dan@0: % constructs the linear system of equations using distribution derivative rule dan@0: function [A,b] = ddm_lin_sys(krnls, krlns_ders, mf_ders, sig, N) dan@0: %generic multi-frequency distribution derivative based estimator for dan@0: % non-stationary sinusoidal analysis dan@0: % dan@0: % dan@0: % [1] Michael Betser: Sinusoidal Polynomial Estimation Using The Distribution dan@0: % Derivative, in IEEE Transactions on Signal Processing, Vol.57, Nr. 12, dan@0: % December 2009 dan@0: % dan@0: % krnls: matrix of all the kernels... N x R , where R is the number of dan@0: % non-static parameters to estimate and at the same time, the number dan@0: % of kernels dan@0: % dan@0: % krlns_ders: matrix of all the kernel time derivatives... N x R , where R dan@0: % is the number of non-static parameters to estimate and at the same dan@0: % time, the number of kernels dan@0: % dan@0: % mf_ders: matrix of all the model function time derivatives... N x Q , where Q dan@0: % is the number of model functions dan@0: % dan@0: % dan@0: % sig: vector - signal, N x 1 (CAUTION: MUST be column vector!!!) dan@0: % dan@0: % N: odd integer - signal buffer length, ... dan@0: % dan@0: % For any reasonable use, Q equals R, otherwise it makes little sense. dan@0: % Kernels must include the window function... dan@0: % dan@0: dan@0: R = size(krnls,2); dan@0: Q = size(mf_ders,2); dan@0: assert(R == size(krlns_ders, 2) ); dan@0: assert(R >= Q); dan@0: % constructing the matrixes A and B from equation III.4 in [1] dan@0: % 1st dimension is the discrete time dan@0: dan@0: sig_mat = repmat(sig, [1,R,Q]); dan@0: krnls_mat = repmat(krnls, [1,1,Q]); dan@0: dan@0: mf_ders_mat = repmat(reshape(mf_ders,[N,1,Q]),[1,R,1]); dan@0: dan@0: % inner product for left and right hand side of the eq. dan@0: A = shiftdim(sum( conj(krnls_mat) .* mf_ders_mat .* sig_mat, 1), 1); dan@0: b = shiftdim(sum(- conj(krlns_ders) .* sig_mat(:,:,1), 1), 1); dan@0: dan@0: end