Electronic Engineering Department: EBU5475

‘a_@_s’ Queen Mary

University of London

Electronic Engineering Department

EBU5475 Microprocessor Systems Design
Introduction to the MCS-51 Development Board.

Laboratory Session 3

1. Overview

The purpose of these experiments is to familiarise you with the 8051 microcontroller family. With this intention,
you will use the MCS-51 development board developed at BUPT with the READS51 software. In this lab you
will use relative assembly techniques to build programs using reusable code modules in order to control the
display and keypad on the lab development board.

NOTE: All the information you need to prepare the code for this lab is contained in the lab script and its
appendices — you do not need to have the development board in order to plan, design and code the software
as long as you read all the information carefully.

2. The MCS-51 Development Board

07F0603 §

Figure 1: MCS-51 Development Board — see Table 1 for key

Figure 1 shows the board you will use for these labs. It is built around an Atmel AT89S52 microcontroller chip,
which is basically an 8052 microcontroller with Flash memory for its internal 8K program ROM. The MCU is
clocked using a 11.0592MHz crystal oscillator and 32K external RAM is provided for data storage.

Lab 3: Introduction to the MCS-51 Development Board. 1

Electronic Engineering Department: EBU5475

The board has an RS232 serial port, a 6-digit display and 16-key keypad plus two general-purpose switches
and two general-purpose LED indicators. The display and keypad are controlled by a ZLG7290 driver chip
that is connected to the MCU via an I°C bus interface.

The Atmel MCU is In-System-Programmable (ISP) which means that it can be reprogrammed while on the
circuit board instead of having to use a dedicated chip programming device. This makes programming the
board quick and easy and is therefore very useful for prototyping designs. The ISP connection is made using
a parallel port cable to interface to a PC.

No. | Description

1 Atmel AT89S52 Microcontroller Chip

2.1 | Address Latch (74LS573)

2.2 | 32K External RAM (HM62256)

3.1 | I>)C Display and Keypad Driver Chip (ZLG7290) — Interfaces the keypad and display to the MCU

3.2 | 6-digit, 7-segment (plus decimal points) display

3.3 | Hex Keypad

4 Two general purpose switches (labelled A and B) connected to P1.1 and P1.2

5 Two LED indicators (labelled D3 and D4) connected to P1.3 and P1.4

6 RESET switch

7 Parallel port connector and buffer chip (74HC244) for programming the MCU

8 Buzzer connected to P3.5 — disabled by jumper JP10

9 Power Connector and On/Off switch

10 | RS232 Serial Port (using a MAX232 driver chip)

Table 1: Key to the MCS-51 development board components shown in Figure 1

Figure 2 shows a system diagram for the board. Ports 0 and 2 are used for interfacing to the external RAM
while ports 1 and 3 are used to interface with the other components on the board. Most of the components
connected to the pins on ports 1 and 3 can be disconnected from the port by using the jumpers on the board
(see table 2).

Details of all the ICs on the development board are available in data sheets available from the course website.
You should read the data sheets to make sure you are familiar with the components that are used.

Lab 3: Introduction to the MCS-51 Development Board. 2

Electronic Engineering Department: EBU5475

AT89S52
Port 1 , RST EA Port 3 - ALE Port 2 Port 0
Vcc
_—II] 8- - 8 8- -
Reset | ¢ Address
Latch
ris R
Y 1 |
'- '
:.----: AddrH AddrL Data
I
= 32k
— o5 _
13351 RD RAM
—<kH g0l
N
Ve Ep
[Rl gg:
[)]
s AeARAE

SCL 71.G7290 Keypad
and Display Chip

Keyint

m
o
w

I

Buzzer E E
#iH) AEIEE
[o]

-
12
b

A
B PO
o i
oo 2 si
1 P4} T Psh!
i MAX232 o5 e
- JPs Rx £ 8!
o Ui
Figure 2: System Diagram for the MCS-51 Development Board

