Mercurial > hg > emotion-detection-top-level
view Code/Classifiers/SVM_Formants_Singing.m @ 4:92ca03a8fa99 tip
Update to ICASSP 2013 benchmark
author | Dawn Black |
---|---|
date | Wed, 13 Feb 2013 11:02:39 +0000 |
parents | |
children |
line wrap: on
line source
function [] = SVM_Formants_Singing( varargin ) cd 'C:\Users\dawn\Dropbox\TestResults' DEBUG = 0; % output results file name masterFileOutputID = fopen( 'SVM_paper_SingingFormantsStats.txt', 'a' ); % input results file name inputFileName = 'paper_singingFormantsStats.txt'; % This function allows the user to stipulate which Singing voice LLD's they % wish to forward to a k-means classifier and produces a file of % performance characteristics. Input arguments stipulate the LLD's and % there is a choice of:- % % ---- PRAAT FORMANT MEASUREMENTS ---- % '_Formant_Burg' % '_Formant_all' % '_Formant_robust' % % A text file entitled kmeans_Singing_LLD1name_LLD2name_ ... LLDNname.txt % is produced that contains the results of the k-mean classification for % the LLD's specified and named in the result document title. fprintf( masterFileOutputID, '\n RESULTS FILE NAME: %s\n', inputFileName); inputFileID = fopen( inputFileName ); % get the column numbers of the results that we want to classify % COLUMN NUMBER : METRIC % % ------------- BURG FORMANTS --------------- % 11 : Number of BURG formants listed = nBF % % THERE ARE CURRENTLY 24 MEASUREMENTS TAKEN FOR EACH FORMANT nMetrics = 24; % % 12 : mean frequency of the first BURG formant % 13 : variance of the first BURG formant % 14 : minimum frequency of the first BURG formant % 15 : maximum frequency of the first BURG formant % 16 : mean Frequency Derivative of the first BURG formant % 17 : varience of the Frequency Derivative of the first BURG formant % 18 : min of the Frequency Derivative of the first BURG formant % 19 : max of the Frequency Derivative of the first BURG formant % 20 : mean of the Frequency 2nd Derivative of the first BURG formant % 21 : varience of the Frequency 2nd Derivative of the first BURG formant % 22 : min of the Frequency 2nd Derivative of the first BURG formant % 23 : max of the Frequency 2nd Derivative of the first BURG formant % 24 : mean of the Bandwidth of the first BURG formant % 25 : varience of the Bandwidth of the first BURG formant % 26 : min of the Bandwidth of the first BURG formant % 27 : max of the Bandwidth of the first BURG formant % 28 : mean of the Bandwidth Derivative of the first BURG formant % 29 : varience of the Bandwidth Derivative of the first BURG formant % 30 : min of the Bandwidth Derivative of the first BURG formant % 31 : max of the Bandwidth Derivative of the first BURG formant % 32 : mean of the Bandwidth 2nd Derivative of the first BURG formant % 33 : var of the Bandwidth 2nd Derivative of the first BURG formant % 34 : min of the Bandwidth 2nd Derivative of the first BURG formant % 35 : max of the Bandwidth 2nd Derivative of the first BURG formant % % ....... there are nMetrics for each formant in nBF formants, so cycle % through until the last is reached ...... % % 36 + ((nBF-1)*nMetrics) : mean frequency of the nBF BURG formant % 36 + ((nBF-1)*nMetrics) + 1 : variance of the nBF BURG formant % 36 + ((nBF-1)*nMetrics) + 2 : minimum frequency of the nBF BURG formant % 36 + ((nBF-1)*nMetrics) + 3 : maximum frequency of the nBF BURG formant % 36 + ((nBF-1)*nMetrics) + 4 : mean Frequency Derivative of the nBF BURG formant % 36 + ((nBF-1)*nMetrics) + 5 : varience of the Frequency Derivative of the nBF BURG formant % 36 + ((nBF-1)*nMetrics) + 6 : min of the Frequency Derivative of the nBF BURG formant % 36 + ((nBF-1)*nMetrics) + 7 : max of the Frequency Derivative of the nBF BURG formant % 36 + ((nBF-1)*nMetrics) + 8 : mean of the Frequency 2nd Derivative of the nBF BURG formant % 36 + ((nBF-1)*nMetrics) + 9 : varience of the Frequency 2nd Derivative of the nBF BURG formant % 36 + ((nBF-1)*nMetrics) + 10 : min of the Frequency 2nd Derivative of the nBF BURG formant % 36 + ((nBF-1)*nMetrics) + 11 : max of the Frequency 2nd Derivative of the nBF BURG formant % 36 + ((nBF-1)*nMetrics) + 12 : mean of the Bandwidth of the nBF BURG formant % 36 + ((nBF-1)*nMetrics) + 13 : varience of the Bandwidth of the nBF BURG formant % 36 + ((nBF-1)*nMetrics) + 14 : min of the Bandwidth of the nBF BURG formant % 36 + ((nBF-1)*nMetrics) + 15 : max of the Bandwidth of the nBF BURG formant % 36 + ((nBF-1)*nMetrics) + 16 : mean of the Bandwidth Derivative of the nBF BURG formant % 36 + ((nBF-1)*nMetrics) + 17 : variece of the Bandwidth Derivative of the nBF BURG formant % 36 + ((nBF-1)*nMetrics) + 18 : min of the Bandwidth Derivative of the nBF BURG formant % 36 + ((nBF-1)*nMetrics) + 19 : max of the Bandwidth Derivative of the nBF BURG formant % 36 + ((nBF-1)*nMetrics) + 20 : mean of the Bandwidth 2nd Derivative of the nBF BURG formant % 36 + ((nBF-1)*nMetrics) + 21 : var of the Bandwidth 2nd Derivative of the nBF BURG formant % 36 + ((nBF-1)*nMetrics) + 22 : min of the Bandwidth 2nd Derivative of the nBF BURG formant % 36 + ((nBF-1)*nMetrics) + 23 : max of the Bandwidth 2nd Derivative of the nBF BURG formant % % FOR THE MEAN OF ALL BURG FORMANTS % 36 + (nBF*nMetrics) : mean of all formants Frequency % 36 + (nBF*nMetrics) + 1 : varience of the mean of all formants Frequency % 36 + (nBF*nMetrics) + 2 : minimum of the mean of all formants Frequency % 36 + (nBF*nMetrics) + 3 : maximum of the mean of all formants Frequency % 36 + (nBF*nMetrics) + 4 : mean of all formants mean Frequency Derivative % 36 + (nBF*nMetrics) + 5 : mean of all formants varience Frequency Derivative % 36 + (nBF*nMetrics) + 6 : min of the mean of all formants Frequency Derivative % 36 + (nBF*nMetrics) + 7 : max of the mean of all formants Frequency Derivative % 36 + (nBF*nMetrics) + 8 : mean of the mean of all formants Frequency 2nd Derivative % 36 + (nBF*nMetrics) + 9 : varience of the mean of all formants Frequency 2nd Derivative % 36 + (nBF*nMetrics) + 10 : min of the mean of all formants Frequency 2nd Derivative % 36 + (nBF*nMetrics) + 11 : max of the mean of all formants Frequency 2nd Derivative % % ------------- ALL FORMANTS --------------- % % 36 + (nBF*nMetrics) + 12 : Number of ALL formants listed = nAF % % startOfALLMeasurements = 36 + (nBF*nMetrics) + 13; % % startOfALLMeasurements : mean frequency of the first ALL formant % startOfALLMeasurements + 1 : variance of the first ALL formant % startOfALLMeasurements + 2 : minimum frequency of the first ALL formant % startOfALLMeasurements + 3 : maximum frequency of the first ALL formant % startOfALLMeasurements + 4 : mean Frequency Derivative of the first ALL formant % startOfALLMeasurements + 5 : varience of the Frequency Derivative of