC 14496-12:2008(E)

© ISO/IEC 2008 – All rights reserved PROOF/ÉPREUVE 169

If no linear and periodical behaviour of RTP timestamps is detected from the received packets, and no two
received packets of different samples have the same reception time, it is recommended to set the value of
sample_delta in the Decoding Time to Sample Box and, if movie fragments are used, the value of
sample_duration in the Track Fragment Run box or boxes to represent the reception time of the first packet of
the sample. That is, the derived decoding time DT(i) should be equal to the reception time of the first packet of
the sample subtracted by the reception time of the first packet of the first received sample of the stream.

It is noted that composition timestamps are not explicitly indicated in the file for samples in any hint tracks.
Consequently, for RTP reception hint tracks, the composition timestamps are inferred from the information
related the RTP timestamps indicated in the stored packet stream. For an RTP reception hint track that is not
associated with an RTCP reception hint track, the composition time of a received RTP packet is inferred to be
the sum of the sample time DT(i) and the value of the offset field in the rtpoffsetTLV box including the
sample. For an RTP reception hint track that is associated with an RTCP reception hint track, the composition
time is inferred as follows. Let the received RTP packet having the earliest RTP timestamp within the same
track have composition time equal to 0. Any remaining RTP packet has a composition time equal to the RTP
timestamp difference of the present RTP packet and the earliest RTP packet in presentation order with clock
drift correction similar to H.3.6.3. The composition time refers to the media timeline of the track.

H.3.6 Recording operations to facilitate inter-stream synchronization in playback

H.3.6.1 General

Lip synchronization, i.e., correct synchronization between recorded RTP streams, during playback can be
facilitated at least with the following two means:

1. An RTCP reception hint track is generated for each RTP reception hint track. The potential clock drift
between the RTP timestamp clocks of different streams is corrected at the time when the file is parsed
and the media streams included in the file are decoded and played. The clock drift correction is done
similarly to as would be done for RTP streams that are received and played simultaneously. This
mode of operation is straightforward for the recording units. However, accessing a file from an exact
playback position might be more cumbersome, because it requires compensation of the clock drift of
all the recorded streams at the time of the access.

2. The potential clock drift between recorded RTP streams is corrected by modifying the RTP
timestamps of one or more recorded streams. This mode of operation is requires processing of RTCP
Sender Reports at the time of recording and is hence more tedious for the recording units than
creation of RTCP reception hint tracks. However, the operation of the player is straightforward.

Recording units should use the timestamp synchrony box [9.4.1.2] to indicate which lip synchronization
approach has been used. The timestamp synchrony box includes the timestamp_sync field. timestamp_sync
equal to 1 indicates that players should use RTCP reception hint tracks for lip synchronization. timestamp_sync
equal to 2 indicates that players should use composition timestamps for lip synchronization.

Some implementations may create RTCP reception hint tracks first during the real-time recording operation
and then compensate the clock drift by modifying RTP timestamps as an off-line post-processing step.

The following clauses provide more details about both approaches.

H.3.6.2 Facilitating lip synchronization based on RTCP Sender Reports

A recording unit stores all RTCP Sender Reports for a particular RTP stream as samples in the respective
RTCP reception hint track.

H.3.6.3 Compensating clock drift in timestamps

It is not recommended to modify the RTP timestamps of the recorded audio streams. Such a modification
would cause an audio timescale modification in the player, which is a non-trivial operation.

ISO/IEC 14496-12:2008(E)

170 PROOF/ÉPREUVE © ISO/IEC 2008 – All rights reserved

The recorded representation of the RTP timestamps of the video and other non-audio streams should be
modified using the following procedure.

1. First, the wallclock timestamp a of a video frame is derived from the RTP timestamp corresponding to
the video frame as a sum of the wallclock timestamp of the previous video frame and the difference of
the RTP timestamps of the current and previous video frames in the units of the wallclock timeline.

2. Second, the playback time b for the video frame on the wallclock time is derived based on the RTCP
Sender Reports. If no RTCP Sender Report that exactly indicates the wallclock time for the video frame
is available, the wallclock time can be extrapolated assuming that the rate at which the RTP timestamp
clock and the sender wallclock in RTCP Sender Reports deviates stays unchanged.