JP1 Disconnects ISP reset input from RST pin JP4 Disconnects MAX232 Tx input from P3.1

JP10 | Disables the Buzzer (P3.5) JP5 Disconnects MAX232 Rx output from P3.0

Table 2: Functions of the jumpers on the development board

Lab 3: Introduction to the MCS-51 Development Board. 3

Electronic Engineering Department: EBU5475

3. Preparatory Work: Writing code for the development board

You are given the following files:

Tasks

boardtest10.hex — this is an assembled hex file ready to download to the board in the lab

boardtestmain_10.asm — this is a module containing the test program. It uses subroutines from the
ZLG7290_driver_10.asm driver module.

ZLG7290_driver_10.asm — this is a module containing driver code for the display and keypad chip. It
uses subroutines from the 12C_driver_10.asm driver module.

12C_driver_10.asm - this is a module containing driver code for 12C bus connection to the display
chip.

ZL.G7290_dummy_10.asm — this is a dummy version of the driver module for use when debugging
your code in Reads51.

Now you have read how the board is laid out your groups should prepare some programs in Reads51 to
download to the MCU during the lab. The following simple tasks can be done in single .asm files:

1)

2)

3)

Using the information from section 2 of the lab script, write a simple program that lights LED3 when
switch A is pressed and LED4 when switch B is pressed (note that the switches pull the port pins low).

Write a simple program that will sound the buzzer when switches A and B are pressed at the same
time.

Write a program that will flash LED3 on and off every 0.25 seconds using nested delay loops as seen
in week 2 lectures.

Read through the information on Relative Assembly, the ZLG7290 driver and the example test program in
the appendices. Create a Reads51 project including the three .asm code modules provided. Using the
information provided, prepare a program that will perform the following tasks:

4)

5)

6)

7)

Using the source file for the test program “boardtestmain_10.asm” as a starting point, write code that
will put the word “HONG FU” on the display when Key A is pressed (Hint, you can do this in the same
way as messages “NI HAO” and “HELLO” are put on the display in the example program).

Alter the code so that the typing on the keypad inserts characters in from the left side, shifting the rest
of the display to the right.

Alter the code so that pressing Key B once will make the display flash and pressing it again stops the
flashing.

Alter the code so that instead of displaying hex values, pressing the keys on the keypad will show the
values that appear marked in white under the keys as shown in Figure 3. When an “Fn” key is
pressed it should insert the character “F” and the number n. When the * is pressed insert “A” and
when # is pressed insert “C”. (Hint: you should use a “case” program structure to implement the
decoding).

112 |3|F1
4 15|6 |F2
718|9|F3
x| 0 |#|F4

Figure 3: Keypad labels

Lab 3: Introduction to the MCS-51 Development Board. 4

Electronic Engineering Department: EBU5475

4. Preparation Final Challenge: An electronic “Safe”

If your group managed to do the rest of the exercises then here is a final challenge — programming an
electronic version of a combination lock.

Figure 4: A safe with an electronic lock
The Safe has two modes: Open and Closed

Open Mode:

In this mode the safe is open so your program should allow the user to set the code and lock it closed.
The user can enter a 6 digit “key code” on the labelled keypad number keys.

Keypad “F1” should clear the display

Keypad “F2” should save the new code into the internal RAM

Keypad “F3” should lock the Safe and display the word “CLOSEd” then change to Closed Mode.
Keypad keys *, # and F4 should be ignored.

Keys A and B should be ignored. LED3 should be lit. LED4 should be off.

Closed Mode:
In this mode your program should allow the user to try to open the safe with a key code.

® The user can enter a 6 digit “key code” on the labelled keypad number keys.
® Keypad “F1” should clear the display.
® Keypad “F3” should attempt to unlock and open the safe with the entered key code:
+ If the entered code correctly matches the saved code in the RAM then display the word “OPEN”"
and change to Open mode.
+ If the entered code is wrong then display the words “BU HAO” and stay in Closed mode.
® Keypad keys *, #, F2 and F4 should be ignored.
® Keys A and B should be ignored. LED3 should be off. LED4 should be lit.

