Chris@0: /* -*- c-basic-offset: 4 indent-tabs-mode: nil -*- vi:set ts=8 sts=4 sw=4: */ Chris@0: Chris@0: #include "Resampler.h" Chris@0: Chris@0: #include "qm-dsp/maths/MathUtilities.h" Chris@0: #include "qm-dsp/base/KaiserWindow.h" Chris@0: #include "qm-dsp/base/SincWindow.h" Chris@0: Chris@0: #include Chris@1: #include Chris@8: #include Chris@1: Chris@1: using std::vector; Chris@8: using std::map; Chris@0: Chris@4: //#define DEBUG_RESAMPLER 1 Chris@4: Chris@0: Resampler::Resampler(int sourceRate, int targetRate) : Chris@0: m_sourceRate(sourceRate), Chris@0: m_targetRate(targetRate) Chris@0: { Chris@0: initialise(); Chris@0: } Chris@0: Chris@0: Resampler::~Resampler() Chris@0: { Chris@0: delete[] m_phaseData; Chris@0: } Chris@0: Chris@0: void Chris@0: Resampler::initialise() Chris@0: { Chris@0: int higher = std::max(m_sourceRate, m_targetRate); Chris@0: int lower = std::min(m_sourceRate, m_targetRate); Chris@0: Chris@0: m_gcd = MathUtilities::gcd(lower, higher); Chris@0: Chris@0: int peakToPole = higher / m_gcd; Chris@0: Chris@0: KaiserWindow::Parameters params = Chris@0: KaiserWindow::parametersForBandwidth(100, 0.02, peakToPole); Chris@0: Chris@0: params.length = Chris@0: (params.length % 2 == 0 ? params.length + 1 : params.length); Chris@0: Chris@0: m_filterLength = params.length; Chris@8: Chris@0: KaiserWindow kw(params); Chris@0: SincWindow sw(m_filterLength, peakToPole * 2); Chris@0: Chris@8: vector filter(m_filterLength, 0.0); Chris@0: for (int i = 0; i < m_filterLength; ++i) filter[i] = 1.0; Chris@8: sw.cut(filter.data()); Chris@8: kw.cut(filter.data()); Chris@0: Chris@0: int inputSpacing = m_targetRate / m_gcd; Chris@0: int outputSpacing = m_sourceRate / m_gcd; Chris@0: Chris@4: #ifdef DEBUG_RESAMPLER Chris@4: std::cerr << "resample " << m_sourceRate << " -> " << m_targetRate Chris@4: << ": inputSpacing " << inputSpacing << ", outputSpacing " Chris@4: << outputSpacing << ": filter length " << m_filterLength Chris@4: << std::endl; Chris@4: #endif Chris@0: Chris@0: m_phaseData = new Phase[inputSpacing]; Chris@0: Chris@0: for (int phase = 0; phase < inputSpacing; ++phase) { Chris@0: Chris@0: Phase p; Chris@0: Chris@0: p.nextPhase = phase - outputSpacing; Chris@0: while (p.nextPhase < 0) p.nextPhase += inputSpacing; Chris@0: p.nextPhase %= inputSpacing; Chris@0: Chris@4: p.drop = int(ceil(std::max(0.0, double(outputSpacing - phase)) Chris@4: / inputSpacing)); Chris@0: Chris@4: int filtZipLength = int(ceil(double(m_filterLength - phase) Chris@4: / inputSpacing)); Chris@0: for (int i = 0; i < filtZipLength; ++i) { Chris@0: p.filter.push_back(filter[i * inputSpacing + phase]); Chris@0: } Chris@0: Chris@0: m_phaseData[phase] = p; Chris@0: } Chris@0: Chris@0: // The May implementation of this uses a pull model -- we ask the Chris@0: // resampler for a certain number of output samples, and it asks Chris@0: // its source stream for as many as it needs to calculate Chris@0: // those. This means (among other things) that the source stream Chris@0: // can be asked for enough samples up-front to fill the buffer Chris@0: // before the first output sample is generated. Chris@0: // Chris@0: // In this implementation we're using a push model in which a Chris@0: // certain number of source samples is provided and we're asked Chris@0: // for as many output samples as that makes available. But we Chris@0: // can't return any samples from the beginning until half the Chris@0: // filter length has been provided as input. This means we must Chris@0: // either return a very variable number of samples (none at all Chris@0: // until the filter fills, then half the filter length at once) or Chris@0: // else have a lengthy declared latency on the output. We do the Chris@0: // latter. (What do other implementations do?) Chris@0: Chris@4: m_phase = (m_filterLength/2) % inputSpacing; Chris@4: Chris@4: m_buffer = vector(m_phaseData[0].filter.size(), 0); Chris@8: