Mercurial > hg > emotion-detection-top-level
comparison Code/Classifiers/SVM_Singing.m @ 4:92ca03a8fa99 tip
Update to ICASSP 2013 benchmark
author | Dawn Black |
---|---|
date | Wed, 13 Feb 2013 11:02:39 +0000 |
parents | |
children |
comparison
equal
deleted
inserted
replaced
3:e1cfa7765647 | 4:92ca03a8fa99 |
---|---|
1 function [] = SVM_Singing( inputFileName ) | |
2 | |
3 cd 'C:\Users\dawn\Dropbox\TestResults' | |
4 | |
5 DEBUG = 1; | |
6 % output results file name | |
7 % masterFileOutputID = fopen( 'SVM_Singing_HNR.txt', 'a' ); | |
8 outputFileName = ['SVM_' inputFileName]; | |
9 masterFileOutputID = fopen( outputFileName, 'a' ); | |
10 | |
11 % input results file name | |
12 % inputFileName = 'singingBasicHNRStats.txt'; | |
13 | |
14 fprintf( masterFileOutputID, '\n RESULTS FILE NAME: %s\n', inputFileName); | |
15 inputFileID = fopen( inputFileName ); | |
16 | |
17 % noOfArguments = length(varargin); | |
18 | |
19 % outputFileName = 'individualResults/SVM_Results_'; | |
20 % resultsFileName = 'SVM_Results_'; | |
21 titleName = ''; | |
22 % for i=1 : noOfArguments | |
23 % titleName = [ titleName varargin{i} '_']; | |
24 % fprintf( masterFileOutputID, '%s_', varargin{i} ); | |
25 % end | |
26 | |
27 % outputFileName = [ outputFileName titleName ]; | |
28 % resultsFileName = [ resultsFileName titleName ]; | |
29 | |
30 fprintf( masterFileOutputID, '\t' ); | |
31 | |
32 % outputFileName = [ outputFileName '.txt']; | |
33 % resultsFileName = [ resultsFileName '.txt']; | |
34 % | |
35 % fileOutputID = fopen( outputFileName, 'w' ); | |
36 % fileSVMOutputID = fopen( resultsFileName, 'w' ); | |
37 | |
38 % -------------------- get the data from the results file --------------- | |
39 lineCount = 0; | |
40 fileCount = 0; | |
41 data = []; | |
42 groups = []; | |
43 | |
44 while( ~(feof(inputFileID)) ) | |
45 | |
46 outputValues = []; | |
47 thestr = fgetl(inputFileID); | |
48 fileCount = fileCount + 1; | |
49 | |
50 % determine whether we have a positive or negative sample | |
51 sampleEmotion( fileCount ) = 'U'; | |
52 if( ~(isempty(strfind(thestr,'pos')))) | |
53 % sample is positive | |
54 sampleEmotion( fileCount ) = 'P'; | |
55 groups( fileCount ) = 1; | |
56 elseif( ~(isempty(strfind(thestr,'neg')))) | |
57 % sample is negative | |
58 sampleEmotion( fileCount ) = 'N'; | |
59 groups( fileCount ) = 0; | |
60 else | |
61 disp('EEEK!'); | |
62 fileCount = fileCount - 1; | |
63 % pause; | |
64 end | |
65 | |
66 % determine whether we have a male, female or trans sample | |
67 % gender( fileCount ) = '?'; | |
68 % if( ~(isempty(strfind(thestr,'fem')))) | |
69 % % gender is female | |
70 % gender( fileCount ) = 'F'; | |
71 % elseif( ~(isempty(strfind(thestr,'male')))) | |
72 % % gender is male | |
73 % gender( fileCount ) = 'M'; | |
74 % elseif( ~(isempty(strfind(thestr,'trans')))) | |
75 % % gender is trans | |
76 % gender( fileCount ) = 'T'; | |
77 % else | |
78 % disp('EEEK!'); | |
79 % pause; | |
80 % end | |
81 | |
82 if(( ~(isempty(strfind(thestr,'pos')))) || ( ~(isempty(strfind(thestr,'neg')))) ) | |
83 %how many values are in the string? | |
84 % spaces = strfind( thestr, ' ' ); | |
85 spaces = [ strfind( thestr, sprintf('\t')) strfind( thestr, ' ' )]; | |
86 numberstr = thestr( spaces(1) : end ); % chop off the file name | |
87 vars = sscanf( numberstr, '%f', inf ); | |
88 data( fileCount, : ) = vars; | |
89 end | |
90 | |
91 lineCount = lineCount + 1; | |
92 | |
93 end | |
94 fclose(inputFileID); | |
95 | |
96 % ------------ apply the SVM classifier ------------------------ | |
97 | |
98 resultMatrix = []; | |
99 | |
100 noOfIterations = 100; | |
101 | |
102 for n = 1:noOfIterations | |
103 % Randomly select training and test sets, perhaps we should try all and | |
104 % choose the best? | |
105 [train, test] = crossvalind('holdOut',groups); | |
106 cp = classperf(groups); | |
107 | |
108 % Use a linear support vector machine classifier | |
109 svmStruct = svmtrain(data(train,:),groups(train)); | |
110 classes = svmclassify(svmStruct,data(test,:)); | |
111 % See how well the classifier performed | |
112 classperf(cp,classes,test); | |
113 numbers = cp.CountingMatrix; | |
114 | |
115 resultMatrix (n,:,:) = cp.DiagnosticTable; | |
116 % | |
117 end | |
118 | |
119 | |
120 | |
121 | |
122 % for emotion detection give the confusion matrix as | |
123 % ----------------------------------------------------------------- | |
124 % positive correctly identified | positive incorrectly identified (1,2) | |
