Mercurial > hg > dml-open-cliopatria
view cpack/dml/api/perspectives.pl @ 0:718306e29690 tip
commiting public release
author | Daniel Wolff |
---|---|
date | Tue, 09 Feb 2016 21:05:06 +0100 |
parents | |
children |
line wrap: on
line source
/* Part of DML (Digital Music Laboratory) Copyright 2014-2015 Samer Abdallah, University of London This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this library; if not, write to the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA */ :- module(perspectives, []). /** <module> VIS API Perspectives Todo - Chord sequences - Standardise data structures */ :- use_module(library(http/http_dispatch), [http_link_to_id/3]). :- use_module(library(semweb/rdf_db)). :- use_module(library(semweb/rdf_label)). :- use_module(library(dcg_core)). :- use_module(library(insist)). :- use_module(library(computations)). :- use_module(library(backend_json)). :- use_module(library(dataset)). :- use_module(library(memo)). :- use_module(library(async)). :- use_module(library(mlserver)). :- use_module(api(dmlvis)). :- use_module(api(archive)). % :- setting(memoise_failures,boolean,false,"Whether or not to record failed computations to avoid retrying"). :- setting(default_recompute_policy,oneof([none,failed,force]),none,'Default policy on recomputing memoised computations'). :- setting(default_vamp_on_demand,boolean,false,'Default policy on doing VAMP computations on demand'). % registry of perspectives. dmlvis:perspective( getRecordingPerspective, Name, [+uri(URI),vamp_on_demand(V)-false|Params], cc(perspectives:rla(Pred,[vamp_on_demand(V)],URI)) ) :- rec_persp(Name, Params, Pred). dmlvis:perspective( getCollectionPerspective, Name, [+cid(CID),recompute(R)-none,vamp_on_demand(V)-false,coverage(C)-summary|Params], cc(perspectives:cla(Pred,[recompute(R),vamp_on_demand(V),coverage(C)],CID)) ) :- coll_persp(Name, Params, Pred). :- meta_predicate rla(2,+,+,-,-), cla(2,+,+,-,-). rla(Pred,Opts,URI,Result,stable) :- option(vamp_on_demand(V), Opts, false), with_global(vamp_on_demand, V, call(Pred,URI,Result)). cla(Pred,Opts,CID,Result,stable) :- check_collection(CID), call(Pred,Opts,CID,Result1), option(coverage(Cov),Opts,full), insist(filter_coverage(Cov,Result1,Result), invalid_coverage_parameter(Cov)). :- op(1050,xfy,=>). G1 => G2 --> (call_dcg(G1) -> call_dcg(G2); []). filter_coverage(full) --> []. filter_coverage(summary) --> dtrans(coverage,C1,C2) => {summarise_coverage(C1,C2)}. summarise_coverage --> foldl(replace_list_with_length,[failed,errors],[failed_count,errors_count]). replace_list_with_length(Key) --> dtrans(Key,List,Length) => {length(List,Length)}. replace_list_with_length(Key1,Key2) --> ddel(Key1,List) => {length(List,Len)}, dput(Key2,Len). dtrans(Key,Val1,Val2,D1,D2) :- get_dict(Key,D1,Val1,D2,Val2). ddel(Key,Val,D1,D2) :- del_dict(Key,D1,Val,D2). dput(Key,Val,D1,D2) :- put_dict(Key,D1,Val,D2). % dget(Key,Val,D,D) :- get_dict(Key,D,Val). check_collection(CID) :- insist(dataset_size(CID,Size), unknown_collection(CID)), debug(dmlvis(perspective),'Doing collection level analysis on ~d