m_bufferOrigin = 0; Chris@4: Chris@4: m_latency = Chris@4: ((m_buffer.size() * inputSpacing) - (m_filterLength/2)) / outputSpacing Chris@4: + m_phase; Chris@4: Chris@4: #ifdef DEBUG_RESAMPLER Chris@4: std::cerr << "initial phase " << m_phase << " (as " << (m_filterLength/2) << " % " << inputSpacing << ")" Chris@4: << ", latency " << m_latency << std::endl; Chris@4: #endif Chris@0: } Chris@0: Chris@0: double Chris@4: Resampler::reconstructOne() Chris@0: { Chris@0: Phase &pd = m_phaseData[m_phase]; Chris@4: double v = 0.0; Chris@0: int n = pd.filter.size(); Chris@8: const double *const __restrict__ buf = m_buffer.data() + m_bufferOrigin; Chris@8: const double *const __restrict__ filt = pd.filter.data(); Chris@0: for (int i = 0; i < n; ++i) { Chris@8: // NB gcc can only vectorize this with -ffast-math Chris@8: v += buf[i] * filt[i]; Chris@0: } Chris@8: m_bufferOrigin += pd.drop; Chris@4: m_phase = pd.nextPhase; Chris@0: return v; Chris@0: } Chris@0: Chris@0: int Chris@4: Resampler::process(const double *src, double *dst, int n) Chris@0: { Chris@4: for (int i = 0; i < n; ++i) { Chris@4: m_buffer.push_back(src[i]); Chris@0: } Chris@0: Chris@4: int maxout = int(ceil(double(n) * m_targetRate / m_sourceRate)); Chris@4: int outidx = 0; Chris@2: Chris@4: #ifdef DEBUG_RESAMPLER Chris@4: std::cerr << "process: buf siz " << m_buffer.size() << " filt siz for phase " << m_phase << " " << m_phaseData[m_phase].filter.size() << std::endl; Chris@4: #endif Chris@4: Chris@5: double scaleFactor = 1.0; Chris@5: if (m_targetRate < m_sourceRate) { Chris@5: scaleFactor = double(m_targetRate) / double(m_sourceRate); Chris@5: } Chris@5: Chris@4: while (outidx < maxout && Chris@8: m_buffer.size() >= m_phaseData[m_phase].filter.size() + m_bufferOrigin) { Chris@5: dst[outidx] = scaleFactor * reconstructOne(); Chris@4: outidx++; Chris@2: } Chris@8: Chris@8: m_buffer = vector(m_buffer.begin() + m_bufferOrigin, m_buffer.end()); Chris@8: m_bufferOrigin = 0; Chris@4: Chris@4: return outidx; Chris@0: } Chris@4: Chris@1: std::vector Chris@1: Resampler::resample(int sourceRate, int targetRate, const double *data, int n) Chris@1: { Chris@1: Resampler r(sourceRate, targetRate); Chris@1: Chris@1: int latency = r.getLatency(); Chris@1: Chris@6: // latency is the output latency. We need to provide enough Chris@6: // padding input samples at the end of input to guarantee at Chris@6: // *least* the latency's worth of output samples. that is, Chris@6: Chris@6: int inputPad = int(ceil(double(latency * sourceRate) / targetRate)); Chris@6: Chris@6: // that means we are providing this much input in total: Chris@6: Chris@6: int n1 = n + inputPad; Chris@6: Chris@6: // and obtaining this much output in total: Chris@6: Chris@6: int m1 = int(ceil(double(n1 * targetRate) / sourceRate)); Chris@6: Chris@6: // in order to return this much output to the user: Chris@6: Chris@4: int m = int(ceil(double(n * targetRate) / sourceRate)); Chris@6: Chris@8: // std::cerr << "n = " << n << ", sourceRate = " << sourceRate << ", targetRate = " << targetRate << ", m = " << m << ", latency = " << latency << ", m1 = " << m1 << ", n1 = " << n1 << ", n1 - n = " << n1 - n << std::endl; Chris@1: Chris@1: vector pad(n1 - n, 0.0); Chris@6: vector out(m1 + 1, 0.0); Chris@1: Chris@1: int got = r.process(data, out.data(), n); Chris@1: got += r.process(pad.data(), out.data() + got, pad.size()); Chris@1: Chris@4: #ifdef DEBUG_RESAMPLER Chris@4: std::cerr << "resample: " << n << " in, " << got << " out" << std::endl; Chris@4: for (int i = 0; i < got; ++i) { Chris@4: if (i % 5 == 0) std::cout << std::endl << i << "... "; Chris@4: std::cout << (float) out[i] << " "; Chris@4: } Chris@4: std::cout << std::endl; Chris@4: #endif Chris@4: Chris@6: int toReturn = got - latency; Chris@6: if (toReturn > m) toReturn = m; Chris@6: Chris@6: return vector(out.begin() + latency, Chris@6: out.begin() + latency + toReturn); Chris@1: } Chris@1: