Mercurial > hg > dml-open-cliopatria
view cpack/dml/lib/grammars.pl @ 0:718306e29690 tip
commiting public release
author | Daniel Wolff |
---|---|
date | Tue, 09 Feb 2016 21:05:06 +0100 |
parents | |
children |
line wrap: on
line source
/* Part of DML (Digital Music Laboratory) Copyright 2014-2015 Samer Abdallah, University of London This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this library; if not, write to the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA */ :- module(grammars, [ model_name/2 , model_module_prep/3 , build_options/2 , build_subset_options/2 , learn/6 , learn_bpe/6 , learn_model/7 , model_sequence_parses/4 , nnums_ivals/2 , restart_prism/0 , best_first/6 , method_model_dataset_results/4 , dataset_num_events/2 ]). :- multifile dataset_sequences/2. :- use_module(library(memo)). :- use_module(library(typedef)). :- use_module(library(lambda)). :- use_module(library(plml)). :- use_module(library(prism/prism)). :- use_module(library(argutils)). :- use_module(library(snobol)). :- type pmodule == ground. :- type natural == nonneg. :- type prep == callable. :- type options == ordset. :- type model ---> model(atom, list, prep, list(pair(ground,list(number)))). :- type method ---> vb(ground) ; map(ground). :- type matlab_method ---> vb ; map. % % hmmmn.. maybe module issues here... % error:has_type(\Checker,Term) :- call(Checker,Term). error:has_type(ordset,Term) :- is_ordset(Term). :- persistent_memo learn( +method, +pmodule, +prep, +dataset:ground, +options, -scores:list), learn_model( +method, +pmodule, +prep, +dataset:ground, +options, -scores:list, -model), dataset_num_events( +dataset:ground, -num_events:nonneg). dataset_num_events(Dataset,NumEvents) :- dataset_sequences(Dataset,Seqs), maplist(length,Seqs,Lens), sumlist(Lens,NumEvents). % aggregate_all(sum(L),(member(S,Seqs),length(S,L)),NumEvents). :- initialization memo_attach(memo(learned),[]). :- setting(timeout, number, 900, 'Time limit for learning in seconds'). user:file_search_path(prism,'psm'). user:matlab_path(grammars,['stats/hmm']). partition_options([],[],[],[]). partition_options([O|OX],[O|MO],IO,LO) :- option_class(O,model), partition_options(OX,MO,IO,LO). partition_options([O|OX],MO,[O|IO],LO) :- option_class(O,init), partition_options(OX,MO,IO,LO). partition_options([O|OX],MO,IO,[O|LO]) :- option_class(O,learn), partition_options(OX,MO,IO,LO). option_class(switch_mode(_),model). option_class(prior_weight(_),model). option_class(gamut(_),model). option_class(leap_range(_),model). option_class(log_scale(_),learn). option_class(O,init) :- \+option_class(O,model), \+option_class(O,learn). option_mlopt(gamut(X-Y),gamut:[X,Y]) :- !. option_mlopt(init(none),perturb:0) :- !. option_mlopt(init(perturb(U)),perturb:U) :- !. option_mlopt(F,N:V) :- F=..[N,V]. learn(vb(InitMeth),matlab(Function),Prepare,DataSet,Opts,[free_energy(FE)]) :- !, dataset_sequences(DataSet, D1), maplist(Prepare,D1,D), maplist(option_mlopt,[init(InitMeth)|Opts],Opts1), compileoptions(Opts1,Opts2), [float(FE)]===feval(@Function,cell(D),Opts2). % method dependent options learn(Method,Module,Prepare,DataSet,Opts,Scores) :- member(Method,[vb(_),map(_)]), % prepare data dataset_sequences(DataSet, D1), maplist(Prepare,D1,D), % method dependent options method_switch_mode(Method,Mode), option(log_scale(LS), Opts, on), % load up prism and initialise restart_prism, load_prism(prism(Module)), #init_model([switch_mode(Mode)|Opts]), #init_switches(Opts), set_prism_flag(log_scale,LS), % allow 15 minutes for learning setting(timeout, TimeLimit), get_time(Time), debug(learn,'Calling PRISM with time limit ~w at ~@...', [TimeLimit, format_time(current_output,'%T',Time)]), call_with_time_limit(TimeLimit, prism_learn(Method, D, [], Scores)). method_switch_mode(vb(_),a). method_switch_mode(map(_),d). learn_model(Method,Module,Prepare,DataSet,Opts,Scores,model(Module,ModelOpts,Prepare,Counts)) :- % must re-compute to get final state compute(learn(Method,Module,Prepare,DataSet,Opts,Scores)), partition_options(Opts,ModelOpts,_,_), get_prism_state(ps(_,_,Counts1,_,_,_)), map_filter(unfixed_count,Counts1,Counts). unfixed_count(sw(SW,a,set(unfixed,Counts)), SW-Counts). model_initial_state(model(Module,MO,_,_),State) :- restart_prism, load_prism(prism(Module)), #init_model([switch_mode(a)|MO]), get_prism_state(State). with_model_data(model(Module,MO,Prepare,Counts),Data,Goal) :- restart_prism, load_prism(prism(Module)), #init_model([switch_mode(a)|MO]), #maplist(SW-C,set_sw_a(SW,C),Counts), call(Prepare,Data,D), call(Goal,D). learn_bpe(Method,Module,Prepare,DataSet,Opts,BPE) :- browse(learn(Method,Module,Prepare,DataSet,Opts,Scores)), catch( bits_per_event(Method,DataSet,Scores,BPE), _, fail). bits_per_event(Method,DS,Scores,BPE) :- dataset_num_events(DS,NumEvents), score(Method,NumEvents,Scores,BPE). score(map(_),NumEvents,Scores,BitsPerEvent) :- member(log_lik(LL), Scores), BitsPerEvent is -(LL/NumEvents)/log(2). score(vb(_),NumEvents,Scores,BitsPerEvent) :- member(free_energy(LL), Scores), BitsPerEvent is -(LL/NumEvents)/log(2). score(vb_pm(_),NumEvents,Scores,BitsPerEvent) :- member(free_energy(LL), Scores), BitsPerEvent is -(LL/NumEvents)/log(2). %% tree_syntax(+Mod:module,+Tree:prism_tree,-Syntax:tree) is det. % % Create a parse tree from a PRISM Viterbi tree. % Works for models gilbert1, gilbert2, gilbert2a, gilbert3 and gilbert2m. tree_syntax(Mod,[s(_),TT],T2) :- tree_parse_tree(Mod,TT,T2). tree_parse_tree(_,msw(i(I),terminal),node(t(I),[])). tree_parse_tree(Mod,[pp(s,_,_)|Children],Term) :- member(Mod,[gilbert2,gilbert2a,gilbert3,gilbert2m]), !, member(msw(s,Rule),Children), map_filter(tree_parse_tree(Mod),Children,CN), ( Rule=grow -> CN=[Child1,T1], T1=node(s,Tail), Term=node(s,[Child1|Tail]) ; Rule=last -> CN=[Child], Term=node(s,[Child]) ). tree_parse_tree(Mod,[pp(s,_,_)|Children],Term) :- Mod=gilbert1, !, member(msw(s,Rule),Children), map_filter(tree_parse_tree(Mod),Children,CN), ( Rule=grow -> CN=[Child1,T1], T1=node(s,Tail), Term=node(s,[Child1|Tail]) ; Rule=first -> CN=[], Term=node(s,[]) ). tree_parse_tree(Mod,[pp(H,_,_)|Children],Term) :- !, map_filter(tree_parse_tree(Mod),Children,CN), member(msw(H,Rule1),Children), ( Rule1=terminal -> Rule=t; Rule=Rule1), Term = node(H-Rule,CN). :- volatile_memo model_sequence_parses(+ground,+list(ground),+natural,-ground). model_sequence_parses(Model,Seq,N,Parses) :- Model=model(Mod,_,_,_), with_model_data(Model,Seq,parses(Mod,N,Parses)). parses(Mod,N,Parses,Goal) :- succ(N,M), findall(P-T,viterbi_tree(M,Goal,P,[],T),ProbsTrees), append(NProbsTrees,[P0-_],ProbsTrees), maplist(tree_parse(Mod,P0),NProbsTrees,Parses). tree_parse(Mod,P0,P-T,RP-S) :- tree_syntax(Mod,T,S), RP is P/P0. % model declarations decl_model(markov(nnum,0), p1gram, markovp, with_nnums(s0)). decl_model(markov(nnum,1), p2gram, markovp, with_nnums(s1)). decl_model(markov(ival,0), i1gram, markovi, with_ivals(s0)). decl_model(markov(ival,1), i2gram, markovi, with_ivals(s1)). decl_model(gilbert(1), gilbert1, gilbert1, with_pre_ivals(s)). decl_model(gilbert(2), gilbert2, gilbert2, with_ivals(s)). decl_model(gilbert(3), gilbert3, gilbert3, with_ivals(s)). decl_model(gilbert(2-a), gilbert2a, gilbert2a, with_ivals(s)). decl_model(gilbert(2-m), gilbert2m, gilbert2m, with_ivals(s)). % decl_model(gilbert(4), gilbert1, gilbert1a, with_pre_ivals(s)). % decl_model(gilbert(5), gilbert2, gilbert2a, with_ivals(s)). % decl_model(gilbert(6), gilbert3, gilbert3a, with_ivals(s)). decl_model(hmm(nnum), phmm, phmm, with_nnums(s)). decl_model(hmm(nnum,NS), Name, phmm, with_nnums(s)) :- atom_concat(phmm,NS,Name). %decl_model(hmm(ival), ihmm, ihmm, with_ivals(s)). decl_model(matlab(p1gram), 