Tips for successful preparation:

® You should use the structured programming techniques discussed in week 2 lectures in order to guide
your code writing.

® After designing and writing your code, use the dummy driver module for testing that you call the
subroutines correctly and handle return values as expected. Remember you can alter any register or
memory value in the debugger when you want to simulate the correct return values.

Deliverables: Preparatory Work

Your code should be prepared before the session because there will be no time to write code during the lab.
You will be expected to demonstrate your programs to the teaching assistants during the lab session.

Lab 3: Introduction to the MCS-51 Development Board. 5

Electronic Engineering Department: EBU5475

Part 1: Testing the board

Download the boardtest10.hex file from the web page if you have not already done so. Following the
instructions in Appendix 1 on how to download programs to the board using the Atmel ISP software. Make
sure that you can correctly program a hex file to the board.

Part 2: Downloading and testing your own programs

Once you have successfully programmed the board with the example hex file, try assembling and
downloading the single file example programs from preparatory work tasks 1, 2 and 3. (note: Reads51
produces a hex file every time you build your code or toggle into Run/Debug mode). Do the programs function
as you expected?

Now try assembling the board test program using the code modules boardtestmain_10.asm,
ZLG7290_driver_10.asm and 12C_driver_10.asm in a Reads51 project. Make sure that you can program the
board with your newly assembled hex file (remember to use the driver module and exclude the dummy
version from the build...).

For the remaining time in the lab session, download the program you have written for preparatory tasks 4,5,6
and 7 to the boards and test the functionality for each task. Demonstrate to the Teaching Assistants that you
have correctly programmed these tasks.

If you have managed to complete the final challenge download this to the board and test it also. Demonstrate
this to the Teaching Assistants if you complete it.

Deliverables: Lab 3

All parts of the lab preparatory work (including the final challenge) carry marks and you will also be awarded
marks for demonstrating your work to the Teaching Assistants during the lab session.

Your group should hand in the following in electronic form:

® Code for all the tasks in the lab arranged in sensible folders in a zip file.

Lab 3: Introduction to the MCS-51 Development Board. 6

Electronic Engineering Department: EBU5475

Appendix 1: Programming the board

The first thing to do is to establish that your development board is working properly by downloading a test
program to it. The program you will download (boardtest10.hex) should test all of the components on the
board. Follow these steps:

1) Plug the power supply into the board then connect to the PC using the parallel cable.

2) Run the Atmel ISP software. At the top of the window you will see a menu like this:

Select Device

Initialize Target
Load Buffer — = B ;3"/ CE D
Save Buf‘fér \

Select Port

Figure 5: Key to the Atmel ISP software menu setup buttons

3) Choose “Select Device” and you should get a menu that looks like the picture below. You want to choose
device “AT89S52” in “Byte Mode” with XTAL at 12MHz then press OK.

Device Selection x|

Select one of the supported Atmel devices from the list below.

=Y ATEY
& ATHILER]

& ATHILSEZ52 Cancel

& ATBISE
Eo

& ATE9S53
& ATBISEZE?

Fead/\Wite Mode HTAL (MHz)

" Page Mode ' Byte Made 12

Figure 6: Selecting the AT89S52 device

4) If the board is correctly connected, the software should sense it and a blank buffer screen containing FF in
every byte position should appear (see below) showing that the chip is ready to be programmed. If this
does not happen, try pressing “Initialize Target” and if that doesn’t help, call a demonstrator.

