Mercurial > hg > emotion-detection-top-level
diff Code/Classifiers/kmeans_MFCC_Singing.m @ 4:92ca03a8fa99 tip
Update to ICASSP 2013 benchmark
author | Dawn Black |
---|---|
date | Wed, 13 Feb 2013 11:02:39 +0000 |
parents | |
children |
line wrap: on
line diff
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/Code/Classifiers/kmeans_MFCC_Singing.m Wed Feb 13 11:02:39 2013 +0000 @@ -0,0 +1,154 @@ +function [] = kmeans_MFCC_Singing( inputFileName, outputFileName ) + +cd 'C:\Users\dawn\Dropbox\TestResults' +inputFileName + +DEBUG = 1; +% output results file name +masterFileOutputID = fopen( outputFileName, 'a' ); %fopen( 'kmeans_Singing_MFCC.txt', 'a' ); +% % input results file name +% inputFileName = 'singingMFCCStats_VoicedAndUnvoiced.txt'; + +fprintf( masterFileOutputID, '\n RESULTS FILE NAME: %s\n', inputFileName); +inputFileID = fopen( inputFileName ); + +% noOfArguments = length(varargin); +% +% outputFileName = 'individualResults/kmeans_Results_'; +% resultsFileName = 'kmeans_Results_'; +titleName = ''; +% for i=1 : noOfArguments +% titleName = [ titleName varargin{i} '_']; +% fprintf( masterFileOutputID, '%s_', varargin{i} ); +% end +% +% outputFileName = [ outputFileName titleName ]; +% resultsFileName = [ resultsFileName titleName ]; + +fprintf( masterFileOutputID, '\t' ); + +% outputFileName = [ outputFileName '.txt']; +% resultsFileName = [ resultsFileName '.txt']; + +% fileOutputID = fopen( outputFileName, 'w' ); +% fileKMeansOutputID = fopen( resultsFileName, 'w' ); + +% -------------------- get the data from the results file --------------- +lineCount = 0; +fileCount = 0; +data = []; +while( ~(feof(inputFileID)) ) + + outputValues = []; + thestr = fgetl(inputFileID); + fileCount = fileCount + 1; + + % determine whether we have a positive or negative sample + sampleEmotion( fileCount ) = 'U'; + if( ~(isempty(strfind(thestr,'pos')))) + % sample is positive + sampleEmotion( fileCount ) = 'P'; + elseif( ~(isempty(strfind(thestr,'neg')))) + % sample is negative + sampleEmotion( fileCount ) = 'N'; + else + disp('EEEK!'); + pause; + end + + % determine whether we have a male, female or trans sample + gender( fileCount ) = '?'; + if( ~(isempty(strfind(thestr,'fem')))) + % gender is female + gender( fileCount ) = 'F'; + elseif( ~(isempty(strfind(thestr,'male')))) + % gender is male + gender( fileCount ) = 'M'; + elseif( ~(isempty(strfind(thestr,'trans')))) + % gender is trans + gender( fileCount ) = 'T'; + else + disp('EEEK!'); + pause; + end + + %how many values are in the string? + spaces = strfind( thestr, ' ' ); + numberstr = thestr( spaces(1) : end ); % chop off the file name + vars = sscanf( numberstr, '%f', inf ); + data( fileCount, : ) = vars; + + lineCount = lineCount + 1; + +end +fclose(inputFileID); + +% try with and without different metrics classes +% data is a 162 variable array of MFCC stats +% first there are 6 metrics for each of the 13 frequency bands (mean, median, var, min, max, range) +% then there are 6 metrics for the 1st derivative of the 13 frequency bands (mean, median, var, min, max, range) +% then there are 6 metrics for the mean of all frequency bands + +% dataOptions = (1:1:(13*12)+6); % fprintf( masterFileOutputID, '\n try with all \n'); +% dataOptions = (1:1:13*6); fprintf( masterFileOutputID, '\n try with just the ordinary 13 frequency bands \n'); +% dataOptions = (1:1:13*6); fprintf( masterFileOutputID, '\n try with just the ordinary 13 frequency bands and without the median or range \n'); + +% ------------ apply the k-means classifier ------------------------ + +noOfClusters = 2; % we are only trying to identify positive and negative emotions + + +[idx ctrs]=kmeans( data, noOfClusters, 'Replicates',100,... + 'start', 'sample', 'Distance', 'cityblock'); + +%display results grouped by emotion +fprintf( masterFileOutputID, '\n Emotion grouping \n'); +fprintf( masterFileOutputID, 'cityblock \n'); +[ groupStats, groupNames ] = processKMeansResults( 'cityblock', idx, sampleEmotion, masterFileOutputID, titleName, DEBUG ); +[ confusionMatrix ] = getConfusionMatrix( groupStats, groupNames, masterFileOutputID ); +% if(DEBUG == 1) +% disp('press space'); +% pause; +% end + +fprintf( masterFileOutputID, 'sqEuclidean \n'); +[idx ctrs]=kmeans( data, noOfClusters, 'Replicates',100,... + 'start', 'sample', 'Distance', 'sqEuclidean'); + +[ groupStats, groupNames ] = processKMeansResults( 'sqEuclidean', idx, sampleEmotion, masterFileOutputID, titleName, DEBUG ); +[ confusionMatrix ] = getConfusionMatrix( groupStats, groupNames, masterFileOutputID ); + +% if(DEBUG == 1) +% disp('press space'); +% pause; +% end + +% display results grouped by gender +fprintf( masterFileOutputID, '\n Gender grouping \n'); +noOfClusters = 3; + +[idx ctrs]=kmeans( data, noOfClusters, 'Replicates',100,... + 'start', 'sample', 'Distance', 'cityblock'); + +fprintf( masterFileOutputID, 'cityblock \n'); +[ groupStats, groupNames ] = processKMeansResults( 'cityblock', idx, gender, masterFileOutputID, titleName, DEBUG ); +[ confusionMatrix ] = getConfusionMatrix( groupStats, groupNames, masterFileOutputID ); + +[idx ctrs]=kmeans( data, noOfClusters, 'Replicates',100,... + 'start', 'sample', 'Distance', 'sqEuclidean'); + +fprintf( masterFileOutputID, 'sqEuclidean \n'); +[ groupStats, groupNames ] = processKMeansResults( 'sqEuclidean', idx, gender, masterFileOutputID, titleName, DEBUG ); +[ confusionMatrix ] = getConfusionMatrix( groupStats, groupNames, masterFileOutputID ); + + +% fprintf( fileOutputID, '\n' ); +% fclose( fileOutputID ); +% fprintf( fileKMeansOutputID, '\n' ); +% fclose( fileKMeansOutputID ); +fprintf( masterFileOutputID, '\n' ); +fclose( masterFileOutputID ); + +end + +