Mercurial > hg > emotion-detection-top-level
view Code/Descriptors/Matlab/MPEG7/FromWeb/VoiceSauce/shrp.m @ 4:92ca03a8fa99 tip
Update to ICASSP 2013 benchmark
author | Dawn Black |
---|---|
date | Wed, 13 Feb 2013 11:02:39 +0000 |
parents | |
children |
line wrap: on
line source
function [f0_time,f0_value,SHR,f0_candidates]=shrp(Y,Fs,F0MinMax,frame_length,timestep,SHR_Threshold,ceiling,med_smooth,CHECK_VOICING) % SHRP - a pitch determination algorithm based on Subharmonic-to-Harmonic Ratio (SHR) % [f0_time,f0_value,SHR,f0_candidates]=shrp(Y,Fs[,F0MinMax,frame_length,TimeStep,SHR_Threshold,Ceiling,med_smooth,CHECK_VOICING]) % % Input parameters (There are 9): % % Y: Input data % Fs: Sampling frequency (e.g., 16000 Hz) % F0MinMax: 2-d array specifies the F0 range. [minf0 maxf0], default: [50 550] % Quick solutions: % For male speech: [50 250] % For female speech: [120 400] % frame_length: length of each frame in millisecond (default: 40 ms) % TimeStep: Interval for updating short-term analysis in millisecond (default: 10 ms) % SHR_Threshold: Subharmonic-to-harmonic ratio threshold in the range of [0,1] (default: 0.4). % If the estimated SHR is greater than the threshold, the subharmonic is regarded as F0 candidate, % Otherwise, the harmonic is favored. % Ceiling: Upper bound of the frequencies that are used for estimating pitch. (default: 1250 Hz) % med_smooth: the order of the median smoothing (default: 0 - no smoothing); % CHECK_VOICING: check voicing. Current voicing determination algorithm is kind of crude. % 0: no voicing checking (default) % 1: voicing checking % Output parameters: % % f0_time: an array stores the times for the F0 points % f0_value: an array stores F0 values % SHR: an array stores subharmonic-to-harmonic ratio for each frame % f0_candidates: a matrix stores the f0 candidates for each frames, currently two f0 values generated for each frame. % Each row (a frame) contains two values in increasing order, i.e., [low_f0 higher_f0]. % For SHR=0, the first f0 is 0. The purpose of this is that when you want to test different SHR % thresholds, you don't need to re-run the whole algorithm. You can choose to select the lower or higher % value based on the shr value of this frame. % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % Permission to use, copy, modify, and distribute this software without fee is hereby granted % FOR RESEARCH PURPOSES only, provided that this copyright notice appears in all copies % and in all supporting documentation. % % This program is distributed in the hope that it will be useful, % but WITHOUT ANY WARRANTY; without even the implied warranty of % MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. % % For details of the algorithm, please see % Sun, X.,"Pitch determination and voice quality analysis using subharmonic-to-harmonic ratio" To appear in the Proc. of ICASSP2002, Orlando, Florida, May 13 -17, 2002. % For update information, please check http://mel.speech.nwu.edu/sunxj/pda.htm. % % Copyright (c) 2001 Xuejing Sun % Department of Communication Sciences and Disorders % Northwestern University, USA % sunxj@northwestern.edu % % Update history: % Added "f0_candidates" as a return value, Dec. 21, 2001 % Changed default median smoothing order from 5 to 0, Jan. 9, 2002 % Modified the GetLogSpectrum function, bug fixed due to Herbert Griebel. Jan. 15, 2002 % Several minor changes. Jan. 15,2002. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %t0 = clock; %------------------ Get input arguments values and set default values ------------------------- if nargin<9 CHECK_VOICING=0; end if nargin<8 med_smooth=0; end if nargin<7 ceiling=1250; end if nargin<6 SHR_Threshold=0.4; % subharmonic to harmonic ratio threshold end if nargin<5 timestep=10; %timestep=6.4; end if nargin<4 frame_length=40; % default 40 ms end if nargin<3 minf0=50; maxf0=500; else minf0=F0MinMax(1); maxf0=F0MinMax(2); end if nargin<2 error('Sampling rate must be supplied!') end segmentduration=frame_length; %------------------- pre-processing input signal ------------------------- Y=Y-mean(Y); % remove DC component Y=Y/max(abs(Y)); %normalization total_len=length(Y); %------------------ specify some algorithm-specific thresholds ------------------------- interpolation_depth=0.5; % for FFT length %--------------- derived thresholds specific to the algorithm ------------------------------- maxlogf=log2(maxf0/2); minlogf=log2(minf0/2); % the search region to compute SHR is as low