ELB816 Development Environment

The ELB816 architecture is designed to be “a simple to understand 8-bit
microprocessor system to help people learn about microprocessor
electronics.”

EDE is a 'virtual' development environment
consisting of:

*An Assembler
*An Emulator
*A Debugger

Python — ™

c
Linux
C]
Intel MCS-51

4>

Target 1

Target 2a

'

A\ 4

Assembler Debugger . Python
x
________________ , Host Software
v
software
emulator
A
v v
emulated Host serial
-«
peripherals interface Target 2 Python
A
A\ 4
MCU serial
interface
*
v
hardware MCU Software
emulator
N
v
peripheral
drivers

The Assembler:

Assemble the language
described in the ELB816
specification

Two pass assembler:

- First pass deals with labels
and directives, calculates
address of each instruction

- Second pass converts
instructions and arguments to
machine code and writes to a
hex file

Mnemonics

‘MOV” | “NOP” | “XCSD” | “SFA” | “LAF” | “ANL”
| “ORL™ | “XRL" | “RL” | “RLC” | “RR” | “RRC”
| “INC” | “DEC” | “SET” | “CLR" | “CPL" | “ADD”
| “ADDC” | “SUB” | “SUBB” | “PJUMP” | “PCALL”
| “LUMP” | “LCALL" | “DIJNZ” | “CJINE” | “RET”
| “RETI” | “SIMP” | “dMP” | “dZ” | “UNZ” | “JC”
| “UNC” | “dPO” | “UPE” | “dS” | “UNS” | “PUSH"
| “POP” | “IN” | “OUT” | “HLT”

Directives

“ORG” | “EQU” | “DB’ | “DS” | “CSEG” | “RSEG”
| “SEGMENT” | “PUBLIC” | “EXTERN”

The Emulator:

« Will interpret this machine code according to the ELB816 specification
* Will compile for Linux and Intel MCS-51 (8051/2)

« Will communicate with the debugger via a serial interface

8-bit Internal Data Bus

S S F S A 7/ y Y
7 8 +
A | | _tmP1 || T™MP2 | RO
3

Instruction R1
Decoder R2
| R3
v v 48 4 8
«—| FLAGS ALU (TMPA)
DPTR
Timing | —Internal SP
and . control PC
Control * lines
— l /l' 16

N WA 0 M RD WR [DR | | MAR |
I l [
48 416
Interrupt Data Bus Address Bus
/
v ” ®
EN addr LS8
port address
decode logic >
‘ A 4 A4 y y v v v
cs RD WR CE RD WR Data Address
N = Main Memor
1/0 Port Data (¢ y

64kB (65536 x 8-bit) RAM
OUT <=

The Debugger:

« Will allow runtime debugging of programs running on the emulator on
Linux or an 8051/2

 Will communicate with the emulator via a serial interface

get reg() set reg() read byte() write byte() read memory()
write_memory() read _port() write_port() set breakpoint()

step_in_to() step out of() step over() etc...

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5

