Mercurial > hg > dml-open-backendtools
comparison pyspark/transforms/tonicNormSemitoneHistogram.py @ 0:e34cf1b6fe09 tip
commit
author | Daniel Wolff |
---|---|
date | Sat, 20 Feb 2016 18:14:24 +0100 |
parents | |
children |
comparison
equal
deleted
inserted
replaced
-1:000000000000 | 0:e34cf1b6fe09 |
---|---|
1 # Part of DML (Digital Music Laboratory) | |
2 # | |
3 # This program is free software; you can redistribute it and/or | |
4 # modify it under the terms of the GNU General Public License | |
5 # as published by the Free Software Foundation; either version 2 | |
6 # of the License, or (at your option) any later version. | |
7 # | |
8 # This program is distributed in the hope that it will be useful, | |
9 # but WITHOUT ANY WARRANTY; without even the implied warranty of | |
10 # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
11 # GNU General Public License for more details. | |
12 # | |
13 # You should have received a copy of the GNU General Public | |
14 # License along with this library; if not, write to the Free Software | |
15 # Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA | |
16 | |
17 # -*- coding: utf-8 -*- | |
18 __author__="hargreavess" | |
19 | |
20 import rdflib | |
21 from rdflib import Namespace, BNode, RDF, Literal | |
22 from n3Parser import get_rdf_graph_from_n3 | |
23 from semitoneHistogram import find_semitone_histogram, semitone_labels | |
24 from tonicHistogram import find_last_key_in_piece, find_most_common_key_in_piece | |
25 | |
26 dml_ns = Namespace("http://dml.org/dml/cla#") | |
27 perfilenorm = 1 | |
28 | |
29 # normalisation per clip ? | |
30 perfilenorm = 1 | |
31 | |
32 # Add triples representing a "pitch histogram" result to | |
33 # an RDF graph | |
34 def add_tonic_norm_semitone_histogram_to_graph(semitone_histogram, output_rdf_graph, transform, sample_count, input_f_files, input_rdf_graph): | |
35 | |
36 query = rdflib.plugins.sparql.prepareQuery( | |
37 """SELECT ?silvet_input ?tonic_input | |
38 WHERE { | |
39 ?tonicNormSemitoneInput dml:silvetInputSetItem ?silvet_input . | |
40 ?tonicNormSemitoneInput dml:tonicInputSetItem ?tonic_input . | |
41 }""", initNs = { "dml": dml_ns }) | |
42 | |
43 output_bnode = BNode() | |
44 output_rdf_graph.add((transform, dml_ns.output, output_bnode)) | |
45 | |
46 for transform_input in input_f_files: | |
47 | |
48 output_rdf_graph.add((transform, dml_ns.input, transform_input)) | |
49 qres = input_rdf_graph.query(query, initBindings={'tonicNormSemitoneInput': transform_input}) | |
50 | |
51 for row in qres: | |
52 | |
53 output_rdf_graph.add((transform_input, dml_ns.silvetInputSetItem, row.silvet_input)) | |
54 output_rdf_graph.add((transform_input, dml_ns.tonicInputSetItem, row.tonic_input)) | |
55 | |
56 output_rdf_graph.add((output_bnode, RDF.type, dml_ns.SemitoneHistogram)) | |
57 output_rdf_graph.add((output_bnode, dml_ns.sample_count, Literal(sample_count))) | |
58 | |
59 for semitone in semitone_histogram: | |
60 | |
61 bin_bnode = BNode() | |
62 output_rdf_graph.add((output_bnode, dml_ns.bin, bin_bnode)) | |
63 output_rdf_graph.add((bin_bnode, dml_ns.bin_number, Literal(semitone))) | |
64 output_rdf_graph.add((bin_bnode, dml_ns.bin_value, Literal(semitone_histogram.get(semitone)))) | |
65 output_rdf_graph.add((bin_bnode, dml_ns.bin_name, Literal(semitone_labels[semitone - 1]))) | |
66 | |
67 return output_rdf_graph | |
68 | |
69 # Parse the transform_inputs (sets of n3 files), and generate | |
70 # a tonic-normalised semitone histogram | |
71 def find_cla_tonic_norm_semitone_histogram(transform_inputs, input_rdf_graph): | |
72 | |
73 sample_count = len(transform_inputs) | |
74 semitone_hist = dict() | |
75 | |
76 for x in range(1, 13): | |
77 | |
78 semitone_hist[x] = 0 | |
79 | |
80 query = rdflib.plugins.sparql.prepareQuery( | |
81 """SELECT ?silvet_input ?tonic_input | |
82 WHERE { | |
83 ?tonicNormSemitoneInput dml:silvetInputSetItem ?silvet_input . | |
84 ?tonicNormSemitoneInput dml:tonicInputSetItem ?tonic_input . | |
85 }""", initNs = { "dml": dml_ns }) | |
86 | |
87 for transform_input in transform_inputs: | |
88 | |
89 qres = input_rdf_graph.query(query, initBindings={'tonicNormSemitoneInput': transform_input}) | |
90 | |
91 piece_semitone_hist = [] | |
92 | |
93 for row in qres: | |
94 | |
95 piece_semitone_hist = find_semitone_histogram(row.silvet_input, perfilenorm) | |
96 # piece_tonic = find_last_key_in_piece(row.tonic_input) | |
97 piece_tonic = find_most_common_key_in_piece(row.tonic_input) | |
98 piece_semitone_hist = normalise_semitone_hist_by_tonic(piece_semitone_hist, piece_tonic) | |
99 | |
100 for x in range(1, 13): | |
101 | |
102 semitone_hist[x] += piece_semitone_hist[x] | |
103 | |
104 # normalise the collection histogram by duration | |
105 hist_total = 0 | |
106 | |
107 for semitone_bin in semitone_hist: | |
108 | |
109 hist_total += semitone_hist[semitone_bin] | |
110 | |
111 for semitone_bin in semitone_hist: | |
112 | |
113 semitone_hist[semitone_bin] /= hist_total | |
114 | |
115 return (semitone_hist, sample_count) | |
116 | |
117 def normalise_semitone_hist_by_tonic(piece_semitone_hist, piece_tonic): | |
118 | |
119 tonic_norm_semitone_hist = dict() | |
120 | |
121 for semitone_bin in piece_semitone_hist: | |
122 | |
123 shifted_bin = ((semitone_bin - piece_tonic) % 12) + 1 | |
124 tonic_norm_semitone_hist[shifted_bin] = piece_semitone_hist[semitone_bin] | |
125 | |
126 return tonic_norm_semitone_hist |