comparison pyspark/transforms/tonicNormSemitoneHistogram.py @ 0:e34cf1b6fe09 tip

commit
author Daniel Wolff
date Sat, 20 Feb 2016 18:14:24 +0100
parents
children
comparison
equal deleted inserted replaced
-1:000000000000 0:e34cf1b6fe09
1 # Part of DML (Digital Music Laboratory)
2 #
3 # This program is free software; you can redistribute it and/or
4 # modify it under the terms of the GNU General Public License
5 # as published by the Free Software Foundation; either version 2
6 # of the License, or (at your option) any later version.
7 #
8 # This program is distributed in the hope that it will be useful,
9 # but WITHOUT ANY WARRANTY; without even the implied warranty of
10 # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
11 # GNU General Public License for more details.
12 #
13 # You should have received a copy of the GNU General Public
14 # License along with this library; if not, write to the Free Software
15 # Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
16
17 # -*- coding: utf-8 -*-
18 __author__="hargreavess"
19
20 import rdflib
21 from rdflib import Namespace, BNode, RDF, Literal
22 from n3Parser import get_rdf_graph_from_n3
23 from semitoneHistogram import find_semitone_histogram, semitone_labels
24 from tonicHistogram import find_last_key_in_piece, find_most_common_key_in_piece
25
26 dml_ns = Namespace("http://dml.org/dml/cla#")
27 perfilenorm = 1
28
29 # normalisation per clip ?
30 perfilenorm = 1
31
32 # Add triples representing a "pitch histogram" result to
33 # an RDF graph
34 def add_tonic_norm_semitone_histogram_to_graph(semitone_histogram, output_rdf_graph, transform, sample_count, input_f_files, input_rdf_graph):
35
36 query = rdflib.plugins.sparql.prepareQuery(
37 """SELECT ?silvet_input ?tonic_input
38 WHERE {
39 ?tonicNormSemitoneInput dml:silvetInputSetItem ?silvet_input .
40 ?tonicNormSemitoneInput dml:tonicInputSetItem ?tonic_input .
41 }""", initNs = { "dml": dml_ns })
42
43 output_bnode = BNode()
44 output_rdf_graph.add((transform, dml_ns.output, output_bnode))
45
46 for transform_input in input_f_files:
47
48 output_rdf_graph.add((transform, dml_ns.input, transform_input))
49 qres = input_rdf_graph.query(query, initBindings={'tonicNormSemitoneInput': transform_input})
50
51 for row in qres:
52
53 output_rdf_graph.add((transform_input, dml_ns.silvetInputSetItem, row.silvet_input))
54 output_rdf_graph.add((transform_input, dml_ns.tonicInputSetItem, row.tonic_input))
55
56 output_rdf_graph.add((output_bnode, RDF.type, dml_ns.SemitoneHistogram))
57 output_rdf_graph.add((output_bnode, dml_ns.sample_count, Literal(sample_count)))
58
59 for semitone in semitone_histogram:
60
61 bin_bnode = BNode()
62 output_rdf_graph.add((output_bnode, dml_ns.bin, bin_bnode))
63 output_rdf_graph.add((bin_bnode, dml_ns.bin_number, Literal(semitone)))
64 output_rdf_graph.add((bin_bnode, dml_ns.bin_value, Literal(semitone_histogram.get(semitone))))
65 output_rdf_graph.add((bin_bnode, dml_ns.bin_name, Literal(semitone_labels[semitone - 1])))
66
67 return output_rdf_graph
68
69 # Parse the transform_inputs (sets of n3 files), and generate
70 # a tonic-normalised semitone histogram
71 def find_cla_tonic_norm_semitone_histogram(transform_inputs, input_rdf_graph):
72
73 sample_count = len(transform_inputs)
74 semitone_hist = dict()
75
76 for x in range(1, 13):
77
78 semitone_hist[x] = 0
79
80 query = rdflib.plugins.sparql.prepareQuery(
81 """SELECT ?silvet_input ?tonic_input
82 WHERE {
83 ?tonicNormSemitoneInput dml:silvetInputSetItem ?silvet_input .
84 ?tonicNormSemitoneInput dml:tonicInputSetItem ?tonic_input .
85 }""", initNs = { "dml": dml_ns })
86
87 for transform_input in transform_inputs:
88
89 qres = input_rdf_graph.query(query, initBindings={'tonicNormSemitoneInput': transform_input})
90
91 piece_semitone_hist = []
92
93 for row in qres:
94
95 piece_semitone_hist = find_semitone_histogram(row.silvet_input, perfilenorm)
96 # piece_tonic = find_last_key_in_piece(row.tonic_input)
97 piece_tonic = find_most_common_key_in_piece(row.tonic_input)
98 piece_semitone_hist = normalise_semitone_hist_by_tonic(piece_semitone_hist, piece_tonic)
99
100 for x in range(1, 13):
101
102 semitone_hist[x] += piece_semitone_hist[x]
103
104 # normalise the collection histogram by duration
105 hist_total = 0
106
107 for semitone_bin in semitone_hist:
108
109 hist_total += semitone_hist[semitone_bin]
110
111 for semitone_bin in semitone_hist:
112
113 semitone_hist[semitone_bin] /= hist_total
114
115 return (semitone_hist, sample_count)
116
117 def normalise_semitone_hist_by_tonic(piece_semitone_hist, piece_tonic):
118
119 tonic_norm_semitone_hist = dict()
120
121 for semitone_bin in piece_semitone_hist:
122
123 shifted_bin = ((semitone_bin - piece_tonic) % 12) + 1
124 tonic_norm_semitone_hist[shifted_bin] = piece_semitone_hist[semitone_bin]
125
126 return tonic_norm_semitone_hist