3. Third, based on the RTCP Sender Reports for audio, the audio RTP timestamp that is played
simultaneously with the video frame at time b of the wallclock timeline is derived. There need not be an
audio frame having exactly the derived audio RTP timestamp. The wallclock timestamp c of an audio
sample is calculated from the derived audio RTP timestamp as a sum of the wallclock timestamp of the
preceding audio frame and the difference of the RTP timestamps of the derived audio RTP timestamp
and the RTP timestamp of the preceding audio frame.

The difference between a and c, if any, should be compensated in the fields that represent the video RTP
timestamp in the file. In practice, the easiest way might be to add the difference to the offset field in the
rtpoffsetTLV box, which is illustrated in Figure H.6. The other option, rewriting the Decoding Time to Sample
box and the Track Fragment Run boxes (if any), might be more cumbersome to implement, because of
particular way of coding the sample times by a combination of sample counts and durations, and might require
more storage space too.

1. Wallclock timestamp
derived from a video RTP

timestamp only

2. Wallclock timestamp
derived from RTCP

Sender Report(s) of video

Sender’s wallclock
timeline

4. Difference to be
added to offset in the
rtpoffsetTLV box

of the video RTP
reception hint track

3. Wallclock timestamp
derived from an audio RTP

timestamp only for an
audio frame that is played

at time b according to
RTCP Sender Report(s)

of audio

a b
c

Figure H.6 — An example of correcting the lip synchronization in the RTP timestamp representation.

H.3.7 Representation of reception times

As specified in 9.4.1.4, the reception time of a packet is indicated by the sum of the decoding time of the
sample containing the packet and the value of relative_time of the RTPpacket structure of the packet.

The reception time of the earliest received RTP packet should be zero, and the reception times of all
subsequent packets should be relative to the reception time of the earliest received RTP packet.

The clock source for the reception time is undefined and may be, for instance, the wallclock of the receiver. If
the range of reception times of a reception hint track overlaps entirely or partly with the range of reception
times of another reception hint track, the clock sources for these hint tracks shall be the same.

The reception time of a packet should correspond to the time instant when the protocol stack layer underneath
RTP, typically UDP, outputs the packet.

ISO/IEC 14496-12:2008(E)

© ISO/IEC 2008 – All rights reserved PROOF/ÉPREUVE 171

H.3.8 Creation of media samples

Media samples are created from the received RTP packets as instructed by the relevant RTP payload
specification and RTP itself. However, most media coding standards only specify the decoding of error-free
streams and consequently it should be ensured that the content in media tracks can be correctly decoded by
any standard-compliant media decoder. Handling of transmission errors therefore requires two steps:
detection of transmission errors and inference of samples that can be decoded correctly. These steps are
described in the subsequent paragraphs.

Lost RTP packets can be detected from a gap in RTP sequence number values. RTP packets containing bit
errors are usually not forwarded to the application as their UDP checksum fails and packets are discarded in
the protocol stack of the receiver. Consequently, bit-erroneous packets are usually treated as packet losses in
the receiver.

The inference of media samples that can be correctly decoded depends on the media coding format and is
therefore not described here in details. Generally, inter-sample prediction is weak or non-existing in audio
coding formats, whereas most video coding formats utilize inter prediction heavily. Consequently, a lost
sample in many audio formats can often be replaced by a silent or error-concealed audio sample. It should be
analyzed whether a loss of a video packet concerned a non-reference picture or a reference picture, or, more
generally, in which level of the temporal scalability hierarchy the loss occurred. It should then be concluded
which pictures may not be correctly decodable. For example, a loss of a non-reference picture does not affect
the decoding of any other pictures, whereas a loss of a reference picture in the base temporal level typically
affects all pictures until the next picture for random access, such as an IDR picture in H.264/AVC. Video
tracks must not contain any samples dependent on any lost video sample.

H.3.9 Creation of hint samples referring to media samples

Media samples are created from the received RTP packets as explained in H.3.8. RTP reception hint tracks
are created as explained in H.3.4, but the contents of the RTPpacket structure depend on the existence of the
corresponding media sample as follows.