as 0.5 minf0. N=floor(ceiling/minf0); % maximum number harmonics m=mod(N,2); N=N-m; N=N*4; %In fact, in most cases we don't need to multiply N by 4 and get equally good results yet much faster. % derive how many frames we have based on segment length and timestep. segmentlen=round(segmentduration*(Fs/1000)); inc=round(timestep*(Fs/1000)); nf = fix((total_len-segmentlen+inc)/inc); n=(1:nf); f0_time=((n-1)*timestep+segmentduration/2)'; % anchor time for each frame, the middle point %f0_time=((n-1)*timestep)'; % anchor time for each frame, starting from zero %------------------ determine FFT length --------------------- fftlen=1; while (fftlen < segmentlen * (1 +interpolation_depth)) fftlen =fftlen* 2; end %----------------- derive linear and log frequency scale ---------------- frequency=Fs*(1:fftlen/2)/fftlen; % we ignore frequency 0 here since we need to do log transformation later and won't use it anyway. limit=find(frequency>=ceiling); limit=limit(1); % only the first is useful frequency=frequency(1:limit); logf=log2(frequency); %% clear some variables to save memory clear frequency; min_bin=logf(end)-logf(end-1); % the minimum distance between two points after interpolation shift=log2(N); % shift distance shift_units=round(shift/min_bin); %the number of unit on the log x-axis i=(2:N); % ------------- the followings are universal for all the frames ---------------%% startpos=shift_units+1-round(log2(i)/min_bin); % find out all the start position of each shift index=find(startpos<1); % find out those positions that are less than 1 startpos(index)=1; % set them to 1 since the array index starts from 1 in matlab interp_logf=logf(1):min_bin:logf(end); interp_len=length(interp_logf);% new length of the amplitude spectrum after interpolation totallen=shift_units+interp_len; endpos=startpos+interp_len-1; %% note that : totallen=shift_units+interp_len; index=find(endpos>totallen); endpos(index)=totallen; % make sure all the end positions not greater than the totoal length of the shift spectrum newfre=2.^(interp_logf); % the linear Hz scale derived from the interpolated log scale upperbound=find(interp_logf>=maxlogf); % find out the index of upper bound of search region on the log frequency scale. upperbound=upperbound(1);% only the first element is useful lowerbound=find(interp_logf>=minlogf); % find out the index of lower bound of search region on the log frequency scale. lowerbound=lowerbound(1); %----------------- segmentation of speech ------------------------------ curpos=round(f0_time/1000*Fs); % position for each frame in terms of index, not time frames=toframes(Y,curpos,segmentlen,'hamm'); [nf framelen]=size(frames); clear Y; %----------------- initialize vectors for f0 time, f0 values, and SHR f0_value=zeros(nf,1); SHR=zeros(nf,1); f0_time=f0_time(1:nf); f0_candidates=zeros(nf,2); %----------------- voicing determination ---------------------------- if (CHECK_VOICING) NoiseFloor=sum(frames(1,:).^2); voicing=vda(frames,segmentduration/1000,NoiseFloor); else voicing=ones(nf,1); end %------------------- the main loop ----------------------- curf0=0; cur_SHR=0; cur_cand1=0; cur_cand2=0; for n=1:nf segment=frames(n,:); curtime=f0_time(n); if voicing(n)==0 curf0=0; cur_SHR=0; else [log_spectrum]=GetLogSpectrum(segment,fftlen,limit,logf,interp_logf); [peak_index,cur_SHR,shshift,all_peak_indices]=ComputeSHR(log_spectrum,min_bin,startpos,endpos,lowerbound,upperbound,N,shift_units,SHR_Threshold); if (peak_index==-1) % -1 indicates a possibly unvoiced frame, if CHECK_VOICING, set f0 to 0, otherwise uses previous value if (CHECK_VOICING) curf0=0; cur_cand1=0; cur_cand2=0; end else curf0=newfre(peak_index)*2; if (curf0>maxf0) curf0=curf0/2; end if (length(all_peak_indices)==1) cur_cand1=0; cur_cand2=newfre(all_peak_indices(1))*2; else cur_cand1=newfre(all_peak_indices(1))*2; cur_cand2=newfre(all_peak_indices(2))*2; end if (cur_cand1>maxf0) cur_cand1=cur_cand1/2; end if (cur_cand2>maxf0) cur_cand2=cur_cand2/2; end if (CHECK_VOICING) voicing(n)=postvda(segment,curf0,Fs); if (voicing(n)==0) curf0=0; end end end end f0_value(n)=curf0; SHR(n)=cur_SHR; f0_candidates(n,1)=cur_cand1; f0_candidates(n,2)=cur_cand2; DEBUG=0; if DEBUG figure(9) %subplot(5,1,1),plot(segment,'*') %title('windowed waveform segment') subplot(2,2,1),plot(interp_logf,log_spectrum,'k*') title('(a)') grid %('spectrum on log frequency scale') %grid shsodd=sum(shshift(1:2:N-1,:),1); shseven=sum(shshift(2:2:N,:),1); difference=shseven-shsodd; subplot(2,2,2),plot(interp_logf,shseven,'k*') title('(b)') %title('even') grid