== Atmel Microcontroller ISP Software - ATB9S52 - Code B =13

Fle Yiew Buffer Instuctions Options Windows Help
ECIEE- PR A1 1S

i ATB9SS2 - Gode Buffer (8k x 8 FLASH/Gode)

FF FF FF FF FF FF FF FF EF FF FF FE FF FF FF FF

FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
FF FF FF FF FF FF FF FF FF FF FF FE FF FF FF FF
FF FF FF FF FF FF FF FF FF FF FF FE FF FF FF FF
FF FF FF FF FF FF FF FF FF FF FF FE FF FF FF FF
FE FF FF FF FE FE FF FF FF FF FE FE FE FE FF FF
FE FF FF FF FE FE FF FF FF FF FE FE FE FE FF FF
FE FF FF FF FE FE FF FF FF FF FE FE FE FE FF FF
FE FF FF FF FE FE FF FF FF FF FE FE FE FE FF FF
FE FF FF FF FE FE FF FF FF FF FE FE FE FE FF FF
FE FF FF FF FE FE FF FF FF FF FE FE FE FE FF FF
FE FF FF FF FE FE FF FF FF FF FE FE FE FE FF FF
FE FF FF FF FE FE FF FF FF FF FE FE FE FE FF FF
FE FF FF FF FE FE FF FF FF FF FE FE FE FE FF FF
FF FF FF FF FF FF FF FF FF FF FF FE FF FF FF FF
FF FF FF FF FF FF FF FF FF FF FF FE FF FF FF FF
FF FF FF FF FF FF FF FF FF FF FF FE FF FF FF FF
FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
FF FF FF FF FF FF FF FF FF FF FF FE FF FF FF FF
FF FF FF FF FF FF FF FF FF FF FF FE FF FF FF FF
FF FF FF FF FF FF FF FF FF FF FF FE FF FF FF FF
FE FF FF FF FE FE FF FF FF FF FE FE FE FE FF FF
FE FF FF FF FE FE FF FF FF FF FE FE FE FE FF FF
FE FF FF FF FE FE FF FF FF FF FE FE FE FE FF FF
FE FF FF FF FE FE FF FF FF FF FE FE FE FE FF FF
FE FF FF FF FE FE FF FF FF FF FE FE FE FE FF FF
FE FF FF FF FE FE FF FF FF FF FE FE FE FE FF FF
FE FF FF FF FE FE FF FF FF FF FE FE FE FE FF FF
FE FF FF FF FE FE FF FF FF FF FE FE FE FE FF FF
FF FF FF FF FF FF FF FF FF FF FF FE FF FF FF FF
FF FF FF FF FF FF FF FF FF FF FF FE FF FF FF FF
FF FF FF FF FF FF FF FF FF FF FF FE FF FF FF FF

Figure 7: AT89S52 buffer ready to program

Lab 3: Introduction to the MCS-51 Development Board. 7

Electronic Engineering Department: EBU5475

5) Now you should be ready to program the chip so you need to load a hex file into the programming buffer.
Choose “Load Buffer” and select the test file “boardtest10.hex”. This should change the contents of the
buffer on the screen.

6) Now that the chip is ready to program several new buttons should have become active on the toolbar (see
below). Select “Autoprogram” to download the program code to the chip.

Read buffer Verify buffer
Write buffer Autoprogram
A V¥

A/

SE| 8wy ¥EE A CEo

4ne

Figure 8: Key to the Atmel ISP software programming buttons

7) If the download is successful you will then be prompted by the menu shown below. Select “Lock0” and

press OK.
|

Select one of the following options

Lock 0 - No Program Lock Features
Lock 1 - No External MOWC or werite

Lock 2 - Mo External MOWC, write, or read c |
Lock 3 - Mo External MOWC, write, read, or exe ance

Figure 9: Setting the lock mode on the microcontroller (choose Lock 0)
8) At this point the download should be complete and you should see this window:

Auto Programming Device

Code Buffer: Success ﬂ

Success!

Opening a lockbit manager.. 3
Success!

