comparison pyspark/sonic-annotator-notimeside/test_sonic_annotator_notimeside.py @ 0:e34cf1b6fe09 tip

commit
author Daniel Wolff
date Sat, 20 Feb 2016 18:14:24 +0100
parents
children
comparison
equal deleted inserted replaced
-1:000000000000 0:e34cf1b6fe09
1 # Part of DML (Digital Music Laboratory)
2 #
3 # This program is free software; you can redistribute it and/or
4 # modify it under the terms of the GNU General Public License
5 # as published by the Free Software Foundation; either version 2
6 # of the License, or (at your option) any later version.
7 #
8 # This program is distributed in the hope that it will be useful,
9 # but WITHOUT ANY WARRANTY; without even the implied warranty of
10 # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
11 # GNU General Public License for more details.
12 #
13 # You should have received a copy of the GNU General Public
14 # License along with this library; if not, write to the Free Software
15 # Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
16
17 #!/usr/local/spark-1.0.0-bin-hadoop2/bin/spark-submit
18 # -*- coding: utf-8 -*-
19 __author__="wolffd"
20 __date__ ="$11-Jul-2014 15:31:01$"
21
22 from pyspark import SparkConf, SparkContext
23 import sys
24 import os
25 from sonic_annotator_vamp import *
26
27 # this is the main routine to be submmitted as a spark job
28 #
29 #
30 # Running python applications through ./bin/pyspark is deprecated as of Spark 1.0.
31 # Use ./bin/spark-submit <python file> --py-files sonic_annotator_vamp.py
32 # you can also provide a zip of all necessary python files
33 #
34 # @param string audiopath root of the folder structure to be traversed
35 # @param string transform_file path to the .n3 turtle file describing the transform
36 #def main(audiopath = '/home/wolffd/Documents/python/dml/TimeSide/tests/samples/',
37 # transform_file = '/home/wolffd/Documents/python/dml/pyspark/sonic-annotator-notimeside/silvet_settings.n3',
38 # masterip = '10.2.165.101'):
39 def main(audiopath = '/CHARM-Collection',
40 transform_file = 'bbc_speechmusic.n3',
41 masterip = '0.0.0.0'):
42 print "PySpark Telemeta and Vamp Test"
43
44 # configure spark, cave: local profile uses just 1 core
45 conf = (SparkConf()
46 #.setMaster("local")
47 .setMaster("spark://" + masterip + ":7077")
48 .setAppName("Sonic Annotating")
49 .set("spark.executor.memory", "40g")
50 .set("spark.cores.max", "35"));
51 sc = SparkContext(conf = conf)
52
53 # here traverse the file structure
54 data = []
55 for (dirpath, dirnames, filenames) in os.walk(audiopath):
56 for file in filenames:
57 if file.endswith(".wav") or file.endswith(".mp3") or file.endswith(".flac"):
58 data.append(os.path.join(dirpath, file))
59 njobs = len(data)
60 donejobs = sc.accumulator(0)
61 print "Total: " + str(njobs) + " files"
62
63 # define distributed dataset
64 distData = sc.parallelize(data)
65
66 # define map
67 m1 = distData.map(lambda x: transform(wav_file=x,transform_file=transform_file))
68
69 # reduce (just do the maps ;) )
70 result = m1.collect()
71
72 if __name__ == "__main__":
73 if len(sys.argv) >= 3:
74 main(sys.argv[1],sys.argv[2])
75 else:
76 main()