items.',[Size]). rec_persp( transcription, [], output_link(transcription(0))). rec_persp( transcription_fine, [], output_link(transcription(1))). rec_persp( chords, [], output_link(chords)). rec_persp( chord_notes, [], output_link(chord_notes)). rec_persp( beatroot, [], output_link(beats(beatroot))). rec_persp( key, [], output_link(key)). rec_persp( key_tonic, [], output_link(tonic)). rec_persp( beats, [], output_link(beats(qm))). rec_persp( tempo, [], output_link(tempo)). rec_persp( chromagram, [], output_link(chromagram)). rec_persp( mfcc, [], output_link(mfcc)). rec_persp( spectrogram, [offset(O)-0,length(L)-60], spectrogram_link(O,L)). rec_persp( tempo_nonuniform, [], nonuniform_tempo). rec_persp( tempo_uniform, [period(DT)-1,lang(L)-ml ], uniform_tempo(L,DT)). rec_persp( tempo_normalised, [num_samples(N)-20,lang(L)-ml ], normalised_tempo(L,N)). rec_persp( chord_histogram, [], chord_histogram). rec_persp( midi_pitch_histogram, [weighting(W)-none], pitch_histogram(W)). rec_persp( pitch_histogram, [weighting(W)-none, quant(Q)-5, min(Min)-0, max(Max)-127, lang(L)-ml ], freq_histogram(L,Min,Max,Q,W)). rec_persp( tempo_histogram, [period(DT)-1, num_bins(N)-50, min(Min)-20, max(Max)-360, lang(L)-ml ], tempo_histogram(L,DT,Min,Max,N)). %% coll_persp(P:perspective(A), Params:list(param), Pred:pred(+options,+dataset,-A)) is nondet. % % Database of collection perspectives. The first argument is an atom denoting a perspective % which returns results of type A. Params must be defined as in dmlvis:options_optspec/2. % Pred must accept a list of options and a collection (dataset) id and produce a result. coll_persp( mean_tempo_curve, [num_samples(N)-20,lang(L)-ml], mem(collection_tempo_curve(L,N))). coll_persp( midi_pitch_histogram, [weighting(W)-none], mem(collection_pitch_histogram(W))). coll_persp( pitch_histogram, [weighting(W)-none, quant(Q)-5, min(Min)-20, max(Max)-100, lang(L)-ml], mem(collection_freq_histogram(L,Min,Max,Q,W))). coll_persp( tempo_histogram, [period(DT)-1, num_bins(N)-50, min(Min)-20, max(Max)-100, lang(L)-ml], mem(collection_tempo_histogram(L,DT,Min,Max,N))). coll_persp( pitch_lookup, [+midi_pitch(P), weighting(W)-none, limit(Lim)-5000,offset(Off)-0], nomem(collection_pitch_lookup(W,P,Lim,Off))). % using python back-end coll_persp( tonic_relative_pitch_class_histogram, [], mem(py_hist(transcription_tonic_duration, tonic_norm_semitone_hist:aggregate, [opts{normalisation:piece}]))). coll_persp( tonic_histogram, [], mem(py_hist(tagged(tonic), key_tonic_hist:aggregate, []))). coll_persp( pitch_class_histogram, [], mem(py_hist(tagged(transcription), semitone_hist:aggregate, []))). coll_persp( tuning_stats, [], mem(py_cla(tagged(transcription(1)),tuning_stats:per_file,[]))). coll_persp( tuning_stats_by_year, [], mem(py_cla(transcription_date,tuning_stats_byyear:per_file,[]))). coll_persp( places_hist, [], nomem(py_cla(list_places,places_hist:per_file,[]))). coll_persp( key_relative_chord_seq, [ spm_minlen(MinLen)-2, spm_maxseqs(MaxSeqs)-500, spm_algorithm(Alg)-'CM-SPADE', spm_ignore_n(Ignn)-1, spm_maxtime(Smaxt)-60, spm_minsupport(Smins)-50 ], mem(py_cla( keys_chords,chord_seq_key_relative:aggregate, [opts{ spm_minlen:MinLen, spm_maxseqs:MaxSeqs, spm_algorithm:Alg, spm_ignore_n:Ignn,spm_maxtime:Smaxt,spm_minsupport:Smins } ]))). coll_persp( similarity, [ sim_downsample(SimDown)-1,sim_clusters(SimClusters)-40,sim_reclimit(Limo)-2000, sim_type(SimType)-'euclidean',sim_features(SimFeat)-'chromagram', sim_compressor(SimComp)-'zlib'], mem(py_cla(similarity_bundle,similarity:per_file, [opts{sim_type:SimType,sim_clusters:SimClusters,sim_downsample:SimDown, sim_reclimit:Limo,sim_features:SimFeat,sim_compressor:SimComp}]))). % adaptor to ignore collection perspective options parameter nomem(Goal,Opts,CID,Result) :- option(vamp_on_demand(V), Opts, false), with_global(vamp_on_demand, V, with_progress_stack(call(Goal,CID,Result))). dmlvis:param( recompute, [oneof([none,failed,force]), default(Def), description('Controls handling of memoised collection level results')]) :- setting(default_recompute_policy,Def). dmlvis:param( vamp_on_demand, [boolean, default(Def), description('Whether to run VAMP plugins if results are not already available')]) :- setting(default_vamp_on_demand,Def). dmlvis:param( coverage, [oneof([full,summary]), default(summary), description('How much detail to provide about recordings not successfully included in CLA')]). dmlvis:param( offset, [number, default(0), description('Offset into signal in seconds')]). dmlvis:param( length, [number, default(60), description('Length of signal extract in seconds')]). dmlvis:param( weighting, [oneof([none,dur,vel]), default(none), description('Weighting for pitch_histogram perspective')]). dmlvis:param( quant, [nonneg, default(5), description('Subdivisions of a semitone for freq_histogram')]). dmlvis:param( period, [number, default(1), description('Sampling period in seconds')]). dmlvis:param( num_bins, [nonneg, default(50), description('Number of bins for histogram')]). dmlvis:param( num_samples, [nonneg, default(50), description('Number of samples for normalised histogram')]). dmlvis:param( max, [nonneg, default(100), description('Max pitch for pitch histogram')]). dmlvis:param( min, [nonneg, default(20), description('Min pitch for pitch histogram')]). dmlvis:param( lang, [oneof([ml,r]), default(r), description('Numerical computations language')]). /* chord sequence parameters */ dmlvis:param( spm_minlen, [nonneg, default(2), description('Minimum length of chord sequence')]). dmlvis:param( spm_maxseqs, [nonneg, default(500), description('Maximum number of sequences to return')]). dmlvis:param( spm_algorithm, [atom, default('CM-SPADE'), description('CM-SPADE, TKS or ClaSP')]). dmlvis:param( spm_ignore_n, [nonneg, default(1), description('Ignore failed chord detections')]). dmlvis:param( spm_maxtime, [nonneg, default(60), description('Max. runtime for SPM algorithm')]). dmlvis:param( spm_minsupport, [nonneg, default(50), description('Minimal Support in Percent')]). /* similarity parameters */ dmlvis:param( sim_type, [atom, default('euclidean'), description('Tpye of similarity measure: euclidean, compression')]). dmlvis:param( sim_clusters, [nonneg, default(40), description('Number of clusters for vector Quantisation (40-200)')]). dmlvis:param( sim_downsample, [nonneg, default(1), description('Downsample the audio analysis to a resolution of 1 second')]). dmlvis:param( sim_reclimit, [nonneg, default(2000), description('Maximum number of recordings in dataset')]). dmlvis:param( sim_features, [atom, default('chromagram'), description('Feature basis of the similarity estimation, any combination, separated by comma: chromagram,mfcc,chords')]). dmlvis:param( sim_compressor, [atom, default('zlib'), description('Compressor for similarity estimation: zlib, zxd')]). :- rdf_meta transform_computation(+,r,r). transform_computation(Class,In,Out) :- ( transform(Class,Fn), computation(Fn,In,Out) *-> true ; ( nb_current(vamp_on_demand,true) -> insist(transform(Class,Fn), unrecognised_transform_class(Class)), % picks first match format(string(Desc),"Running computation ~w on ~w.",[Fn,In]), simple_task(Desc,computation_memo(Fn,In,Out)) ; throw(missing_computation(Class,In)) ) ). :- rdf_meta transform_op(+,+,r,-). transform_op(TName,Op,In,Out) :- transform_computation(TName,In,X), csv_op(Op,X,Out). % ------- recording level perspectives ------------ spectrogram_link(Offs,Len,URI,_{image_url:Link}) :- http_link_to_id(spectrogram_window, [uri(URI), offset(Offs), length(Len)], Link). output_link(TransformName,Input,_{csv:Output}) :- transform_computation(TransformName,Input,Output). chord_histogram(URI,_{values:Chords, counts:Counts}) :- transform_op(chords,chord_hist,URI,Hist), unzip(Hist,Chords,Counts). pitch_histogram(W,URI,_{values:NNs, counts:Counts}) :- transform_op(transcription,pitch_hist(W),URI,Hist), unzip(Hist,NNs,Counts). freq_histogram(ml,Min,Max,Q,W,URI,_{edges:Edges, counts:Counts}) :- microtone_map(Min,Max,Q,Map), transform_op(transcription(1),freq_hist(Map,W),URI,Counts), map_edges(ml,Map,Edges). freq_histogram(r,Min,Max,Q,W,URI,_{edges:Edges, counts:Counts}) :- microtone_map(Min,Max,Q,Map), transform_op(transcription(1),freq_hist_r(Map,W),URI,Counts), map_edges(r,Map,Edges). nonuniform_tempo(URI,_{times:Times, values:Values}) :- transform_op(tempo,tempo,URI,Result), unzip(Result,Times,Values). uniform_tempo(ml,DT,URI,_{times:Times, values:Values}) :- transform_op(tempo,uniform_tempo(DT),URI,Result), Result=Times-Values. uniform_tempo(r,DT,URI,_{times:Times, values:Values}) :- transform_op(tempo,uniform_tempo_r(DT),URI,Result), Result=Times-Values. normalised_tempo(ml,N,URI,_{times:Times, values:Values}) :- transform_op(tempo,normalised_tempo(N),URI,Result), Result=Times-Values. normalised_tempo(r,N,URI,_{times:Times, values:Values}) :- transform_op(tempo,normalised_tempo_r(N),URI,Result), Result=Times-Values. tempo_histogram(ml,DT,Min,Max,N,URI,_{edges:Edges, counts:Counts}) :- insist(Min>0, domain_error(min,"positive value",Min)), Map=expmap(Min,Max,N), map_edges(ml,Map,Edges), transform_op(tempo,tempo_hist(DT,Map),URI,Result), Result=_-Counts. tempo_histogram(r,DT,Min,Max,N,URI,_{edges:Edges, counts:Counts}) :- insist(Min>0, domain_error(min,"positive value",Min)), Map=expmap(Min,Max,N), map_edges(r,Map,Edges), transform_op(tempo,tempo_hist_r(DT,Map),URI,Result), Result=_-Counts. % ------- collection level perspectives ------------ collection_pitch_histogram(W,CID,Result) :- Min-Max = 20-100, % !!! FIXME numlist(Min,Max,NNs), dataset_histogram(CID, dense_pitch_hist(Min,Max,W), _{values:NNs}, Result). collection_pitch_lookup(Weighting, Pitch, Lim, Offset, CID, Result) :- map_reduce_dataset(rec_pitch_hist(Weighting), pitch_lookup_cont(Pitch,Lim,Offset), CID, Result). pitch_lookup_cont(Pitch,Lim,Offset,RecHists, _{items:Items}) :- findall( _{ uri: Rec, label:Label, count:Count, prob:Prob }, offset(Offset, limit(Lim, order_by( [desc(Prob)], ( member(Rec-Hist,RecHists), rdf_display_label(Rec,Label), pitch_hist_prob(Hist,Pitch,Count,Prob) )))), Items). % collection_pitch_lookup_alt(Weighting, Pitch, Lim, Offset, CID, _{ items:Items, coverage:Coverage}) :- % findall_map_coverage(dataset_item(CID), rec_transcription, RecTrans, Coverage), % findall( _{ uri: Rec, label:Label, count:Count, prob:Prob }, % offset(Offset, limit(Lim, order_by( [desc(Prob)], % ( csv_pitch_count_prob(Weighting,Trans,Pitch,Count,Prob), % member(Rec-Trans,RecTrans), % rdf_display_label(Rec,Label) % )))), % Items). % % rec_transcription(Rec,Rec-Transcription) :- transform_computation(transcription,Rec,Transcription). collection_freq_histogram(Lang,Min,Max,Q,W,CID,Result) :- Map=binmap(Min,Max,(Max-Min)*Q+1), map_edges(Lang,Map,Edges), dataset_histogram(CID, dense_freq_hist(Lang,Map,W),_{edges:Edges}, Result). collection_tempo_histogram(Lang,DT,Min,Max,N,CID,Result) :- insist(Min>0, domain_error(min,"positive value",Min)), Map=expmap(Min,Max,N), map_edges(Lang,Map,Edges), dataset_histogram(CID, tempo_hist(Lang,DT,Map), _{edges:Edges}, Result). collection_tempo_curve(Lang,N,CID, Result) :- map_reduce_dataset(tempo_curve(Lang,N), tempo_curves_stats(Lang), CID, Result). dataset_histogram(CID, Mapper, Dict, Result) :- dataset_map_fold_reduce(CID,Mapper,with_dl(fold_hist),finish_hist(Dict),nothing,Result). fold_hist([], S, S) :- !. fold_hist(Xs, just(C1), just(C2)) :- !, insist(seqmap(maplist(add),Xs,C1,C2)). fold_hist([X|Xs], nothing, just(C)) :- insist(seqmap(maplist(add),Xs,X,C)). finish_hist(Dict,just(Counts),Hist) :- put_dict(counts,Dict,Counts,Hist). py_hist(Mapper, PyFunction, Args, CID, _{counts:H,values:D,coverage:C,py_coverage:PYC}) :- py_cla(Mapper,PyFunction,Args, CID, _{stats:_{counts:H,domain:D},coverage:C,py_coverage:PYC}). py_cla(Mapper, PyFunction, Args, CID, Result) :- map_reduce_dataset(Mapper, py_cla_cont(PyFunction,Args), CID, Result). py_cla_cont(PyFunction,Args, Ok, _{stats:Result, py_coverage:Coverage}) :- python_apply(PyFunction,[Ok|Args],Reply), Reply = _{result:Result, stats:Coverage}. % CLA mappers rec_pitch_hist(W,Rec,Rec-Hist) :- transform_op(transcription,pitch_hist(W),Rec,Hist). dense_pitch_hist(Min,Max,W,Rec,DenseHist) :- transform_op(transcription,pitch_hist(W),Rec,SparseHist), sparse_to_dense(Min,Max,SparseHist,DenseHist). dense_freq_hist(ml,Map,W,Rec,Counts) :- transform_op(transcription(1),freq_hist(Map,W),Rec,Counts). dense_freq_hist(r,Map,W,Rec,Counts) :- transform_op(transcription(1),freq_hist_r(Map,W),Rec,Counts). tempo_hist(ml,DT,Map,Rec,Counts) :- transform_op(tempo,tempo_hist(DT,Map),Rec,Result), Result=_-Counts. tempo_hist(r,DT,Map,Rec,Counts) :- transform_op(tempo,tempo_hist_r(DT,Map),Rec,Result), Result=_-Counts. tempo_curve(ml,N,Rec,Values) :- transform_op(tempo,normalised_tempo(N),Rec,Result), Result=_-Values. tempo_curve(r,N,Rec,Values) :- transform_op(tempo,normalised_tempo_r(N),Rec,Result), Result=_-Values. transcription_tonic_duration(Rec, _{transcription: Transcription, tonic: Tonic, duration:0 }) :- tagged(transcription,Rec,Transcription), tagged(tonic,Rec,Tonic). transcription_date(Rec, _{transcription: Transcription, date:Date}) :- tagged(transcription(1),Rec,Transcription), insist(recording_property(Rec,date,Date),missing_property(Rec,date)). keys_chords(Rec, _{keys: Keys, chords:Chords}) :- tagged(key,Rec,Keys), tagged(chords,Rec,Chords). similarity_bundle(Rec, _{chromagram: Chromagram, mfcc:Mfcc, keys: Keys, chords:Chords, list:_{uri:Rec, label:Label}}) :- % nb_getval(vamp_on_demand,Vamp), % concurrent_maplist(tagged_parallel(Vamp,Rec),[chromagram,mfcc,key,chords],[Chromagram,Mfcc,Keys,Chords]), maplist(tagged,[chromagram,mfcc,key,chords],[Rec,Rec,Rec,Rec],[Chromagram,Mfcc,Keys,Chords]), insist(recording_property(Rec,label,Label),missing_property(Rec,label)). tagged_parallel(Vamp,Rec,Transform,Result) :- nb_setval(vamp_on_demand,Vamp), with_progress_stack(tagged(Transform,Rec,Result)). list_places(Rec, _{place:Place,list:_{uri:Rec, label:Label}}) :- insist(recording_property(Rec,place,Place),missing_property(Rec,place)), insist(recording_property(Rec,label,Label),missing_property(Rec,label)). % for later... % tagged_list(Spec,Rec,Dict) :- % maplist(tagged_item(Rec),Spec,Pairs), % dict_create(Dict,_,Pairs). % tagged_item(Rec,Key:Transform,Key:Value) :- tagged(Transform,Rec,Value). tagged(Transform,Input,csv{value:Path}) :- transform_computation(Transform,Input,R), uri_absolute_path(R,Path). % --------------------------------------------------- :- initialization time(memo_attach(memo(perspectives),[])). :- persistent_memo cla_memo(+spec:ground,+cid:atom,-result:any). cla_memo(Spec,CID,Result) :- debug(perspectives(cla),'cla_mem: ~q',[call(Spec,CID,Result)]), with_progress_stack(call(Spec,CID,Result)). %% mem(+Spec:pred(+cid,-A),+Opts:options,+CID:cid,-Result:A) is det. % % Asynchronous memoised collection-level computation. % Spec must be a ground term that can be called with two arguments: the id of a % collection and a variable, which must be bound to an arbitrary result term on exit. % If the computation has already be done and memoised in cla_memo/3, then the result is % retrieved. Otherwise, the computation is started asynchronously and an exception % describing the state of the computation will be thrown. % == % * dml_error(10, _{status:already_waiting, position:n}) % the goal was previously added and is now waiting at position n in the queue. % * dml_error(11, _{status:already_running, progress:Progress}) % the goal was previously added and is currently running, with some progress information. % * dml_error(12, _{status:initiate, position:N}) % Means the goal has been added to the work queue of the thread pool at position N. % == % Options are options passed to control interaction with async_memo. mem(Spec,Opts,CID,Result) :- option(vamp_on_demand(V), Opts, false), async_memo(vis_cla,cla_memo(Spec,CID,Result),Status, [ progress_levels([elapsed,summary,partial_result]), globals([vamp_on_demand-V])|Opts ]), ( Status=done(_-ok) -> true ; status_response(Status,Code,Dict), ( Status=done(_) -> Dict1=Dict ; estimate_run_time(Spec,CID,ERT), put_dict(ert,Dict,ERT,Dict1) ), throw(dml_error(Code,Dict1)) ). % very crude estimate estimate_run_time(Spec,CID0,ERT) :- findall(Size-Dur, ( browse(cla_memo(Spec,CID,_),comp(_,_,Dur)-ok), dataset_size(CID,Size)), Pairs), length(Pairs,N), ( N=0 -> ERT is -1 ; maplist(computations:pair,Sizes,Durs,Pairs), sumlist(Sizes,TotalSize), sumlist(Durs,TotalDur), dataset_size(CID0,Size), ERT