= Auto Programming Complete ==
- Ok

Figure 10: Successful programming

9) The download has been successful so press OK. Now it is time to see what the code does by running it
on the board. To take the board out of programming mode select “Instructions -> Run Target” from the
menu. This will put the board into run mode and show the following message:

Atmel Microcontroller ISP Sofi ﬁ

i The device is no longer in ISP programming made,
In order to set the chip back into programming mode
select Tnitialize Target' from the Cptions menw,

Figure 11: Run target

10) When you are ready to program the board again, you can select “Initialize Target” to put the board back
into programming mode then start the process again from step 4.

Take a couple of minutes to try out the test program with the board to see what it does. All of the buttons,
keys, LEDs and displays can be tested with this program. By carefully removing jumper JP10 you will be able
to test the buzzer as well.

Lab 3: Introduction to the MCS-51 Development Board. 8

Electronic Engineering Department: EBU5475

Appendix 2: Relative assembly in Reads51

In this lab you will use relative assembly techniques to organise your code into modules as we discussed in
lectures. To use relative assembly in Reads51 you must open a project. A Reads51 project file (.rpj file) stores

information about all the different code files that make up your program (This is analogous to the role of the
.ise file in your Xilinx VHDL projects from last term.).

Select Project—-New Project and choose a name and location for your project files.

x|

Project

Diirectary IC;\mcsm _code

Hame Irelative_examplel ™ |

0K I Cancel |

Figure 12: Creating a new project

Once your project has been created you should see a project window appear on the left side of the screen.

You now need to add some code modules to the project. Select Module—Create Module to add start a new
code file:

“ Create New Module x|
Module Properties Tupe / Taoolz
Mame i
Imaln_module e lm
Deszenption [this module contains the main code segment
Language Agzembly i

E ditor /

Text -
Code generator S

™ Exclude from build

Ok I Cancel |

Fiaure 13: Creatina a new code module

Give your module a name and select “Assembly” as the language. this will create a new .asm file and it will
appear as a module in the project window.

=l

E% relative_example
----- £ main_module. asm
! [0 other_madule. asm
Exchude From Build
[ﬂ Generated Files

| B relative_example |

Figure 14: Project files window

Lab 3: Introduction to the MCS-51 Development Board.

Electronic Engineering Department: EBU5475

As a simple example of relative assembly try entering the following two sections of code in two different
modules:

Main module

; external subroutines used by this nodule
extern code my_subroutine

; main code segnent starts at 0000h
cseg at O

I call my_subroutine ; nmain code just calls the external subroutine

end

Other module

;decl are the code segnents in this nodul e
Modul e_2 Routines segnment code

; Declare public subroutines available fromthis nodule
public ny_subroutine

; relative code segnent
rseg Modul e_2 Routi nes

my_subrouti ne:
mov A, #CCh ; subroutine sets Ato CCh
ret ; return to calling code

end

If you run this code in RUN/DEBUG mode you will see that you start in the main code segment then jump to
the external subroutine in the second module before returning to the main module (remember to set your
Project Build options to generate debug information for this to work properly).

Dealing with multiple modules and testing

%

== boardtest

----- [boardtestmain, asm

------ [=lg7290_dumiy,asm

E| Exclude From Build
§ e @ Zlg72o0_driver.asm
[ﬂ Generated Files

| B hoardtest |

Figure 15: ZLG7290_dummy_10.asm is used for testing instead of ZLG7290_driver_10.asm

Sometimes it is necessary to test code which will eventually rely on the functionality of another module which
may not yet be written or may be awkward to step through in the debugger. In these instances it is helpful to
write test modules that expose the same interfaces yet do nothing themselves. An example of this kind of file
“ZLG7290 dummy_10.asm” is provided for testing your preparation work. The same subroutines are
exposed in the API as those of the driver but none contain any code. When the debugger jumps to these
routines you can check whether the registers and RAM contain the correct values from your code and then
manually set the return values. As you can see in Figure 15, it is possible to drag files that you do not wish to
use to build your assembled code into the “Exclude From Build” area. In this case we want both the driver and
the dummy to be part of the project but we do not want to try building with both modules together as they will
conflict with each other. Therefore we can chose to exclude the driver file and use the dummy while testing
but use the driver and exclude the dummy when we do a final build.