the first ALL formant % startOfALLMeasurements + 6 : min of the Frequency Derivative of the first ALL formant % startOfALLMeasurements + 7 : max of the Frequency Derivative of the first ALL formant % startOfALLMeasurements + 8 : mean of the Frequency 2nd Derivative of the first ALL formant % startOfALLMeasurements + 9 : varience of the Frequency 2nd Derivative of the first ALL formant % startOfALLMeasurements + 10 : min of the Frequency 2nd Derivative of the first ALL formant % startOfALLMeasurements + 11 : max of the Frequency 2nd Derivative of the first ALL formant % startOfALLMeasurements + 12 : mean of the Bandwidth of the first ALL formant % startOfALLMeasurements + 13 : varience of the Bandwidth of the first ALL formant % startOfALLMeasurements + 14 : min of the Bandwidth of the first ALL formant % startOfALLMeasurements + 15 : max of the Bandwidth of the first ALL formant % startOfALLMeasurements + 16 : mean of the Bandwidth Derivative of the first ALL formant % startOfALLMeasurements + 17 : varience of the Bandwidth Derivative of the first ALL formant % startOfALLMeasurements + 18 : min of the Bandwidth Derivative of the first ALL formant % startOfALLMeasurements + 19 : max of the Bandwidth Derivative of the first ALL formant % startOfALLMeasurements + 20 : mean of the Bandwidth 2nd Derivative of the first ALL formant % startOfALLMeasurements + 21 : var of the Bandwidth 2nd Derivative of the first ALL formant % startOfALLMeasurements + 22 : min of the Bandwidth 2nd Derivative of the first ALL formant % startOfALLMeasurements + 23 : max of the Bandwidth 2nd Derivative of the first ALL formant % % ....... there are nMetrics for each formant in nAF formants, so cycle % through until the last is reached ...... % % startOfALLMeasurements + ((nAF-1)*nMetrics) : mean frequency of the nAF ALL formant % startOfALLMeasurements + ((nAF-1)*nMetrics) : variance of the nAF ALL formant % startOfALLMeasurements + ((nAF-1)*nMetrics) : minimum frequency of the nAF ALL formant % startOfALLMeasurements + ((nAF-1)*nMetrics) : maximum frequency of the nAF ALL formant % startOfALLMeasurements + ((nAF-1)*nMetrics) : mean Frequency Derivative of the nAF ALL formant % startOfALLMeasurements + ((nAF-1)*nMetrics) : varience of the Frequency Derivative of the nAF ALL formant % startOfALLMeasurements + ((nAF-1)*nMetrics) : min of the Frequency Derivative of the nAF ALL formant % startOfALLMeasurements + ((nAF-1)*nMetrics) : max of the Frequency Derivative of the nAF ALL formant % startOfALLMeasurements + ((nAF-1)*nMetrics) : mean of the Frequency 2nd Derivative of the nAF ALL formant % startOfALLMeasurements + ((nAF-1)*nMetrics) : varience of the Frequency 2nd Derivative of the nAF ALL formant % startOfALLMeasurements + ((nAF-1)*nMetrics) : min of the Frequency 2nd Derivative of the nAF ALL formant % startOfALLMeasurements + ((nAF-1)*nMetrics) : max of the Frequency 2nd Derivative of the nAF ALL formant % startOfALLMeasurements + ((nAF-1)*nMetrics) : mean of the Bandwidth of the nAF ALL formant % startOfALLMeasurements + ((nAF-1)*nMetrics) : varience of the Bandwidth of the nAF ALL formant % startOfALLMeasurements + ((nAF-1)*nMetrics) : min of the Bandwidth of the nAF ALL formant % startOfALLMeasurements + ((nAF-1)*nMetrics) : max of the Bandwidth of the nAF ALL formant % startOfALLMeasurements + ((nAF-1)*nMetrics) : mean