
EDE: ELB816 Development Environment
James Bowden (110104485)

March 10, 2014

Abstract

The ELB816 Development Environment consists of an assembler, emula-
tor and debugger for the ELB816 microprocessor system. This report details
the design and usage of each of its elements.

1

Contents

I Introduction and Specification 3

1 Motivations 3

2 Project Aims 3

3 Methodology 3
3.1 Assembler . 3
3.2 Emulator . 4
3.3 Debugger . 4

II Assembler 5

4 Data Structures 6

5 Functions 7
5.1 first_pass . 8
5.2 second_pass . 9
5.3 tokenize . 10
5.4 stoi . 11

6 Assembly language manual 12

III Emulator 13

7 Core microprocessor emulation 13
7.1 iset.c and iset.h . 13
7.2 mem.c and mem.h . 14
7.3 emu.c . 15

8 Peripherals 16

2

Part I

Introduction and Specification

1 Motivations
The ELB816 architecture is designed to be a “simple to understand 8-bit micropro-
cessor system to help learn about microprocessor electronics.”

The combination of an ELB816 emulator, debugger and assembler could be
used as a set of tools for learning or teaching microprocessor programming without
the intricacies of real-world commercial microprocessors getting in the way of a
fundamental understanding of the subject.

A PC based emulator would allow students to quickly develop and debug pro-
grams written in a simple assembly language on any modern desktop or laptop and
an MCS-51 port running on an 8052 would allow students to test programs in an
actual circuit.

2 Project Aims
• Develop an assembler for the ELB816 assembly language.

• Develop an emulated programmable microprocessor system based on the
ELB816 architecture.

• Develop a debugger that allows interactive debugging of programs running on
the emulator.

3 Methodology
3.1 Assembler
Language: Python

Priority: First

The assembler will be developed before anything else so that it can subsequently
be used to assemble test programs during development of the emulator.

3

3.2 Emulator
Language: C

Priority: Second

The emulator will use only standard libraries in order to ensure it is portable between
compilers and platforms. Specifically GCC for x86 and Keil C51 for Intel MCS-51.
The emulator will first be developed on Linux to facilitated rapid development. It
will be ported to MCS-51 once it is complete

3.3 Debugger
Language: C/Python

Priority: Second

The debug interface will be developed along side the emulator. It will consist of a
simple text based interface built into the emulator that will read commands using
C’s stdio.h library. This means that on Linux the commands will be issued using
STDIN and on the MCS-51 version they will be issued over a serial interface. Python
will be used to provide a cleaner interface for common debug procedures such as
writing programs to memory and setting break-points.

The remainder of this report is split into three parts, one for each component of
the project, and will attempt to demonstrate the design and usage of each of these
components.

4

Part II

Assembler
The assembler is written in pure Python 2 using only the standard library. It assem-
bles the assembly the language described in the ELB816 specification with a few
minor differences. These differences are:

• In-line arithmetic must be wrapped in curved brackets eg. start with ’(’ and
end with ’)’. This is a limitation of the design of the program and to change
it would require a large amount of code to be re-written.

• The only directives that have been implemented are ORG, EQU, DB and DS.
The other directives listed in the specification have not been implemented,
but there omission is only due to time constraints and they could easily be
implemented in a later version.

• Macros have not been implemented also due to time constraints.

The assembler consists of two files:

• language.py which contains the language definition in an index and some
functions to help encode instructions.

• assembler.py which contains the first and second pass functions and handles
opening source files and writing binary files.

The following sections details the design and behavior of the assembler. However
it must be noted that these are abstract and high level descriptions that do not
fully explain minor routines, but give an overview of the entire process. The full
source code is attached in the Appendix and should be referenced for a deeper
understanding of the program’s operation. The final section is a short programmers
manual demonstrating the assembler’s features.

5

4 Data Structures
• reserved arguments

This structure contains a list of string representations of the reserved word argu-
ments for the instruction set. These all equate to registers or register pointers. The
full list is as follows:

a, c, bs , ie , flags ,
r0 , r1 , r2 , r3 ,
dptr , dpl , dph ,
sp , sph , spl ,
@a+pc , @a+dptr , @dptr

• relative instructions

This structure contains a list of string representations of the mnemonics of instruc-
tions that use relative addressing. The full list is as follows:

djnz , cjne , sjmp , jz ,
jnz , jc , jnc , jpo ,
jpe , js , jns

• instruction index

This structure contains an index of all possible instructions in the instruction set,
along with the the corresponding opcode and instruction width. This is implemented
using a combination of Python’s dictionary, tuple and list objects. Its structure is
demonstrated below:

mneumonic : (arg type , arg type , ...): [opcode , width]

Each mnemonic has an entry in the parent index which returns another index of
possible argument formats for that mnemonic with their corresponding opcode and
length. Argument types can be either be one of the reserved arguments or one of
the following values: address, pointer, data or label . Width is represented in
number of bytes, ie. width = 3 means 1 byte of opcode and 2 bytes of arguments.

• label index

This structure is used to store an index of label definitions.

• equate index

This structure is used to store an index of equated strings.