Lab 3: Introduction to the MCS-51 Development Board. 10

Electronic Engineering Department: EBU5475

Appendix 3: The ZLG7290 and I°C Driver Modules

The files ZLG7290 driver_10.asm and |12C_driver_10.asm contain code that allows you to interface easily
with the display and keypad on the board. The drivers are made up of a set of MCS-51 assembly code
subroutines in a relative code segment. The ZLG7290 driver abstracts the functionality of the hardware
exposing an application programmers interface (API) of eight simple functions which can be used to control
the display and keypad. The user software (i.e. your program code) can call these functions to interface easily
with the hardware. This arrangement can be described graphically as shown in Figure 16.

Example program:

boardtestmain.asm "} User Software Application layer

ZLG7290 API

ZLG7290 driver.asm .
- subroutines

12C_driver.asm [’C subroutines

I’C bus
Components Physical layer
on the board ZLG7290

internal registers

Figure 16: Arrangement of software and hardware for using ZLG7290 driver

The API exposed by the ZLG7290 driver provides the following eight subroutines:

_ZLG Init Initialise the ZLG routine

_ZLG Di spl ayMessage Display a message by loading data directly to the display

_ZLG Di spl ayHexChar Display a hexadecimal value on a specific digit

_ZLG ShiftRi ght Shift the display right by one digit

_ZLG ShiftLeft Shift the display left by one digit

_ZLG Di spl ayFl ashOn Flash all digits on the display

_ZLG Di spl ayFl ashOF f Disable flash on all digits on the display

_ZLG ReadHexVal ue Read a hexadecimal value decoded from the lab board keypad

NOTE: The underscore “ ” at the beginning of each subroutine name helps to distinguish them from

subroutine names in your main code.

To use these subroutines you need to set up a data structure in the internal RAM that contains the
information necessary to perform the desired operation. It is then possible to pass the address of this structure
as an argument to the subroutine in one of the registers.

Lab 3: Introduction to the MCS-51 Development Board. 11

Electronic Engineering Department: EBU5475

ZLG_Init
Description:

Subroutine zLG Init is used to initialise a data structure that will be used with the driver. This structure is
simply a 10-byte space in 8051 internal RAM that the programmer reserves for use when communicating with
the ZLG7290 driver. The user passes the address of this data structure to this subroutine and the correct
slave address for the ZLG7290 will be loaded into the first byte of the structure.

This subroutine must be run to initialise the data structure before using it with the other subroutines.
Inputs:

The base address of the data structure should be passed to the subroutine as a pointer in R3.

pointer +0 —| Slave Address |[«—Inserts I°C slave address of the ZLG7290 here
+1—» reserved

reserved for use by the subroutine

+9 —» reserved

Figure 17: ZLG structure initialised in internal RAM
DisplayMessage

Description:

Subroutine _ZLG DisplayMessage changes the current message shown on the lab board 6 digit display.
It returns a 0 in the carry flag if successful.

00000000000
0@0 0:0 0@0 0@0 0@0 0@0
5 4 3 2 1 0
Figure 18: Arrangement of digit displays on the board
The ZLG7290 chip can actually control up to 8 seven-segment displays but the development boards we will

use in the labs have only six (the arrangement of which is shown in Figure 18).

a
>

f0cg>0 i
eO?Q;

Figure 19: Seven-segment display segment arrangement

The DisplayMessage subroutine allows you to write directly to the display digits using a bit pattern to control
which segments of the digit are lit. The segments are labelled a-g and DP for the decimal point and are
arranged in a data byte in the bit order shown below:

D7 |D6 |D5|D4 |D3 D2 |D1|D0
a/b|c|d|e| f|g|DP

Hence to show the letter “E” you would use the binary bit pattern 10011110 or hex value 0x9E.