If the packet payload of the received RTP packet is represented in a media track, the track reference of the
relevant packet constructors are set to point to the media track and include the packet payload by reference. It
is not recommended to have a copy of the packet payload in the extradata section of the received RTP
sample in order to save storage space and make file editing operations easier to implement.

If the packet payload of the received RTP packet is not represented in a media track, the instance of the
RTPpacket structure is created as explained in H.3.4.

H.4 Playing of recorded RTP streams

H.4.1 Introduction

This Clause describes operations required for playback of a file containing recorded RTP streams. It is
organized as follows:

- Before RTP streams can be played, the contents of the files should be analyzed. Particularly,
alternative tracks representing the same media stream should be identified and one of these tracks
should be selected for decoding and playback. The coding format should be detected in order to
conclude up front that it can be decoded by the player. These preparation operations are described in
more details in H.4.2.

- If an RTP reception hint track is being processed, there are a few things to be taken into account as
described in H.4.3. For example, packet losses should be detected and handled appropriately.

- The synchronization of the decoded media samples should be handled properly as described in H.4.4.

ISO/IEC 14496-12:2008(E)

172 PROOF/ÉPREUVE © ISO/IEC 2008 – All rights reserved

- If the RTP streams stored in a file are accessed from a position other than the beginning of the
streams, proper inter-stream synchronization and decoder initialization are needed as described in
H.4.5.

H.4.2 Preparation for the playback

In the preparation phase for playback, the player selects which tracks are played. The basic track structure of
the file is parsed first. The tracks are grouped according to which alternate group they belong to. Tracks that
belong to the same alternate group are indicated by the same value of alternate_group in the track header
box. One track from each alternate group is selected for playback as follows.

If there is an RTP reception hint track in the alternate group, it is preferred for playback, because it contains
an entire representation of the received RTP stream, unlike media tracks derived from the received RTP
streams, which might use such subset of the received RTP packets that can be decoded by any standard-
compliant decoder without capability for handling packet losses.

The compatibility of the player with the selected track should be ensured. For example, it should be examined
whether the codec, the profile, and the level used in the track are such that the player is able to support.

The codec, profile, and level used for the coded bitstream in an RTP reception hint track can be concluded
from the SDP description of the RTP stream. The SDP descriptions are stored in the movie-level index track.
If SDP is unchanged throughout the file, it may be additionally stored as Movie SDP information and Track
SDP information within User Data boxes. If Track SDP information is present, it may be parsed to find out the
codec, profile, and level used for the bitstream contained in the RTP reception hint track. If Movie SDP
information or Track SDP information is not present, the move-level index track is traversed to find and parse
each SDP index and, consequently, the codec, profile, and level used for the bitstream contained in the RTP
reception hint track.

If no RTP reception hint track exists in an alternate group, the sample entry or sample entries of the media
tracks in the alternate group should be examined to find out which ones of them the player is able to support.

H.4.3 Decoding of a sample within an RTP reception hint track

The original RTP packets may be reconstructed from an RTP reception hint sample by creating the RTP
packet header from the RTPpacket structures and by resolving the constructors of the RTPpacket structures.
Hence, one approach for file players to process RTP reception hint tracks is to re-create the packet stream
that was received and process the re-created packet stream as if it was newly received.

The relative_time field included in the RTPpacket structure may be used to schedule the insertion of the
packet into the buffer for the RTP receiver. However, it may be more advisable to modify the decoding
process of recorded RTP streams such a manner that the decoder output buffers are kept as full as possible
in order to avoid interruptions or jerky playback caused by late packets or occasional problems in real-time
decoding in systems running other processes in addition to the player.

Packet losses should be detected from gaps in the RTP sequence number. The reaction to packet losses
depends on the particular media decoder implementation and may also depend on user preferences.

H.4.4 Lip synchronization

The following steps are required for achieving correct synchronization between streams:

1. Inter-track synchronization at the start of the playback.

The starting position of the media timeline of a track may be shifted in the movie timeline of the file as
described in the following two paragraphs.