'ml-p1gram', matlab(p1gram), (=)). decl_model(matlab(p2gram), 'ml-p2gram', matlab(p2gram), (=)). decl_model(matlab(phmm), 'ml-phmm', matlab(phmm), (=)). model_name(Model,Name) :- decl_model(Model,Name,_,_). model_module_prep(Model,Module,Prepare) :- decl_model(Model,_,Module,Prepare). with_nnums(Head, Seq, Head1) :- addargs(Head,[Seq],Head1). with_ivals(Head, Seq, Head1) :- nnums_ivals(Seq,Seq1), addargs(Head,[Seq1],Head1). with_pre_ivals(Head, Seq, Head1) :- nnums_pre_ivals(Seq,Seq1), addargs(Head,[Seq1],Head1). nnums_ivals(NNums,Ivals) :- nnums_post_ivals(NNums,Ivals). nnums_post_ivals(NNums,Ivals) :- phrase((ivals(NNums),[end]),Ivals,[]). nnums_pre_ivals(NNums,Ivals) :- phrase(([start],ivals(NNums)),Ivals,[]). ivals([X0,X1|Xs]) --> {I1 is X1-X0}, [I1], ivals([X1|Xs]). ivals([_]) --> []. % NB option defaults here must match those in PRISM source files. model_options(markov(nnum,_)) --> optopt(prior_shape, [binomial+0.1*uniform, binomial+uniform, uniform]), optopt(gamut,[40-100]). model_options(markov(ival,_)) --> optopt(prior_shape, [uniform, binomial+uniform, binomial+0.1*uniform]). model_options(gilbert(_)) --> [leap_range((-20)-(20))], optopt(leap_shape, [uniform, binomial+uniform, binomial+0.1*uniform]), optopt(pass_shape, [binomial, binomial+uniform, binomial+0.1*uniform]). model_options(hmm(nnum)) --> optopt(prior_shape, [binomial+0.1*uniform, binomial+uniform, uniform]), anyopt(num_states, [1,2,3,5,7,12,18]), optopt(trans_self, [1]), % optopt(gamut,[40-100]). % anyopt(trans_self, [1]), anyopt(gamut,[40-100]). model_options(hmm(nnum,NS)) --> [num_states(NS)], optopt(prior_shape, [binomial+0.1*uniform, binomial+uniform, uniform]), optopt(trans_self, [1]), % optopt(gamut,[40-100]). % anyopt(trans_self, [1]), anyopt(gamut,[40-100]). model_options(hmm(ival)) --> optopt(prior_shape, [binomial+0.1*uniform, binomial+uniform, uniform]), anyopt(num_states, [5,7,12,24]), [leap_range((-20)-(20))]. model_options(matlab(p1gram)) --> optopt(prior_shape, [binomial+0.1*uniform, binomial+uniform, uniform]), optopt(gamut,[40-100]). model_options(matlab(p2gram)) --> optopt(prior_shape, [binomial+0.1*uniform, binomial+uniform, uniform]), optopt(gamut,[40-100]). model_options(matlab(phmm)) --> optopt(prior_shape, [binomial+0.1*uniform, binomial+uniform, uniform]), anyopt(num_states, [1,2,3,5,7,12,18]), optopt(gamut,[40-100]). model_subset_options(markov(nnum,_)) --> [prior_shape(binomial+0.1*uniform)]. model_subset_options(markov(ival,_)) --> [prior_shape(binomial+0.1*uniform)]. model_subset_options(gilbert(_)) --> []. model_subset_options(hmm(nnum)) --> [prior_shape(binomial+0.1*uniform)], anyopt(num_states,[2,5,7,12,18]). model_subset_options(hmm(ival)) --> [prior_shape(binomial+0.1*uniform), leap_range((-20)-(20))], anyopt(num_states,[2,5,7,12]). build_options(Model,Opts) :- build_options(Model,Opts1,[]), sort(Opts1,Opts). build_options(Model) --> optopt(prior_weight,[0.3,3,10]), % NB have removed 0.1 and 30 model_options(Model). build_subset_options(Model,Opts) :- build_subset_options(Model,Opts1,[]), sort(Opts1,Opts). build_subset_options(Model) --> optopt(prior_weight,[0.1,0.3,3,10,30]), model_subset_options(Model). anyopt(Name,Vals) --> {maplist(\X^Y^(Y=..