Lab 3: Introduction to the MCS-51 Development Board. 12

Electronic Engineering Department: EBU5475

Inputs:
The base address of the data structure should be passed to the subroutine as a pointer in R3.

Data Structure arrangement:

pointer +0 —»| Slave Address [«— set by ZLG_Init
+1—> reserved <+<— reserved for use by the subroutine
+2 —> Digit O \
+3 —> Digit 1

+4 — Digit 2
+5 —» Digit 3 Bit patterns for thg digits of the
display (6 and 7 are included for use
in board designs with more digits)

+6 —> Digit 4
+7 —> Digit 5
+8 — Digit 6
+9 — Digit 7)

Figure 20: Data structure for DisplayMessage subroutine in internal RAM

To use DisplayMessage you must set up a data structure in internal RAM as shown in Figure 20. The
structure must contain data bytes holding the bit patterns for each digit in the display.

DisplayHexChar
Description:

Subroutine ZLG_DisplayHexChar puts a hexadecimal character on a specific digit on the display.
Inputs:
The base address of the data structure should be passed to the subroutine as a pointer in R3.

The address of the digit to change on the display (see Figure 18 for digit addresses) should be passed to the
subroutine in the accumulator.

Outputs:
Returns a 0 in the carry flag if successful.

Data Structure arrangement:

pointer +0 —»| Slave Address |[«—Set by ZLG_Init
+1—> reserved
+2 —» reserved

} reserved for use by the subroutine

+3 — hex value

Figure 21: Data structure for DisplayHexChar

The hexadecimal value to be displayed should be placed in RAM 3 bytes above the base address of the
structure (i.e. pointer +3).

Lab 3: Introduction to the MCS-51 Development Board. 13

Electronic Engineering Department: EBU5475

ShiftRight and ShiftLeft

Description:

Subroutines _ZLG_ShiftRight and _ZLG_ShiftLeft shift the digits shown on the display right or left
by one space respectively.

Inputs:

The base address of the data structure should be passed to the subroutine as a pointer in R3.

Outputs:

Both return 0 in the carry flag if successful.

Data Structure arrangement:

pointer +0 —» | Slave Address [+—Set by ZLG_Init
+1—»> reserved
+2 —> reserved

} reserved for use by the subroutine

Figure 22: Data structure for DisplayFlashOn and DisplayFlashOff

DisplayFlashOn and DisplayFlashOff
Description:

The ZLG driver subroutine _ZLG DisplayFlashOn makes all digits on the display start to flash;
_ZLG_DisplayFlashOff stops all digits flashing.

Inputs:

The base address of the data structure should be passed to the subroutine as a pointer in R3.

Outputs:

Both return 0 in the carry flag if successful.

Data Structure arrangement:

pointer +0 —» | Slave Address |«— Set by ZLG_Init

+1—> reserved
+2 —> reserved reserved for use by the subroutine
+3 —> reserved

Figure 23: Data structure for DisplayFlashOn and DisplayFlashOff

Lab 3: Introduction to the MCS-51 Development Board. 14

Electronic Engineering Department: EBU5475

ReadHexValue
Description:

Subroutine _ZLG_ReadHexValue reads which key has been pressed on the the keypad and returns a
hexadecimal value corresponding to the mapping (shown in Figure 24) in the accumulator. This subroutine
would usually be used after the KeylInt (keypad interrupt) line from the ZLG7290 goes low indicating a keypad
event.

0(12)|3
4 5|6|7
8|/9|A|B
C/D|E|F

Figure 24: Keypad mapping for ReadHexValue

Inputs:

The base address of the data structure should be passed to the subroutine as a pointer in R3.
Outputs:

The hexadecimal value corresponding to the key that was pressed is returned in the accumulator.