For a media track and an RTP reception hint track that is not associated with an RTCP reception hint
track, an Edit List box should be used to shift the starting position of the media timeline within the
move timeline as described in H.3.2. The media timelines of the tracks selected for playback are

ISO/IEC 14496-12:2008(E)

© ISO/IEC 2008 – All rights reserved PROOF/ÉPREUVE 173

mapped to the movie timeline by parsing the Edit List boxes of the tracks, if present. The playback of
each media track and each RTP reception hint track that is not associated with an RTCP reception
hint track starts at the movie timeline position indicated in the Edit List box of the track or from the
beginning of the movie timeline, if no Edit List box exists for the track.

For RTP reception hint tracks that are associated with respective RTCP reception hint tracks, the
shifting of the starting position of the media timeline within the movie timeline is inferred as follows.
The media timeline of the RTP reception hint track containing the earliest RTP packet (in presentation
time on the sender wallclock timeline) among all RTP reception hint tracks is not shifted within the
movie timeline (i.e., starts at time 0 on the movie timeline). The starting time of the media timeline of
the any other RTP reception hint track is equal to the timestamp difference of the earliest RTP
packets of the present track and the track containing the earliest RTP packet among all RTP reception
hint tracks.

2. Reconstruction of RTP timestamps and composition times on the media timeline (H.3.5).

3. Correction of RTP timestamps and composition times based on RTCP Sender Reports, if RTCP
reception hint tracks are used.

The correction is done similarly to what is described in H.3.6.3. However, instead of adding the
difference between times a and c into the representation of the RTP timestamps in the file, the
difference is added during the playback to the presentation times of the video frames on the movie
timeline.

4. Pacing the output of the decoded media samples.

It is recommended to play a recorded program at the pace of the wallclock of the player and to use
the audio playout clock as the wallclock of the player. The audio playback is arranged to be
continuous at the native sampling frequency of the audio signal. A presentation clock of the player
runs at the pace of the audio playback, i.e., its value is always equal to the (the number of the most
frequent uncompressed audio sample that was played out) × (sampling frequency of the audio signal).
The playback of the video track (and potential other continuous media tracks) is synchronized to the
presentation clock of the player. In other words, when the presentation clock of the player meets the
composition time of a video sample on the movie timeline, the video sample is played out.

Only if a file being simultaneously recorded and played back and if the receiver wallclocks runs faster
than the sender wallclock, pacing the playback according to the rate of the receiver wallclock might
not be recommended and synchronizing the rate of the receiver wallclock to the rate of the sender
wallclock may be done as follows.

The pace of the sender clock is recovered by creating a relationship between the reception times
(according to the receiver clock) and the respective wallclock timestamps of the sender, which are
reconstructed from RTCP Sender Reports. It is recommended to use the audio playout clock as the
receiver clock. As the delay in the network and in the receiver may be varying, the relation between
the reception times and the respective timestamps of the sender should be averaged over a large
number of received packets. A timescale multiplication factor is concluded as a result of the averaging
of the relation between the reception times and the respective timestamps of the sender.

A presentation time on a timeline of the receiver clock is derived for each sample. If RTCP reception
hint tracks are in use, the presentation time is the composition time of the sample on the movie
timeline, also including clock drift correction as described in step 3 above. If RTCP reception hint
tracks are not in use, the presentation time is directly the composition time of the sample on the movie
timeline. Then, for playback purposes only, the presentation times of the samples in all tracks being
played should be multiplied by the timescale multiplication factor.

Time stretching of the signal should be done accordingly. Samples are played out at their presentation
times.

In practice, the timescale multiplication factor and the mapping from the RTP timeline to the wallclock
of the sender (step 3 above) may be implemented as a single operation.

ISO/IEC 14496-12:2008(E)

174 PROOF/ÉPREUVE © ISO/IEC 2008 – All rights reserved

H.4.5 Random access

Random access refers to a non-linear access to the media streams represented in the file. In other words, in a
random access operation the file is accessed from another sample than that which was previously played or
the file is initially accessed from a position that is not the beginning of the movie timeline.

It is recommended to provide the random access functionality to the user relative to the movie timeline of the
file rather than any other timelines, such as the sender wallclock timeline. By using the movie timeline as the
basis, the number of steps for a random access operation is kept low.