of the Bandwidth Derivative of the nAF ALL formant % startOfALLMeasurements + ((nAF-1)*nMetrics) : variece of the Bandwidth Derivative of the nAF ALL formant % startOfALLMeasurements + ((nAF-1)*nMetrics) : min of the Bandwidth Derivative of the nAF ALL formant % startOfALLMeasurements + ((nAF-1)*nMetrics) : max of the Bandwidth Derivative of the nAF ALL formant % startOfALLMeasurements + ((nAF-1)*nMetrics) : mean of the Bandwidth 2nd Derivative of the nAF ALL formant % startOfALLMeasurements + ((nAF-1)*nMetrics) : var of the Bandwidth 2nd Derivative of the nAF ALL formant % startOfALLMeasurements + ((nAF-1)*nMetrics) : min of the Bandwidth 2nd Derivative of the nAF ALL formant % startOfALLMeasurements + ((nAF-1)*nMetrics) : max of the Bandwidth 2nd Derivative of the nAF ALL formant % % FOR THE MEAN OF ALL ALL FORMANTS % startOfALLMeasurements + (nAF*nMetrics) : mean of all formants Frequency % startOfALLMeasurements + (nAF*nMetrics) + 1 : varience of the mean of all formants Frequency % startOfALLMeasurements + (nAF*nMetrics) + 2 : minimum of the mean of all formants Frequency % startOfALLMeasurements + (nAF*nMetrics) + 3 : maximum of the mean of all formants Frequency % startOfALLMeasurements + (nAF*nMetrics) + 4 : mean of all formants mean Frequency Derivative % startOfALLMeasurements + (nAF*nMetrics) + 5 : mean of all formants varience Frequency Derivative % startOfALLMeasurements + (nAF*nMetrics) + 6 : min of the mean of all formants Frequency Derivative % startOfALLMeasurements + (nAF*nMetrics) + 7 : max of the mean of all formants Frequency Derivative % startOfALLMeasurements + (nAF*nMetrics) + 8 : mean of the mean of all formants Frequency 2nd Derivative % startOfALLMeasurements + (nAF*nMetrics) + 9 : varience of the mean of all formants Frequency 2nd Derivative % startOfALLMeasurements + (nAF*nMetrics) + 10 : min of the mean of all formants Frequency 2nd Derivative % startOfALLMeasurements + (nAF*nMetrics) + 11 : max of the mean of all formants Frequency 2nd Derivative % % ------------- ROBUST FORMANTS --------------- % % startOfALLMeasurements + (nAF*nMetrics) + 12 : Number of ROBUST formants listed = nRF % % startOfROBUSTMeasurements = startOfALLMeasurements + (nAF*nMetrics) + 13; % % startOfROBUSTMeasurements : mean frequency of the first ROBUST formant % startOfROBUSTMeasurements + 1 : variance of the first ROBUST formant % startOfROBUSTMeasurements + 2 : minimum frequency of the first ROBUST formant % startOfROBUSTMeasurements + 3 : maximum frequency of the first ROBUST formant % startOfROBUSTMeasurements + 4 : mean Frequency Derivative of the first ROBUST formant % startOfROBUSTMeasurements + 5 : varience of the Frequency Derivative of the first ROBUST formant % startOfROBUSTMeasurements + 6 : min of the Frequency Derivative of the first ROBUST formant % startOfROBUSTMeasurements + 7 : max of the Frequency Derivative of the first ROBUST formant % startOfROBUSTMeasurements + 8 : mean of the Frequency 2nd Derivative of the first ROBUST formant % startOfROBUSTMeasurements + 9 : varience of the Frequency 2nd Derivative of the first ROBUST formant % startOfROBUSTMeasurements + 10 : min of the Frequency 2nd Derivative of the first ROBUST formant % startOfROBUSTMeasurements + 11 : max of the Frequency 2nd Derivative of the first ROBUST formant % startOfROBUSTMeasurements + 12 : mean of