annotate dml-cla/python/tonic_norm_semitone_hist.py @ 0:718306e29690 tip

commiting public release
author Daniel Wolff
date Tue, 09 Feb 2016 21:05:06 +0100
parents
children
rev   line source
Daniel@0 1 # Part of DML (Digital Music Laboratory)
Daniel@0 2 # Copyright 2014-2015 Steven Hargreaves; Samer Abdallah, University of London
Daniel@0 3
Daniel@0 4 # This program is free software; you can redistribute it and/or
Daniel@0 5 # modify it under the terms of the GNU General Public License
Daniel@0 6 # as published by the Free Software Foundation; either version 2
Daniel@0 7 # of the License, or (at your option) any later version.
Daniel@0 8 #
Daniel@0 9 # This program is distributed in the hope that it will be useful,
Daniel@0 10 # but WITHOUT ANY WARRANTY; without even the implied warranty of
Daniel@0 11 # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
Daniel@0 12 # GNU General Public License for more details.
Daniel@0 13 #
Daniel@0 14 # You should have received a copy of the GNU General Public
Daniel@0 15 # License along with this library; if not, write to the Free Software
Daniel@0 16 # Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
Daniel@0 17
Daniel@0 18 # -*- coding: utf-8 -*-
Daniel@0 19 __author__="hargreavess, abdallahs, wolffd"
Daniel@0 20
Daniel@0 21 import sys
Daniel@0 22 from csvutils import *
Daniel@0 23 from pitchutils import *
Daniel@0 24 from aggregate import *
Daniel@0 25 from rdflib import RDF, RDFS
Daniel@0 26 from rdfutils import parse_xsd_duration, event_ns, tl_ns, af_ns
Daniel@0 27 from n3Parser import get_rdf_graph_from_n3
Daniel@0 28 from semitone_hist import notes_histogram, transcription_from_csv, transcription_from_n3
Daniel@0 29 from key_tonic_hist import tonic_from_n3, tonic_from_csv
Daniel@0 30
Daniel@0 31 # Compute aggregate pitch histogram from a list of input transcriptions.
Daniel@0 32 def aggregate(transcriptions_tonics,opts):
Daniel@0 33 parser_table = { 'n3':transcription_from_n3,
Daniel@0 34 'csv':transcription_from_csv }
Daniel@0 35
Daniel@0 36 hist = 12*[0] # will be aggragate histogram
Daniel@0 37 def add_no_norm(h):
Daniel@0 38 for x in range(0, 12): hist[x] += h[x]
Daniel@0 39
Daniel@0 40 def add_norm(h):
Daniel@0 41 total=sum(h)
Daniel@0 42 for x in range(0, 12): hist[x] += h[x]/total
Daniel@0 43
Daniel@0 44 if opts['normalisation']=='piece': add_to_hist=add_norm
Daniel@0 45 else: add_to_hist=add_no_norm
Daniel@0 46
Daniel@0 47 def accum(f):
Daniel@0 48 # subtract 1 from tonic because tonic_from_csv uses range 1 to 12 whilst this script uses 0 to 11
Daniel@0 49 add_to_hist( rotate_left( notes_histogram(decode_tagged(parser_table,f['transcription'])),
Daniel@0 50 argmax(find_tonic_histogram(f['tonic']['value'],f['duration']))))
Daniel@0 51
Daniel@0 52 # do_stuff
Daniel@0 53 stats=for_each(transcriptions_tonics,accum)
Daniel@0 54 return { 'result': discrete_hist([str(i) for i in range(1,13)],hist), 'stats':stats }
Daniel@0 55
Daniel@0 56 def rotate_left(x,n): return x[n:]+x[:n]
Daniel@0 57
Daniel@0 58 def argmax(x): return max(range(0,len(x)),key=x.__getitem__)
Daniel@0 59
Daniel@0 60 # Parse the qm-keydetector_tonic csv file, and generate
Daniel@0 61 # a tonic histogram
Daniel@0 62 def find_tonic_histogram(input_f_file,duration):
Daniel@0 63 tonic_hist = 12*[0]
Daniel@0 64 # ['time','keynr','label'] -> [time:float, keynr:in(range(0,12))]
Daniel@0 65 data = csv_map_columns(input_f_file,3,[lambda r:float(r[0]), lambda r:int(r[1])-1])
Daniel@0 66
Daniel@0 67 # build duration weighted histogram
Daniel@0 68 for idx in range(1,len(data[0]) ):
Daniel@0 69 tonic_hist[data[1][idx-1]] += data[0][idx] - data[0][idx-1]
Daniel@0 70
Daniel@0 71 # add last tonic if duration is given
Daniel@0 72 if duration>0:
Daniel@0 73 tonic_hist[data[1][-1]] += duration - data[0][-1]
Daniel@0 74
Daniel@0 75 return tonic_hist
Daniel@0 76