subplot(2,2,3),plot(interp_logf,shsodd,'k*') title('(c)') %title('odd') grid subplot(2,2,4), plot(interp_logf,difference,'k*') title('(d)') %title('difference (even-odd)') grid curtime curf0 cur_SHR pause end end %-------------- post-processing ------------------------------- if (med_smooth > 0) f0_value=medsmooth(f0_value,med_smooth); end %f0=linsmooth(f0,5); % this is really optional. %***************************************************************************************** %-------------- do FFT and get log spectrum --------------------------------- %***************************************************************************************** function [interp_amplitude]=GetLogSpectrum(segment,fftlen,limit,logf,interp_logf) Spectra=fft(segment,fftlen); amplitude = abs(Spectra(1:fftlen/2+1)); % fftlen is always even here. Note: change fftlen/2 to fftlen/2+1. bug fixed due to Herbert Griebel amplitude=amplitude(2:limit+1); % ignore the zero frequency component %amplitude=log10(amplitude+1); interp_amplitude=interp1(logf,amplitude,interp_logf,'linear'); interp_amplitude=interp_amplitude-min(interp_amplitude); %***************************************************************************************** %-------------- compute subharmonic-to-harmonic ratio --------------------------------- %***************************************************************************************** function [peak_index,SHR,shshift,index]=ComputeSHR(log_spectrum,min_bin,startpos,endpos,lowerbound,upperbound,N,shift_units,SHR_Threshold) % computeshr: compute subharmonic-to-harmonic ratio for a short-term signal len_spectrum=length(log_spectrum); totallen=shift_units+len_spectrum; shshift=zeros(N,totallen); %initialize the subharmonic shift matrix; each row corresponds to a shift version shshift(1,(totallen-len_spectrum+1):totallen)=log_spectrum; % place the spectrum at the right end of the first row % note that here startpos and endpos has N-1 rows, so we start from 2 % the first row in shshift is the original log spectrum for i=2:N shshift(i,startpos(i-1):endpos(i-1))=log_spectrum(1:endpos(i-1)-startpos(i-1)+1); % store each shifted sequence end shshift=shshift(:,shift_units+1:totallen); % we don't need the stuff smaller than shift_units shsodd=sum(shshift(1:2:N-1,:),1); shseven=sum(shshift(2:2:N,:),1); difference=shseven-shsodd; % peak picking process SHR=0; [mag,index]=twomax(difference,lowerbound,upperbound,min_bin); % only find two maxima % first mag is always the maximum, the second, if there is, is the second max NumPitchCandidates=length(mag); if (NumPitchCandidates == 1) % this is possible, mainly due to we put a constraint on search region, i.e., f0 range if (mag <=0) % this must be an unvoiced frame peak_index=-1; return end peak_index=index; SHR=0; else SHR=(mag(1)-mag(2))/(mag(1)+mag(2)); if (SHR<=SHR_Threshold) peak_index=index(2); % subharmonic is weak, so favor the harmonic else peak_index=index(1); % subharmonic is strong, so favor the subharmonic as F0 end end %%***************************************************************************************** %****************** this function only finds two maximum peaks ************************ function [mag,index]=twomax(x,lowerbound,upperbound,unitlen) %In descending order, the magnitude and index are returned in [mag,index], respectively lenx=length(x); halfoct=round(1/unitlen/2); % compute the number of units of half octave. log2(2)=1; 1/unitlen [mag,index]=max(x(lowerbound:upperbound));%find the maximum value if (mag<=0) % error('max is smaller than zero!') % return it! return end index=index+lowerbound-1; harmonics=2; LIMIT=0.0625; % 1/8 octave startpos=index+round(log2(harmonics-LIMIT)/unitlen); if (startpos<=min(lenx,upperbound)) endpos=index+round(log2(harmonics+LIMIT)/unitlen); % for example, 100hz-200hz is one octave, 200hz-250hz is 1/4octave if (endpos> min(lenx,upperbound)) endpos=min(lenx,upperbound); end [mag1,index1]=max(x(startpos:endpos));%find the maximum value at right side of last maximum if (mag1>0) index1=index1+startpos-1; mag=[mag;mag1]; index=[index;index1]; end end %***************************************************************************************** %%---------------------------------------------------------------------------------------- %%-----------------------------------voicing determination ------------------------------- function voice=vda(x,segmentdur,noisefloor,minzcr) %voice=vda(x) determine whether the segment is voiced, unvoiced or silence %this VDA is independent from the PDA process, and does not take advantage of the info derived from PDA %thus, it requires more computation load. if nargin<4 %minzcr=2500; %unit: hertz minzcr=3000; end if nargin<3 noisefloor=0.01; end [nf, len]=size(x); voice=ones(nf,1); engergy=sum(x.