the Bandwidth of the first ROBUST formant % startOfROBUSTMeasurements + 13 : varience of the Bandwidth of the first ROBUST formant % startOfROBUSTMeasurements + 14 : min of the Bandwidth of the first ROBUST formant % startOfROBUSTMeasurements + 15 : max of the Bandwidth of the first ROBUST formant % startOfROBUSTMeasurements + 16 : mean of the Bandwidth Derivative of the first ROBUST formant % startOfROBUSTMeasurements + 17 : varience of the Bandwidth Derivative of the first ROBUST formant % startOfROBUSTMeasurements + 18 : min of the Bandwidth Derivative of the first ROBUST formant % startOfROBUSTMeasurements + 19 : max of the Bandwidth Derivative of the first ROBUST formant % startOfROBUSTMeasurements + 20 : mean of the Bandwidth 2nd Derivative of the first ROBUST formant % startOfROBUSTMeasurements + 21 : var of the Bandwidth 2nd Derivative of the first ROBUST formant % startOfROBUSTMeasurements + 22 : min of the Bandwidth 2nd Derivative of the first ROBUST formant % startOfROBUSTMeasurements + 23 : max of the Bandwidth 2nd Derivative of the first ROBUST formant % % ....... there are nMetrics for each formant in nRF formants, so cycle % through until the last is reached ...... % % startOfROBUSTMeasurements + ((nRF-1)*nMetrics) : mean frequency of the nRF ROBUST formant % startOfROBUSTMeasurements + ((nRF-1)*nMetrics) : variance of the nRF ROBUST formant % startOfROBUSTMeasurements + ((nRF-1)*nMetrics) : minimum frequency of the nRF ROBUST formant % startOfROBUSTMeasurements + ((nRF-1)*nMetrics) : maximum frequency of the nRF ROBUST formant % startOfROBUSTMeasurements + ((nRF-1)*nMetrics) : mean Frequency Derivative of the nRF ROBUST formant % startOfROBUSTMeasurements + ((nRF-1)*nMetrics) : varience of the Frequency Derivative of the nRF ROBUST formant % startOfROBUSTMeasurements + ((nRF-1)*nMetrics) : min of the Frequency Derivative of the nRF ROBUST formant % startOfROBUSTMeasurements + ((nRF-1)*nMetrics) : max of the Frequency Derivative of the nRF ROBUST formant % startOfROBUSTMeasurements + ((nRF-1)*nMetrics) : mean of the Frequency 2nd Derivative of the nRF ROBUST formant % startOfROBUSTMeasurements + ((nRF-1)*nMetrics) : varience of the Frequency 2nd Derivative of the nRF ROBUST formant % startOfROBUSTMeasurements + ((nRF-1)*nMetrics) : min of the Frequency 2nd Derivative of the nRF ROBUST formant % startOfROBUSTMeasurements + ((nRF-1)*nMetrics) : max of the Frequency 2nd Derivative of the nRF ROBUST formant % startOfROBUSTMeasurements + ((nRF-1)*nMetrics) : mean of the Bandwidth of the nRF ROBUST formant % startOfROBUSTMeasurements + ((nRF-1)*nMetrics) : varience of the Bandwidth of the nRF ROBUST formant % startOfROBUSTMeasurements + ((nRF-1)*nMetrics) : min of the Bandwidth of the nRF ROBUST formant % startOfROBUSTMeasurements + ((nRF-1)*nMetrics) : max of the Bandwidth of the nRF ROBUST formant % startOfROBUSTMeasurements + ((nRF-1)*nMetrics) : mean of the Bandwidth Derivative of the nRF ROBUST formant % startOfROBUSTMeasurements + ((nRF-1)*nMetrics) : variece of the Bandwidth Derivative of the nRF ROBUST formant % startOfROBUSTMeasurements + ((nRF-1)*nMetrics) : min of the Bandwidth Derivative of the nRF ROBUST formant % startOfROBUSTMeasurements + ((nRF-1)*nMetrics) : max of the Bandwidth Derivative of the nRF ROBUST formant % startOfROBUSTMeasurements + ((nRF-1)*nMetrics) : mean of