Mercurial > hg > ddm
view ddm_lin_sys_fft.m @ 4:72c011ed1977 tip
more elaborate example with non-stat. estimate explanation
author | smusevic |
---|---|
date | Tue, 30 Jul 2013 09:56:27 +0100 |
parents | a4a7e3405062 |
children |
line wrap: on
line source
% create function [A_sys,b_sys,sig_fft] = ddm_lin_sys_fft(Q, R, win, win_der, mf_ders, sig, N, N_fft, fs) %% START: comment this out for better performance assert(size(mf_ders,1) == N ); assert(size(mf_ders, 2) == R); assert(size(win,1) == N ); assert(size(win,2) == 1 ); assert(size(win_der,1) == N ); assert(size(win_der,2) == 1 ); assert(size(sig,1) == N ); assert(size(sig,2) == 1 ); assert(N <= N_fft); %% START: comment this out for better performance win_mat = repmat(win, 1, R); frqs_fft = [0:N_fft-1]'*fs*2*pi/N_fft; [str_idx end_idx] = zpzh_idxs(N); sig_mat = repmat(sig, 1, R); fft_sig_mat_bffr = win_mat .* sig_mat .* mf_ders; fft_sig_win_der_bffr = win_der .* sig; % usefull hack to easily compute derivative of the matrix fft_sig_win_der = fft([fft_sig_win_der_bffr(str_idx,:);zeros(N_fft-N,1);fft_sig_win_der_bffr(end_idx,:)],N_fft,1); A = fft([fft_sig_mat_bffr(str_idx,:);zeros(N_fft-N,R);fft_sig_mat_bffr(end_idx,:)], N_fft, 1); %zero padded sheezl b = -(fft_sig_win_der - 1j*frqs_fft.* A(:,1)); % create the actual matrixes A_sys = zeros(Q,R,N_fft-Q+1); b_sys = zeros(Q,1,N_fft-Q+1); for k=1:Q A_sys(k,:,:) = shiftdim(A(k:N_fft-Q+k,:).',-1); b_sys(k,:,:) = shiftdim(b(k:N_fft-Q+k).',-1); end sig_fft = A(:,1); end