First, it is derived which media frames are at a desired random access position (or closest to it, if there are
none exactly at the desired random access position). In the case of media tracks, RTP reception hint tracks
for audio, and any RTP reception hint tracks having the timestamp_sync field equal to 2 (indicating pre-
compensated lip synchronization), the media frame closest to the desired random access position can be
directly derived based on the composition timestamps (on the media timeline) shifted by the initial starting
position indicated in the Edit List box, if any. In the case of non-audio RTP reception hint tracks having the
timestamp_sync field equal to 1 (indicating the use of RTCP reception hint tracks), the presentation times of
samples should be derived as described in H.4.4, until the closest presentation time to the desired random
access position is found.

Second, decoding of many media bitstreams can be started only from frames of a particular type, such an IDR
picture of H.264/AVC. Player implementations may therefore have different approaches, including the
following:

1. Discover the closest frame at or preceding the desired random access position from which decoding
can be started, start decoding from that frame, and start rendering only from the desired random
access point. This approach may imply some processing delay before the rendering is started.

2. Start decoding and rendering at or after the desired random access point using the earliest frame
from which decoding can be started. Typically, audio playback would start earlier than video playback,
but the processing delay before the rendering is started is smaller than in the previous option.

H.5 Re-sending recorded RTP streams

H.5.1 Introduction

It may be a desirable operation to re-send the RTP streams that have been recorded earlier to a file. For
example, if RTP streams are received through a broadcast or streaming service and recorded into a file, it
may be desirable to re-send them from one device to another device in a home environment using a WLAN
connection. This Clause provides recommendations for re-sending of recorded RTP streams.

A communication system based on RTP includes a source endpoint (a.k.a., a sender) and a destination
endpoint (a.k.a., a receiver) and may contain one or more mixers and translators. The sender and the receiver
are the endpoints of the RTP and RTCP sessions. The behaviour of RTP translators and mixers is specified in
RFC 3550 and clarified in RFC 5117. In general, the recording unit receiving RTP streams and storing them
into a file acts as a destination endpoint, and a re-sending unit reading stored RTP streams from a file and
sending them acts as a source. Typically, the payloads of the re-sent RTP stream are not modified, which
makes a combination of a recording unit and a re-sending unit acting similarly to a transport translator as
described in RFC 5117. However, the essential characteristic of a translator is that receivers cannot detect its
presence. Consequently, a combination of a recording unit and a re-sending unit cannot act as a transport
translator, unless re-sending happens simultaneously with the recording of the original streams. As this case
is considered rare, the discussion in this Clause regards a recording unit as a destination terminating the
original RTP and RTCP sessions and a re-sending unit as a source of new RTP and RTCP sessions.

This Clause is organized as follows:

- H.5.2 includes recommendations how to compose RTP packets from RTP reception hint tracks and
how to schedule the transmission of the RTP packets.

ISO/IEC 14496-12:2008(E)

© ISO/IEC 2008 – All rights reserved PROOF/ÉPREUVE 175

- H.5.3 discusses how RTCP packets should be generated and how received RTCP packets should be
processed.

H.5.2 Re-sending RTP packets

The packets are recommended to be constructed and transmitted as follows.

The packet payloads are recommended to be constructed according to the constructors stored in the
reception hint track, i.e., the packet payloads are recommended to be identical to those received, unless a
different packet size is crucial for the network to which the packets are re-sent.

- The values of the header fields for the RTP packets created as suggested by an RTP reception hint
track should be kept the same as in the respective RTPpacket structure except for the following cases:

- The initial RTP timestamp offset and the RTP sequence number offset should be selected randomly
regardless of the values stored in the offset field of the 'tsro' box of the referred reception hint sample
entry or the values of the RTPsequenceseed field of the RTPpacket structure of any for any of the packets
of the respective RTP reception hint track.

- The value of the RTP timestamp field should be a sum of the random initial offset, the value of offset
in the RTPpacket structure, and the decoding time of the respective RTP sample. If the sum exceeds
the maximum unsigned 32-bit integer, it should be wrapped over.