[Name,X]),Vals,Opts)}, any(Opts). optopt(Name,Vals) --> []; anyopt(Name,Vals). best_first(Meth,Mod,Prepare,DS,Opts,learn(Meth,Mod,Prepare,DS,Opts,F)) :- order_by([asc(F)], learn_bpe(Meth,Mod,Prepare,DS,Opts,F)). /* TODO: Sort out HMM init options. They are all wrong: init_shape : shape of prior over initial state {uniform} trans_shape : shape of prior over transition distribution {uniform} trans_persistence : add self transtion counts {0,1,3} init_noise : perturbation of initial obs counts {0,0.1} restarts: {3} compare p2gram with hmm(1) */ %% map_filter(+P:pred(A,B),+Xs:list(A),-Ys:list(B)) is det. % % map_filter(P,Xs,Ys) is similar to maplist(P,Xs,Ys), except that P is allowed to % fail and the resulting list Ys contains only those elements Y for which call(P,X,Y). % P is used as if it was semi-deterministic: only the first solution is accepted. map_filter(_,[],[]). map_filter(P,[X|XX],[Y|YY]) :- call(P,X,Y), !, map_filter(P,XX,YY). map_filter(P,[_|XX],YY) :- map_filter(P,XX,YY). user:file_search_path(home,X) :- expand_file_name('~',[X]). user:file_search_path(prism,home('src/probprog/prism/psm')). restart_prism :- prism_start('prism.log'). retry_on_error(G,M) :- catch((restart_prism,G,Status=ok), Ex, Status=error(Ex)), ( Status=ok -> true ; format('*** terminated with ~w.\n',[Ex]), shell('say ALERT: THERE WAS AN ERROR!'), ( succ(N,M) -> retry_on_error(G,N) ; writeln('failing after too many retries.'), shell('say ALERT: I AM GIVING UP!'), shell('say ALERT: I AM GIVING UP!'), fail ) ). %% summary_array(+Meth:method,+Models:list(model),+Datasets:list(dataset),-Summary) is det. summary_array(Meth,Models,Datasets,arr(Summary)) :- maplist( \Model^RR^maplist(\DS^{arr(R)}^method_model_dataset_results(Meth,Model,DS,R),Datasets,RR), Models,Summary). %% method_model_dataset_results(+Method,+Model,+Dataset,Results:list(list(number))) is det. method_model_dataset_results(Meth,Model,DS,Results) :- bagof( Row, datum(Meth,Model,DS,Row), Results). %% datum(+Method:method,+Model:model,+Dataset,-Datum:list(number)) is nondet. % % Maps trained models to a numerical tuple consisting of % the free energy (in bits per event), the prior weight parameter, and one or two % shape parameters, depending on the model. The shape parameter is 0 for a uniform % prior, 1 for a binomial prior, and between 0 and 1 for linear interpolation between % the two. % % Grammar models have leap_shape and pass_shape parameters, while the others % have a single prior_shape parameter. datum(Meth,gilbert(I),DS,[FE,W,K1,K2]) :- model_module_prep(gilbert(I),Mod,Prep), learn_bpe(Meth,Mod,Prep,DS,Opts,FE), option(prior_weight(W),Opts,1), option(leap_shape(Sh1),Opts,binomial), option(pass_shape(Sh2),Opts,uniform), shape_param(Sh1,K1), shape_param(Sh2,K2). datum(Meth,markov(Rep,Ord),DS,[FE,W,K]) :- model_module_prep(markov(Rep,Ord),Mod,Prep), learn_bpe(Meth,Mod,Prep,DS,Opts,FE), option(prior_weight(W),Opts,1), option(prior_shape(Sh),Opts,binomial), shape_param(Sh,K). datum(Meth,hmm(Rep),DS,[FE,W,K]) :- model_module_prep(hmm(Rep),Mod,Prep), learn_bpe(Meth,Mod,Prep,DS,Opts,FE), option(prior_weight(W),Opts,1), option(prior_shape(Sh),Opts,binomial), shape_param(Sh,K). datum(Meth,hmm(Rep,NS),DS,[FE,W,K]) :- model_module_prep(hmm(Rep),Mod,Prep), learn_bpe(Meth,Mod,Prep,DS,Opts,FE), option(num_states(NS),Opts), option(prior_weight(W),Opts,1), option(prior_shape(Sh),Opts,binomial), shape_param(Sh,K). datum(Meth,matlab(F),DS,[FE,W,K]) :- model_module_prep(matlab(F),Mod,Prep), learn_bpe(Meth,Mod,Prep,DS,Opts,FE), option(prior_weight(W),Opts,1), option(prior_shape(Sh),Opts,binomial), shape_param(Sh,K). shape_param(uniform,0). shape_param(binomial,1). shape_param(binomial+uniform,0.5). shape_param(uniform+binomial,0.5). shape_param(binomial+K*uniform,Lam) :- Lam = 1/(1+K).