Mercurial > hg > emotion-recognition
comparison readme.rtf @ 0:e5724c21af7b
Upload the files that I used for ISMIR2012 Emotion recognition
author | Yading Song <yadng.song@eecs.qmul.ac.uk> |
---|---|
date | Thu, 20 Sep 2012 13:27:02 +0100 |
parents | |
children | 2fca2ff3bf81 |
comparison
equal
deleted
inserted
replaced
-1:000000000000 | 0:e5724c21af7b |
---|---|
1 {\rtf1\ansi\ansicpg1252\cocoartf1138\cocoasubrtf470 | |
2 {\fonttbl\f0\fswiss\fcharset0 Helvetica;} | |
3 {\colortbl;\red255\green255\blue255;} | |
4 \paperw11900\paperh16840\margl1440\margr1440\vieww10800\viewh8400\viewkind0 | |
5 \pard\tx566\tx1133\tx1700\tx2267\tx2834\tx3401\tx3968\tx4535\tx5102\tx5669\tx6236\tx6803\pardirnatural | |
6 | |
7 \f0\fs24 \cf0 \ | |
8 This is the dataset I used for ISMIR 2012 paper "Evaluation of Musical Features for Emotion Classification"\ | |
9 \ | |
10 It contains 3 parts,\ | |
11 1. The top tags returned by last.fm (four emotion classes: happy, sad, angry, and relax)\ | |
12 2. A list of songs labelled with the retrieved from part 1\ | |
13 3. The fetched song titles that we used in this paper (due to the copyright, we didn't upload preview files)\ | |
14 \ | |
15 Queen Mary University of London\ | |
16 Centre for Digital Music\ | |
17 Yading Song\ | |
18 yading.song@eecs.qmul.ac.uk} |