The subroutine also returns 0 in the carry flag if a key was correctly read or 1 if no key was pressed.

Data Structure arrangement:

pointer +0 —» | Slave Address |«— Set by ZLG_Init

+1— reserved
+2 —> reserved reserved for use by the subroutine
+3 — reserved

Figure 25: Data structure for ReadHexValue

Lab 3: Introduction to the MCS-51 Development Board. 15

Electronic Engineering Department: EBU5475

Appendix 4: The design of the board test program

The lab board test program is made up of three .asm files: boardtestmain_10.asm, ZLG7290_driver_10.asm
and 12C_driver_10.asm. These can be put together in a Reads51 project and assembled to produce the
downloadable file “boardtest10.hex”.

This program demonstrates the functions of the board in the following ways:

® Press Key A: LED3 lights, buzzer sounds, display shows “HELLO” as shown in Figure 26.

OO o T
Y o

C O Cpp e, GBEH,6 G, T

Figure 26: Result of SayHello code

® Press Key B: LED4 lights, buzzer sounds, display shows “Ni HAO” as shown in Figure 27.

O O T T
O /o T e

T Do TDOp T TDO0o

Figure 27: Result of SayNiHao code

® Press a key on the keypad: A hex character (keys corresponding to mapping shown in Figure 24) is
inserted in the rightmost digit (all other digits shift along to the left).

Flow Diagrams:

The code to enable this behaviour can be described by the following flow diagrams:

enter

Initialise Driver,
LEDs and buzzer off,
Clear A, set P3.2=1

v

Button A
pressed?

Button B
pressed?

Keypad
pressed?

yes

SayHello SayNiHao KeyPadPress

v v

Figure 28: Top level of the program — endless loop so no exit necessary.

The top level of the code has a short initialisation step to set things up then goes into a simple loop which
checks to see if key A or B or any key on the keypad has been pressed.

Lab 3: Introduction to the MCS-51 Development Board. 16

Electronic Engineering Department: EBU5475

SayHello: SayNiHao:

v v
LED3 on LED4 on
Buzzer on

Buzzer on

Key A
released?

Key B

released?

LED3 off LED4 off

Buzzer off Buzzer off

l yes l yes

set DPTR to set DPTR to

HelloTable NiHaoTable
ShowMessage ShowMessage

\ 4

(exit) (exit)

enter
ShowMessage:

Set index R2=7
R1 = buffer pointer

T
e

Get value from
table[index]

|

Put value in
buffer[pointer]

|

pointer++
index--

no

yes

CALL ZLG7290
DisplayMessage

A 4

(exit)

Figure 29: SayHello (top left) and SayNiHao (top right) both call Show Message (bottom)

Lab 3: Introduction to the MCS-51 Development Board. 17

Electronic Engineering Department: EBU5475

The SayHello and SayNiHao functions use the ZLG7290_driver_10.asm module _ZL.G_DisplayMessage
subroutine to output messages on the display via the code at ShowMessage.

The KeyPadPress function reads a hex value from the keypad and inserts it in the rightmost digit on the
display, shifting all the other characters to the left.

!

CALL ZLG7290
ReadHexValue

no

yes

CALL ZLG7290
ShiftLeft

|

CALL ZLG7290
DisplayHexChar

<

A 4

(exit)

Figure 30: KeyPadPress reads the keypad and outputs the hex character on the display

For further explanation of how the code works, please refer to the comments in the code modules themselves.

History:
Chris Harte 5" May 2007

1t Revision: updated for new board details - Chris Harte 8" May 2007
2" Revision: updated for new driver details — Chris Harte 30™ April 2008
3" Revision: updated for new driver details — Chris Harte 5" April 2009

4" Revision: updated for EBU5475 — Chris Harte 14" May 2010

Lab 3: Introduction to the MCS-51 Development Board. 18

