Mercurial > hg > dml-open-backendtools
view pyspark/sonic-annotator-notimeside/test_sonic_annotator_notimeside.py @ 0:e34cf1b6fe09 tip
commit
author | Daniel Wolff |
---|---|
date | Sat, 20 Feb 2016 18:14:24 +0100 |
parents | |
children |
line wrap: on
line source
# Part of DML (Digital Music Laboratory) # # This program is free software; you can redistribute it and/or # modify it under the terms of the GNU General Public License # as published by the Free Software Foundation; either version 2 # of the License, or (at your option) any later version. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public # License along with this library; if not, write to the Free Software # Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA #!/usr/local/spark-1.0.0-bin-hadoop2/bin/spark-submit # -*- coding: utf-8 -*- __author__="wolffd" __date__ ="$11-Jul-2014 15:31:01$" from pyspark import SparkConf, SparkContext import sys import os from sonic_annotator_vamp import * # this is the main routine to be submmitted as a spark job # # # Running python applications through ./bin/pyspark is deprecated as of Spark 1.0. # Use ./bin/spark-submit <python file> --py-files sonic_annotator_vamp.py # you can also provide a zip of all necessary python files # # @param string audiopath root of the folder structure to be traversed # @param string transform_file path to the .n3 turtle file describing the transform #def main(audiopath = '/home/wolffd/Documents/python/dml/TimeSide/tests/samples/', # transform_file = '/home/wolffd/Documents/python/dml/pyspark/sonic-annotator-notimeside/silvet_settings.n3', # masterip = '10.2.165.101'): def main(audiopath = '/CHARM-Collection', transform_file = 'bbc_speechmusic.n3', masterip = '0.0.0.0'): print "PySpark Telemeta and Vamp Test" # configure spark, cave: local profile uses just 1 core conf = (SparkConf() #.setMaster("local") .setMaster("spark://" + masterip + ":7077") .setAppName("Sonic Annotating") .set("spark.executor.memory", "40g") .set("spark.cores.max", "35")); sc = SparkContext(conf = conf) # here traverse the file structure data = [] for (dirpath, dirnames, filenames) in os.walk(audiopath): for file in filenames: if file.endswith(".wav") or file.endswith(".mp3") or file.endswith(".flac"): data.append(os.path.join(dirpath, file)) njobs = len(data) donejobs = sc.accumulator(0) print "Total: " + str(njobs) + " files" # define distributed dataset distData = sc.parallelize(data) # define map m1 = distData.map(lambda x: transform(wav_file=x,transform_file=transform_file)) # reduce (just do the maps ;) ) result = m1.collect() if __name__ == "__main__": if len(sys.argv) >= 3: main(sys.argv[1],sys.argv[2]) else: main()