^2,2); index=find(engergy<=noisefloor*3); voice(index)=0; %***************************************************************************************** %% --------------------------------- determine the energy threshold for silence------------------------- function thr=ethreshold(frames) %%%%% use Rabiner and Sambur (1975) method [nf,len]=size(frames); lastpoint=1; emax=0; emin=0; e=sum(frames.^2,2); emax=max(e); emin=min(e); I1=0.03*(emax-emin)+emin; I2=4*emin; thr=25*min(I1,I2); %***************************************************************************************** %% ------------------- split signal into frames --------------- function frames=toframes(input,curpos,segmentlen,wintype) len=length(input); numFrames=length(curpos); frames=zeros(numFrames,segmentlen); start=curpos-round(segmentlen/2); offset=(0:segmentlen-1); index_start=find(start<1); % find out those frames beyond the first point start(index_start)=1; % for those, just use the first frame endpos=start+segmentlen-1; index=find(endpos>len); endpos(index)=len; % duplicate the last several frames if window is over the limit. start(index)=len+1-segmentlen; frames(:)=input(start(:,ones(1,segmentlen))+offset(ones(numFrames,1),:)); [nf, len]=size(frames); win=window(segmentlen,wintype); frames = frames .* win(ones(nf,1),:); %***************************************************************************************** %-------------- post voicing checking --------------------------------------------- function voicing=postvda(segment, curf0,Fs,r_threshold) %%% check voicing again using estimated F0, which follows Hermes, SHS algorithm, JASA, 1988 if nargin<4 r_threshold=0.2; end estimated_period=1/curf0; mid_point=round(length(segment)/2); num_points=round(estimated_period*Fs); % number of points in each period start_point=mid_point-num_points; end_point=mid_point+num_points; if (start_point <1) start_point=1; mid_point=start_point+num_points; if (mid_point>length(segment)) % this is unreasonable, set f0 to zero voicing=0; return; end end segment1=segment(start_point:mid_point); if (end_point>length(segment)) end_point=length(segment); mid_point=end_point-num_points; if (mid_point<1) % this is unreasonable, set f0 to zero voicing=0; return; end end segment2=segment(mid_point:end_point); len=min(length(segment1),length(segment2)); r=corrcoef(segment1(1:len),segment2(1:len)); r1=r(1,2); if (r1<r_threshold) % correlation threshold voicing=0; else voicing=1; end USE_ZCR=1; if(USE_ZCR & voicing) zcr1=zcr(segment1,estimated_period); zcr2=zcr(segment2,estimated_period); %minzcr=2500; minzcr=3500; if (zcr1<minzcr | zcr2<minzcr) voicing=1; else voicing=0; end end %%***************************************************************************************** %--------------------- Compute zero-crossing rate ------------------------------------------- function zcr=zcr(x,dur) % function zcr=zcr(x,dur) : compute zero-crossing rate % x: input data % x: duration of the input data [nf,len]=size(x); zcr=sum(0.5*abs(sign(x(:,2:len))-sign(x(:,1:len-1))))/dur; %%************************************************************************************* %--------------------- Window function ------------------------------------------- function w = window(N,wt,beta) % % w = window(N,wt) % % generate a window function % % N = length of desired window % wt = window type desired % 'rect' = rectangular 'tria' = triangular (Bartlett) % 'hann' = Hanning 'hamm' = Hamming % 'blac' = Blackman % 'kais' = Kaiser % % w = row vector containing samples of the desired window % beta : used in Kaiser window nn = N-1; n=0:nn; pn = 2*pi*(0:nn)/nn; if wt(1,1:4) == 'rect', w = ones(1,N); elseif wt(1,1:4) == 'tria', m = nn/2; w = (0:m)/m; w = [w w(ceil(m):-1:1)]; elseif wt(1,1:4) == 'hann', w = 0.5*(1 - cos(pn)); elseif wt(1,1:4) == 'hamm', w = .54 - .46*cos(pn); elseif wt(1,1:4) == 'blac', w = .42 -.5*cos(pn) + .08*cos(2*pn); elseif wt(1,1:4) == 'kais', if nargin<3 error('you need provide beta!') end w =bessel1(beta*sqrt(1-((n-N/2)/(N/2)).^2))./bessel1(beta); else disp('Incorrect Window type requested') end