is TotalDur*Size/TotalSize ). status_response(spawned(ID,Pos), 12, Info) :- Info = _{status:initiated, id:ID, position:Pos }. status_response(waiting(ID,T,Pos), 10, Info) :- Info = _{status:already_waiting, id:ID, submit_time:TS, position:Pos }, time_to_string(T,TS). status_response(running(ID,TStart,_,nothing), 11, Info) :- Info = _{ id:ID, status:already_running, start_time:TS }, time_to_string(TStart,TS). status_response(running(ID,TStart,_,just(Time-[Progress,Partial])), 11, Info) :- maplist(progress_json,Progress,Progs), time_to_string(TStart,TS), Elapsed is Time-TStart, ( member(stepwise(_,Done/Total),Progress), Done>0 -> ETA is Elapsed*(Total-Done)/Done ; ETA is -1 ), Info1 = _{ id:ID , status:already_running , start_time:TS , elapsed_time:Elapsed , progress:Progs , eta:ETA }, ( Partial=just(R) -> put_dict(partial_result,Info1,R,Info) ; Info=Info1 ). status_response(recomputing(ID,Pos,Meta), 13, Info) :- Info = _{status:recomputing, id:ID, position:Pos, meta:MD}, meta_dict(Meta,MD). status_response(done(Meta), 14, _{status:failed, meta:MD}) :- meta_dict(Meta,MD). meta_dict(comp(_,Time,Dur)-Result, _{ date: Date, duration:Dur, reason:Reason}) :- format_result(Result,Reason), time_to_string(Time,Date). format_result(fail,'Unspecified failure'). format_result(ex(Ex),Description) :- message_to_string(Ex,Description). time_to_string(Time,String) :- format_time(string(String),'%FT%T%:z',Time). progress_json(A,A) :- atomic(A), !. progress_json(stepwise(Desc,Done/Total), _{ task:Task, total:Total, done:Done }) :- !, progress_json(Desc,Task). progress_json(T,A) :- message_to_string(T,A). prolog:message(map_fold(_Mapper,_Folder)) --> ['Map-fold']. :- multifile thread_pool:create_pool/1. thread_pool:create_pool(vis_cla) :- current_prolog_flag(cpu_count,N), thread_pool_create(vis_cla, N, [backlog(20)]). % ------------ computations with progress ------------------ map_reduce_dataset(Mapper,Reducer,CID,Result) :- dataset_map_fold_reduce(CID,Mapper,append_dl,with_dl(Reducer),H-H,Result). append_dl(HH-TT,H-HH,H-TT). with_dl(P,H-[],A) :- call(P,H,A). with_dl(P,H-[],A,B) :- call(P,H,A,B). dataset_map_fold_reduce(CID,Mapper,Folder,Reducer,S0,Result) :- dataset_items(CID,Items), with_cont( 'Map-fold-reduce', map_fold_with_progress( safe_call(Mapper), safe_fold(Folder), Items, s(0,F-F,E-E,S0)), reduce_cont(Reducer), Result). reduce_cont(Reducer,s(NOk,Failed-[],Erroneous-[],S), R) :- ( NOk>0 -> simple_task(reducing(Reducer),call(Reducer,S,R1)), put_coverage(NOk,Failed,Erroneous,R1,R) ; put_coverage(NOk,Failed,Erroneous,_{status:'no successfully mapped items'},D), throw(dml_error(20, D)) ). put_coverage(NOk,Failed,Erroneous,R1,R) :- put_dict(coverage,R1,_{ok_count:NOk, failed:Failed, errors:Erroneous},R). safe_call(Mapper,X,Z) :- ( catch((call(Mapper,X,Y), Z=ok(X,Y)), Ex, ( Ex=abort(_) -> throw(Ex) ; Z=error(X,Ex))), ! ; Z=fail(X) ). safe_fold(Folder,Items,s(NOk1,FH-FT1,EH-ET1,S1),s(NOk2,FH-FT2,EH-ET2,S2)) :- seqmap(partition,Items,s(NOk1,OkH,FT1,ET1),s(NOk2,OkT,FT2,ET2)), call(Folder,OkH-OkT,S1,S2). partition(ok(_,X),s(N,[X|O],F,E),s(M,O,F,E)) :- M is N+1. partition(fail(X),s(N,O,[X|F],E),s(N,O,F,E)). partition(error(X,Ex),s(N,O,F,[_{item:X, error:Msg}|E]),s(N,O,F,E)) :- message_to_string(Ex,Msg).