Mercurial > hg > ddm
view gen_ddm_2.m @ 4:72c011ed1977 tip
more elaborate example with non-stat. estimate explanation
author | smusevic |
---|---|
date | Tue, 30 Jul 2013 09:56:27 +0100 |
parents | a4a7e3405062 |
children |
line wrap: on
line source
% distribution derivative method: % 2nd degree system solver is used, make sure the data provided corresponds to that function dg2 = gen_ddm_2(krnls, krlns_ders, mf_ders, sig, N) % multi-frequency distribution derivative based non-stationary sinusoidal estimator % can estimate only 1 sinusoid at the once % % % [1] Michael Betser: Sinusoidal Polynomial Estimation Using The Distribution % Derivative, in IEEE Transactions on Signal Processing, Vol.57, Nr. 12, % December 2009 % % krnls: matrix of all the kernels... N x R x K, where R is the number of % non-static parameters to estimate and at the same time, the number % of kernels for each sinusoid, K % % krlns_ders: matrix of all the kernel time derivatives... N x R x K , where R % is the number of non-static parameters to estimate and at the same % time, the number of kernels % % mf_ders: matrix of all the model function time derivatives... N x Q , where Q % is the number of model functions % % % sig: vector - signal, N x 1 (CAUTION: MUST be column vector!!!) % % N: odd integer - signal buffer length, ... % % K: number of sinusoids to estimate - NOT OVERLAPPING!!! % % For any reasonable use, Q equals R, otherwise it makes little sense. % Kernels must include the window function... R = size(krnls,2); assert(R == 2); assert(R == size(krlns_ders,2) ); assert(R == size(mf_ders,2) ); [A, b] = ddm_lin_sys(krnls, krlns_ders, mf_ders, sig, N); % generate the linear system of eqs (slow) dg2 = lin_solve_dgr_2(A,b,1); %hardcoded degree 2 solver (fast)