- The relative increments of the RTP sequence number should be the same as those recorded in the
values of the RTPsequenceseed fields. Consequently, if there was a packet loss in the stream that was
recorded, the stream that is re-sent also has a respective gap in the RTP sequence number, and the
receiver is able to deduce a packet loss.

- The value of the CSRC count field should always be zero, because no contributing sources of the
previous RTP session that was recorded are actively modifying the streams for the RTP session for
the stream being re-sent. The source identifier space (for both SSRC and CSRC) is session specific.
Consequently, the CSRC list of the RTP header should be empty regardless of the potentially stored
CSRC values for the received streams, which are included in the receivedCSRC TLV box in the
RTPpacket structure.

- The value of the payload type field may be dynamically selected depending on the signalling scheme
in use.

- The value of the SSRC field should be randomly selected and potential collisions should be handled
as specified in RFC 3550. The SSRC value of a received stream may be stored in the
ReceivedSsrcBox of the referred reception hint sample entry but it should be ignored when the stream
is re-sent.

- The recorded RTP header extensions, stored in rtphdrextTLV in the RTPpacket structure, if any, should
be re-sent only if the re-sending unit can verify that they are valid for the re-sent stream. If the re-
sending unit is not able to parse the semantics of the recorded RTP header extensions, they should
not be re-sent.

The reception time of a packet, represented by the sum of the decoding time of the RTP reception hint sample
containing the packet and the value of the relative_time of the RTPpacket structure, equals to the transmission
time of the packet with a skew caused by the transmission delay and the processing delay in the protocol
stack of the receiver. The skew of adjacent packets might not be equal due to transmission delay jitter and
varying processing delay. Moreover, the protocol stack used when receiving the stream might differ from the
protocol stack used for re-sending the stream. Due to these reasons, the reception times are often not
applicable as such to pace the transmission of the re-sent packets. In all cases, the re-sending unit should
verify that the re-sent packet stream complies with the buffering model in use, if any. If the re-sending unit can
conclude that the network environments and protocol stacks used when receiving the stream and when re-
sending the recorded stream are similar, reception times may be used as a basis for scheduling the packet
transmission. The re-sending unit should make an effort to remove or conceal the transmission delay jitter in
the recorded stream. If the re-sending unit is unable to conclude that the network environments and protocol

ISO/IEC 14496-12:2008(E)

176 PROOF/ÉPREUVE © ISO/IEC 2008 – All rights reserved

stacks used when receiving the stream and when re-sending the recorded stream are similar or is uncertain
which kind of packet scheduling is appropriate, it may use the decoding time as the basis for scheduling.

H.5.3 RTCP Processing

RTCP Sender Reports and other RTCP messages are regenerated following the constraints specified in RFC
3550 rather than directly using the RTCP messages recorded in RTCP reception hint tracks, if any.

An RTCP Sender Report contains the wallclock time when the report was sent and the RTP timestamp
corresponding to the same time as the indicated wallclock time. The RTP timestamp for an RTCP Sender
Report is generated as follows. A presentation time on a timeline of a reference clock is derived for the sample
corresponding the indicated wallclock time in the RTCP Sender Report. The reference clock may be the
wallclock of the re-sending unit initialized to 0 at the beginning of the session. The sample corresponding to
the indicated wallclock time might not exist in the corresponding RTP reception hint track, because the
sampling instants of the samples in the RTP reception hint tracks might not match with the transmission
instants of the RTCP Sender Reports. However, as instructed by RFC 3550, the RTP timestamp is derived as
if there was a sample in the RTP stream corresponding to the indicated wallclock time. The RTP timestamp
for an RTCP Sender Report should be linearly interpolated from the RTP timestamps of the samples
immediately preceding and following the wallclock time indicated in the RTCP Sender Report. In order to
conclude the samples immediately preceding and following the wallclock time indicated in the RTCP Sender
Report, presentation times on the timeline of the reference clock should be derived until the closest samples
are discovered. If RTCP reception hint tracks are present for the RTP reception hint track being re-sent, the
presentation time is the composition time of the sample on the movie timeline, also including clock drift
correction as described in step 3 of H.4.4. If RTCP reception hint tracks are not present, the presentation time
is directly the composition time of the sample on the movie timeline.