125 % negative incorrectly identified (2,1) | negative correctly identified | |
126 % ------------------------------------------------------------------ | |
127 | |
128 % takes the average of 100 iterations - do we want to take the best? | |
129 | |
130 meanResults(1,1) = mean( resultMatrix(:,1,1) ); | |
131 meanResults(1,2) = mean( resultMatrix(:,2,1) ); | |
132 meanResults(2,1) = mean( resultMatrix(:,1,2) ); | |
133 meanResults(2,2) = mean( resultMatrix(:,2,2) ); | |
134 | |
135 meanResults(3,:)=0; | |
136 meanResults(:,3)=0; | |
137 | |
138 meanResults(3,3) = (meanResults(1,1) + meanResults(2,2));% / sum(sum(meanResults)); | |
139 | |
140 % convert to percentages | |
141 % how many of each sample do we have? | |
142 groupNumbers = unique( groups( test )); | |
143 groupNames = unique( sampleEmotion( test )); | |
144 sampleEmotionTest = sampleEmotion( test ); | |
145 % which group is which emotion? | |
146 thisGroupNumber = groupNumbers(1); | |
147 thisGroup = find( groups( test ) == thisGroupNumber ); | |
148 thisGroupName = unique( sampleEmotionTest( thisGroup )); | |
149 | |
150 thatGroupNumber = groupNumbers(2); | |
151 thatGroup = find( groups( test ) == thatGroupNumber ); | |
152 thatGroupName = unique( sampleEmotionTest( thatGroup )); | |
153 | |
154 if(length( thisGroupName ) ~= 1 ) | |
155 disp('ARGH!'); | |
156 pause; | |
157 end | |
158 | |
159 thisGroupNumberOfSamples = length( thisGroup ); | |
160 thatGroupNumberOfSamples = length( thatGroup ); | |
161 | |
162 if( thisGroupName == 'P' ) | |
163 %swap all the variables ready for checking | |
164 temp = thisGroupNumberOfSamples; | |
165 thisGroupNumberOfSamples = thatGroupNumberOfSamples; | |
166 thatGroupNumberOfSamples = temp; | |
167 | |
168 temp = thisGroupName; | |
169 thisGroupName = thatGroupName | |
170 thatGroupName = temp; | |
171 disp('CHECK ME!'); | |
172 end | |
173 | |
174 if( thisGroupName == 'N' ) | |
175 % group 0 is negative | |
176 if( sum( meanResults(1,:) ) == thisGroupNumberOfSamples ) | |
177 %if the elements in the first row add up to the number of negative | |
178 %samples, then swap the rows because we want the top row to be the | |
179 %results for the positive samples | |
180 temp(:,1) = meanResults(1:2,2); | |
181 temp(:,2) = meanResults(1:2,1); | |
182 temp2(1,:) = temp(2,:); | |
183 temp2(2,:) = temp(1,:); | |
184 | |
185 meanResults(1:2,1) = temp2(:,1); | |
186 meanResults(1:2,2) = temp2(:,2); | |
187 | |
188 % check the number of positive samples | |
189 if(( sum( meanResults(1,:) ) == thatGroupNumberOfSamples ) ... | |
190 && ( thatGroupName == 'P' ) ) | |
191 % row 1 is positive | |
192 disp('matrix correct'); | |
193 else | |
194 disp('ARGH!'); | |
195 pause; | |
196 end | |
197 | |
198 elseif( sum( meanResults(2,:) ) == thisGroupNumberOfSamples ) | |
199 | |
200 % the elements in the second row add up to the number of negative | |
201 % samples, so the matrix is the correct way around | |
202 | |
203 % check the number of positive samples | |
204 if(( sum( meanResults(1,:) ) == thatGroupNumberOfSamples ) ... | |
205 && ( thatGroupName == 'P' ) ) | |
206 % row 0 is positive | |
207 disp('matrix correct'); | |
208 else | |
209 disp('ARGH!'); | |
210 pause; | |
211 end | |
212 end | |
213 end | |
214 | |
215 % calculate the percentages | |
216 numberOfSamples = sum(sum( meanResults(1:2,1:2))); | |
217 percentageResults = meanResults; | |
218 percentageResults(1,1) = meanResults(1,1) / numberOfSamples; | |
219 percentageResults(1,2) = meanResults(1,2) / numberOfSamples; | |
220 percentageResults(2,1) = meanResults(2,1) / numberOfSamples; | |
221 percentageResults(2,2) = meanResults(2,2) / numberOfSamples; | |
222 percentageResults(3,3) = meanResults(3,3) / numberOfSamples; | |
223 | |
224 percentageResults = percentageResults * 100 | |
225 | |
226 confusionMatrix = percentageResults; | |
227 fprintf( masterFileOutputID, '\n %f \t %f \n %f \t %f \n %f \t %f \t %f \n', confusionMatrix(1,1), confusionMatrix(1,2), confusionMatrix(2,1), confusionMatrix(2,2), 0, 0, confusionMatrix(3,3)); | |
228 | |
229 % print latex results to the screen | |
230 str1 = sprintf(' & %2.2f & %2.2f & \\\\', percentageResults(1,1), percentageResults(1,2) ); | |
231 disp(str1); | |
232 str1 = sprintf(' & %2.2f & %2.2f & \\\\', percentageResults(2,1), percentageResults(2,2) ); | |
233 disp(str1); | |
234 str1 = sprintf(' & & & %2.2f \\\\',percentageResults(3,3) ); | |
235 disp(str1); | |
236 | |
237 fprintf( masterFileOutputID, '\n' ); | |
238 fclose( masterFileOutputID ); | |
239 | |
240 end | |
241 | |
242 |