6

5 Functions
• first_pass(source file)

This function pre-processes a source file and stores it in a format containing the
necessary data for the second_pass() function to assemble it. It processes labels
and EQU directives by storing strings and their corresponding values in indexes and
replacing any subsequent appearances of the string with the value. It prepares
ORG and DB statements for the second_pass(). It uses the tokenize() function
to determine the argument symbols and operand bit string. Finally it uses the
instruction index to determine the instruction width.

• second_pass(asm, label index)

This function takes the pre-processed assembly code and label index output by
first_pass() as input. First it checks for ORG and DB statements and handles them
if necessary. Then it replaces any labels that were used before they were defined and
therefore not replaced on by first_pass() . It uses the instruction index to
determine the opcode and the width of the instruction, then it writes the opcode
and operand to the file. If the combined width of the opcode and operand is greater
than the instruction width the function raises an error.

• tokenize(mnemonic, arguments)

This function processes an instruction in order to produce a hashable symbol that
represents the format of its arguments. This symbol is used to look up opcodes in
the instruction index. It also detects string representations of numbers in the
arguments and stores a C type struct representation of the operands to be returned
along with the symbol. It does this with the help of the stoi() function and
Python’s struct module .

• stoi(string)

This function is a general purpose function that is actually used throughout the
code, although mainly in the tokenize() function. It takes a string as an input
and tries to convert it to an integer using Pythons integer representation syntax. It
can recognize decimal, octal, hexadecimal and binary numbers which are denoted
with different prefixes. If it receives a string it can not represent as an integer it
returns the string ’NaN’, (Not a Number)

Below is an abstract representation of each functions logical process. The
first_pass() and second_pass() are represented in pseudo-code, however stoi()
and tokenize() are more easily understood when represented as flowcharts.

7

5.1 first_pass

first_pass (source file):

address = 0

for statement in source file:

remove comments

for word in statement :

if word is in equate index:
replace word with equated value

else if word is in label index:
replace word with address at label

if first word == ’org ’
address = second word

else if last character of first word == ’:’:
remove ’:’
add word = address to label index
next statement

else if second word == ’equ ’
add first word = third word to equate index
next statement

mnemonic = first word
arguments = [second word ... last word]

symbol , constant = tokenize (arguments)
if mnemonic == ’db’:

address = address + width of constant
next statement

width = instruction index[mnemonic][symbol][width]
address = address + width

append [mnemonic , argument , symbol , constant] to asm

return asm , label index

8

5.2 second_pass

second_pass (file , asm , label index):

address = 0

for line in asm:

file offset = address

mnemonic , arguments , symbol , constant = line

if mnemonic == ’org ’:
address = first argument
next line

else if mnemonic == ’db’:
write constant to file
address = address + width of constant
next line

for argument in arguments :
if argument is a label:

replace argument with address at label
symbol , data = tokenize (argument)
append data to constant

op , width = instruction index[mnemonic][symbol]

write op to file

if width of constant - width + 1 > 0:
raise error

else if:
write constant to file
address = address .+ width

return file

9

5.3 tokenize

start

args[0...n] = input

i = 0

is args[i]
immediate data?

sym[i] = data sym[i] = pointer sym[i] = address

does i = n?

is args[i] a
data pointer?

is args[i] a
reserved

arg?

end

is args[i]
arithmetic

to evaluate?

sym[i] = args[i]

is args[i]
represented as a

a string?

args[i] = result

append string to constant

value = stoi(args[i])

i = i + 1

is value 'NaN' sym[i] = label

append values bit string
to constant

no no

no

no

no

no

yes yes

yes

yes

yes

no

output = sym, constant

yes

yes

10

5.4 stoi

start

end

s = input

is s octal? is s decimal? is s hex? is s binary?

i = int(s, 8) i = int(s, 10) i = int(s, 16) i = int(s, 2)

output = i

yes yes yes yes

no no no

i = 'NaN'

no

11

6 Assembly language manual

12

Part III

Emulator
7 Core microprocessor emulation
The core of the emulator is written in C using only standard libraries. It executes
the machine code output by the assembler according to the ELB816 specification.
It consists of the following files:

• iset.c and iset.h

These files contain the emulator instruction functions and function look-up table.

• mem.c and mem.h

These files contain the emulators memory structure and memory access functions.

• emu.c

This file contains the program’s main() function. It initializes the emulator and
executes the programs fetch/decode/execute cycle.

Below is a high level description of the content of each of these files which
should demonstrate how the emulator works. There is also a large amount of
material relevant to the emulator’s design in the appendix, which will be referenced
when applicable.

7.1 iset.c and iset.h

Each mnemonic in the ELB816 instruction set has a function defined in these files.
Each function is responsible for execution of all the instructions that use its cor-
responding mnemonic. The function look-up table is an array of pointers to these
functions, where a pointer’s position in the list corresponds to the opcode of the
instruction to be executed.

13

7.2 mem.c and mem.h

The figures bellow illustrate the emulator’s memory layout as defined in the mem.h
header file.

mem.c contains functions that can be used to access this memory from the rest
of the code.

14

7.3 emu.c

This file contains the emulator’s set-up and control procedures. It includes all of
the projects header files and controls the execution of the functions contained in
them.

It first executes a number of initialization procedures and then passes control
over to the main fetch/decode/execute cycle. This procedure is shown below as
a flowchart. To understand this it you must be familiar with C’s function pointer
syntax.

start

boot()

op = memory[PC]

(*iset[op])

15

8 Peripherals

16