When handling the received RTCP Receiver Reports, it should be noticed that the reported cumulative
number of packets lost includes also the unsent packets that were never originally received and correspond to
the gaps in the RTP sequence number in the RTP reception hint tracks. Any congestion management,
retransmission, or other packet loss resilience method should take this into account.

ISO/IEC 14496-12:2008(E)

© ISO/IEC 2008 – All rights reserved PROOF/ÉPREUVE 177

Annex I
(Normative)

Stream Access Points

I.1 Introduction

This Annex defines a Stream Access Point (SAP) and specifies six types of SAPs.

A Stream Access Point (SAP) enables random access into a container of media stream(s). A container may
contain more than one media stream, each being an encoded version of continuous media of certain media
type. A SAP is a position in a container enabling playback of an identified media stream to be started using
only (a) the information contained in the container starting from that position onwards, and (b) possible
initialisation data from other part(s) of the container, or externally available. Derived specifications should
specify if initialisation data is needed to access the container at a SAP, and how the initialisation data can be
accessed.

I.2 SAP properties

For each SAP the properties, ISAP, TSAP, ISAU, TDEC, TEPT, and TPTF are identified and defined as:

⎯ TSAP is the earliest presentation time of any access unit of the media stream such that all access units of
the media stream with presentation time greater than or equal to TSAP can be correctly decoded using
data in the Bitstream starting at ISAP and no data before ISAP.

⎯ ISAP is the greatest position in the Bitstream such that all access units of the media stream with
presentation time greater than or equal to TSAP can be correctly decoded using Bitstream data starting at
ISAP and no data before ISAP.

⎯ ISAU is the starting position in the Bitstream of the latest access unit in decoding order within the media
stream such that all access units of the media stream with presentation time greater than or equal to TSAP
can be correctly decoded using this latest access unit and access units following in decoding order and
no access units earlier in decoding order.

NOTE ISAU is always greater than or equal to ISAP.

⎯ TDEC is the earliest presentation time of any access unit of the media stream that can be correctly
decoded using data in the Bitstream starting at ISAU and no data before ISAU.

⎯ TEPT is the earliest presentation time of any access unit of the media stream starting at ISAU in the
Bitstream.

⎯ TPTF is the presentation time of the first access unit of the media stream in decoding order in the Bitstream
starting at ISAU.

I.3 SAP types

Six types of SAPs are defined with properties as follows:

⎯ Type 1: TEPT = TDEC = TSAP = TPTF

ISO/IEC 14496-12:2008(E)

178 PROOF/ÉPREUVE © ISO/IEC 2008 – All rights reserved

⎯ Type 2: TEPT = TDEC = TSAP < TPTF

⎯ Type 3: TEPT < TDEC = TSAP <= TPTF

⎯ Type 4: TEPT <= TPTF < TDEC = TSAP

⎯ Type 5: TEPT = TDEC < TSAP

⎯ Type 6: TEPT < TDEC < TSAP

NOTE The type of SAP is dependent only on which Access Units are correctly decodable and their arrangement in
presentation order. The types informally correspond with some common terms:

• Type 1 corresponds to what is known in some coding schemes as a “Closed GoP random access point” (in
which all access units, in decoding order, starting from ISAP can be correctly decoded, resulting in a
continuous time sequence of correctly decoded access units with no gaps) and in addition the access
unit in decoding order is also the first access unit in presentation order.

• Type 2 corresponds to what is know in some coding schemes as a “Closed GoP random access point”, for
which the first access unit in decoding order in the media stream starting from ISAU is not the first access
unit in presentation order.

• Type 3 corresponds to what is known in some coding schemes as an “Open GoP random access point”, in
which there are some access units in decoding order following ISAU that cannot be correctly decoded
and have presentation times less than TSAP.

• Type 4 corresponds to what is known in some coding schemes as an "Gradual Decoding Refresh (GDR)
random access point”, in which there are some access units in decoding order starting from and
following ISAU that cannot be correctly decoded and have presentation times less than TSAP.