the Bandwidth 2nd Derivative of the nRF ROBUST formant % startOfROBUSTMeasurements + ((nRF-1)*nMetrics) : var of the Bandwidth 2nd Derivative of the nRF ROBUST formant % startOfROBUSTMeasurements + ((nRF-1)*nMetrics) : min of the Bandwidth 2nd Derivative of the nRF ROBUST formant % startOfROBUSTMeasurements + ((nRF-1)*nMetrics) : max of the Bandwidth 2nd Derivative of the nRF ROBUST formant % % FOR THE MEAN OF ALL ROBUST FORMANTS % startOfROBUSTMeasurements + (nRF*nMetrics) : mean of all formants Frequency % startOfROBUSTMeasurements + (nRF*nMetrics) + 1 : varience of the mean of all formants Frequency % startOfROBUSTMeasurements + (nRF*nMetrics) + 2 : minimum of the mean of all formants Frequency % startOfROBUSTMeasurements + (nRF*nMetrics) + 3 : maximum of the mean of all formants Frequency % startOfROBUSTMeasurements + (nRF*nMetrics) + 4 : mean of all formants mean Frequency Derivative % startOfROBUSTMeasurements + (nRF*nMetrics) + 5 : mean of all formants varience Frequency Derivative % startOfROBUSTMeasurements + (nRF*nMetrics) + 6 : min of the mean of all formants Frequency Derivative % startOfROBUSTMeasurements + (nRF*nMetrics) + 7 : max of the mean of all formants Frequency Derivative % startOfROBUSTMeasurements + (nRF*nMetrics) + 8 : mean of the mean of all formants Frequency 2nd Derivative % startOfROBUSTMeasurements + (nRF*nMetrics) + 9 : varience of the mean of all formants Frequency 2nd Derivative % startOfROBUSTMeasurements + (nRF*nMetrics) + 10 : min of the mean of all formants Frequency 2nd Derivative % startOfROBUSTMeasurements + (nRF*nMetrics) + 11 : max of the mean of all formants Frequency 2nd Derivative % noOfArguments = length(varargin); columnIndices = []; getBURGFormants = 0; getAllFormants=0; getRobustFormants=0; for i=1 : noOfArguments if( strcmp( varargin{i}, 'formant_Burg' )) getBURGFormants = 1; elseif( strcmp( varargin{i}, 'formant_all' )) getAllFormants=1; elseif( strcmp( varargin{i}, 'formant_robust' )) getRobustFormants=1; end end titleName = ''; for i=1 : noOfArguments titleName = [ titleName varargin{i} '_']; fprintf( masterFileOutputID, '%s_', varargin{i} ); end fprintf( masterFileOutputID, '\t' ); % -------------------- get the data from the results file --------------- lineCount = 0; fileCount = 0; data = []; groups = []; while( ~(feof(inputFileID)) ) outputValues = []; thestr = fgetl(inputFileID); if( lineCount > 10 ) % skip the file header fileCount = fileCount + 1; % determine whether we have a positive or negative sample sampleEmotion( fileCount ) = 'U'; if( ~(isempty(strfind(thestr,'pos')))) % sample is positive sampleEmotion( fileCount ) = 'P'; groups( fileCount ) = 1; elseif( ~(isempty(strfind(thestr,'neg')))) % sample is negative sampleEmotion( fileCount ) = 'N'; groups( fileCount ) = 0; else disp('EEEK!'); pause; end % % determine whether we have a male, female or trans sample % gender( fileCount ) = '?'; % if( ~(isempty(strfind(thestr,'fem')))) % % gender is female % gender( fileCount ) = 'F'; % elseif( ~(isempty(strfind(thestr,'male')))) % % gender is male % gender( fileCount ) = 'M'; % elseif( ~(isempty(strfind(thestr,'trans')))) % % gender is trans % gender( fileCount ) = 'T'; % else % disp('EEEK!'); % pause; % end %how many values are in the string? spaces = strfind( thestr, ' ' ); numberstr = thestr( spaces(1) : end ); % chop off the file name frmtpos = strfind( numberstr, 'maxNoOfFormants'); % find the position of the label for number of formants % str1 = numberstr( 1 : frmtpos(1)-1 ); % string contains jitter and shimmer values str2 = numberstr( frmtpos(1) : frmtpos(2)-1 ); % string contains all BURG formant information str3 = numberstr( frmtpos(2) : frmtpos(3)-1 ); % string contains all ALL formant information str4 = numberstr( frmtpos(3) : end ); % string contains all ROBUST formant information % vars = sscanf( str1, '%f', inf ); % % extract the shimmer and jitter values % outputValues = [ outputValues vars( columnIndices )']; if( getBURGFormants ) spaces = strfind( str2, ' ' ); % remove the string 'maxNoOfFormants' vars = sscanf( str2( spaces(1) : end ), '%f', inf ); outputValues = stripOutFormantValues( vars, outputValues ); end if( getAllFormants ) spaces = strfind( str3, ' ' ); % remove the string 'maxNoOfFormants' vars = sscanf( str3( spaces(1) : end ), '%f', inf ); outputValues = stripOutFormantValues( vars, outputValues ); end if( getRobustFormants ) spaces = strfind( str4, ' ' ); % remove the string 'maxNoOfFormants' vars = sscanf( str4( spaces(1) : end ), '%f', inf ); outputValues = stripOutFormantValues( vars, outputValues ); end [m n] = size( data ); % sometimes the 'all' formants command gives us fewer formants than % usual. If this is the case,then we will have to pad with zeros % for now. if( n > length( outputValues ) ) lenDiff = n - length( outputValues ); outputValues = [ outputValues zeros( 1, lenDiff ) ]; elseif( n < length( outputValues ) ) lenDiff = length( outputValues ) - n; outputValues = [ outputValues zeros( 1, lenDiff ) ]; end data( fileCount, : ) = outputValues; end lineCount = lineCount + 1; end fclose(inputFileID); % ------------ apply the SVM classifier ------------------------ resultMatrix = []; noOfIterations = 10; for n = 1:noOfIterations % Randomly select training and test sets, perhaps we should try all and % choose the best? [train, test] = crossvalind('holdOut',groups); cp = classperf(groups); % Use a linear support vector machine classifier svmStruct = svmtrain(data(train,:),groups(train)); classes = svmclassify(svmStruct,data(test,:)); % See how well the classifier performed classperf(cp,classes,test); numbers = cp.CountingMatrix; resultMatrix (n,:,:) = cp.DiagnosticTable; % end % for emotion detection give the confusion matrix as % ----------------------------------------------------------------- % positive correctly identified | positive incorrectly identified (1,2) % negative incorrectly identified (2,1) | negative correctly identified % ------------------------------------------------------------------ % takes the average of 10 iterations - do we want to take the best? meanResults(1,1) = mean( resultMatrix(:,1,1) ); meanResults(1,2) = mean( resultMatrix(:,2,1) ); meanResults(2,1) = mean( resultMatrix(:,1,2) ); meanResults(2,2) = mean( resultMatrix(:,2,2) ); meanResults(3,:)=0; meanResults(:,3)=0; meanResults(3,3) = (meanResults(1,1) + meanResults(2,2));% / sum(sum(meanResults)); % convert to percentages % how many of each sample do we have? groupNumbers = unique( groups( test )); groupNames = unique( sampleEmotion( test )); sampleEmotionTest = sampleEmotion( test ); % which group is which emotion? thisGroupNumber = groupNumbers(1); thisGroup = find( groups( test ) == thisGroupNumber ); thisGroupName = unique( sampleEmotionTest( thisGroup )); thatGroupNumber = groupNumbers(2); thatGroup = find( groups( test ) == thatGroupNumber ); thatGroupName = unique( sampleEmotionTest( thatGroup )); if(length( thisGroupName ) ~= 1 ) disp('ARGH!'); pause; end thisGroupNumberOfSamples = length( thisGroup ); thatGroupNumberOfSamples = length( thatGroup ); if( thisGroupName == 'P' ) %swap all the variables ready for checking temp = thisGroupNumberOfSamples; thisGroupNumberOfSamples = thatGroupNumberOfSamples; thatGroupNumberOfSamples = temp; temp = thisGroupName; thisGroupName = thatGroupName thatGroupName = temp; disp('CHECK ME!'); end if( thisGroupName == 'N' ) % group 0 is negative if( sum( meanResults(1,:) ) == thisGroupNumberOfSamples ) %if the elements in the first row add up to the number of negative %samples, then swap the rows because we want the top row to be the %results for the positive samples temp(:,1) = meanResults(1:2,2); temp(:,2) = meanResults(1:2,1); temp2(1,:) = temp(2,:); temp2(2,:) = temp(1,:); meanResults(1:2,1) = temp2(:,1); meanResults(1:2,2) = temp2(:,2); % check the number of positive samples if(( sum( meanResults(1,:) ) == thatGroupNumberOfSamples ) ... && ( thatGroupName == 'P' ) ) % row 1 is positive disp('matrix correct'); else disp('ARGH!'); pause; end elseif( sum( meanResults(2,:) ) == thisGroupNumberOfSamples ) % the elements in the second row add up to the number of negative % samples, so the matrix is the correct way around % check the number of positive samples if(( sum( meanResults(1,:) ) == thatGroupNumberOfSamples ) ... && ( thatGroupName == 'P' ) ) % row 0 is positive disp('matrix correct'); else disp('ARGH!'); pause; end end end % calculate the percentages numberOfSamples = sum(sum( meanResults(1:2,1:2))); percentageResults = meanResults; percentageResults(1,1) = meanResults(1,1) / numberOfSamples; percentageResults(1,2) = meanResults(1,2) / numberOfSamples; percentageResults(2,1) = meanResults(2,1) / numberOfSamples; percentageResults(2,2) = meanResults(2,2) / numberOfSamples; percentageResults(3,3) = meanResults(3,3) / numberOfSamples; percentageResults = percentageResults * 100 confusionMatrix = percentageResults; fprintf( masterFileOutputID, '\n %f \t %f \n %f \t %f \n %f \t %f \t %f \n', confusionMatrix(1,1), confusionMatrix(1,2), confusionMatrix(2,1), confusionMatrix(2,2), 0, 0, confusionMatrix(3,3)); % print latex results to the screen str1 = sprintf(' & %2.2f & %2.2f & \\\\', percentageResults(1,1), percentageResults(1,2) ); disp(str1); str1 = sprintf(' & %2.2f & %2.2f & \\\\', percentageResults(2,1), percentageResults(2,2) ); disp(str1); str1 = sprintf(' & & & %2.2f \\\\',percentageResults(3,3) ); disp(str1); fprintf( masterFileOutputID, '\n' ); fclose( masterFileOutputID ); end %------------------------------------------------------------------ function [ outputValues ] = stripOutFormantValues( vars, outputValues ) noOfFormantValues = length( vars ) - 1; % gives the number of formant arguments only noOfFormants = vars(1); % there are 12 measurements for the mean of all formants (so the number % of formants is not important) for each formant measurement. if( noOfFormants ~= (noOfFormantValues-12)/24 ) disp('EEK!'); pause; else outputValues = [ outputValues vars( 2:end )' ]; end end %-------------------------------------------------------------------