• Type 5 corresponds to the case for which there is at least one access unit in decoding order starting from
ISAP that cannot be correctly decoded and has presentation time greater than TDEC and where TDEC is the
earliest presentation time of any access unit starting from ISAU.

• Type 6 corresponds to the case for which there is at least one access unit in decoding order starting from
ISAP that cannot be correctly decoded and has presentation time greater than TDEC and where TDEC is not
the earliest presentation time of any access unit starting from ISAU.

ISO/IEC 14496-12:2008(E)

© ISO/IEC 2008 – All rights reserved PROOF/ÉPREUVE 179

Annex J
(Normative)

MIME Type Registration of Segments

J.1 Introduction

This Annex provides the formal MIME registration of media segments formatted according to 8.16.

J.2 Registration

MIME media type name: video

MIME subtype name: iso.segment

Required parameters: none

Optional parameters: as specified by RFC 6381 and its successors

Encoding considerations: as for video/mp4

Security considerations: See section 5 of RFC 4337.

Interoperability considerations: A number of interoperating implementations exist
within the ISO/IEC 14496 community, and that community has reference
software for reading and writing the file format.

Published specification: ISO/IEC 14496-12:2012 (expected)

Applications: Multimedia

Additional information:

 Magic number(s): none

 File extension(s): m4s

 Macintosh File Type Code(s): None

Person to contact for info: David Singer, singer@apple.com

Intended usage: Common

Author/Change controller: David Singer, ISO/IEC 14496 file format chair

ISO/IEC 14496-12:2008(E)

180 PROOF/ÉPREUVE © ISO/IEC 2008 – All rights reserved

Bibliography

[1] The QuickTime file format specification, in PDF:
<http://developer.apple.com/documentation/QuickTime/QTFF/qtff.pdf>

[2] 3GPP TS 26.244, 3GPP file format (3GP)

[3] 3GPP TS 26.346, Multimedia Broadcast/Multicast Service (MBMS); Protocols and codecs

[4] OMA BCAST_Distribution-V1_0: File and Stream Distribution for Mobile Broadcast Services

[5] IETF RFC 3926, FLUTE - File Delivery over Unidirectional Transport, October 2004

[6] IETF RFC 3450, Asynchronous Layered Coding (ALC) Protocol Instantiation, December 2002

[7] IETF RFC 3451, Layered Coding Transport (LCT) Building Block, December 2002

[8] IETF RFC 3452, Forward Error Correction (FEC) Building Block, December 2002

[9] IETF RFC 3695, Compact Forward Error Correction (FEC) Schemes, February 2004

[10] IETF RFC 1864, The Content-MD5 Header Field, October 1995

[11] IETF RFC 2616, Hypertext Transfer Protocol -- HTTP/1.1, June 1999

[12] IETF RFC 3061, A URN Namespace of Object Identifiers, February 2001

[13] IETF RFC 3550, RTP: A Transport Protocol for Real-Time Applications, July 2003

[14] IETF RFC 3551, RTP Profile for Audio and Video Conferences with Minimal Control, July 2003

[15] IETF RFC 4122, A Universally Unique IDentifier (UUID) URN Namespace, July 2005

[16] IETF RFC 4771, Integrity Transform Carrying Roll-Over Counter for the Secure Real-time Transport
Protocol (SRTP), January 2007

[17] IETF RFC 5119, A Uniform Resource Name (URN) Namespace for the Society of Motion Picture and
Television Engineers (SMPTE), February 2008

[18] ICC.1:2001-04, File format for color profiles, International Color Consortium

[19] SMPTE RP 177, Derivation of Basic Television Color Equations; Society of Motion Picture and Television
Engineers (SMPTE), 1993

[20] ISO/IEC 13818-1, Information technology — Generic coding of moving pictures and associated audio
information — Systems

[21] ISO/IEC 14496-15, Information technology — Coding of audio-visual objects — Advanced Video Coding
(AVC) file format

[22] IETF RFC 5117, RTP Topologies, WESTERLUND, M. et al., January 2008.

ISO/IEC 14496-12:2008(E)

ICS 35.040
Price based on 107 pages

© ISO/IEC 2008 – All rights reserved

