Mercurial > hg > ddm
view ddm_lin_sys.m @ 4:72c011ed1977 tip
more elaborate example with non-stat. estimate explanation
author | smusevic |
---|---|
date | Tue, 30 Jul 2013 09:56:27 +0100 |
parents | a4a7e3405062 |
children |
line wrap: on
line source
% constructs the linear system of equations using distribution derivative rule function [A,b] = ddm_lin_sys(krnls, krlns_ders, mf_ders, sig, N) %generic multi-frequency distribution derivative based estimator for % non-stationary sinusoidal analysis % % % [1] Michael Betser: Sinusoidal Polynomial Estimation Using The Distribution % Derivative, in IEEE Transactions on Signal Processing, Vol.57, Nr. 12, % December 2009 % % krnls: matrix of all the kernels... N x R , where R is the number of % non-static parameters to estimate and at the same time, the number % of kernels % % krlns_ders: matrix of all the kernel time derivatives... N x R , where R % is the number of non-static parameters to estimate and at the same % time, the number of kernels % % mf_ders: matrix of all the model function time derivatives... N x Q , where Q % is the number of model functions % % % sig: vector - signal, N x 1 (CAUTION: MUST be column vector!!!) % % N: odd integer - signal buffer length, ... % % For any reasonable use, Q equals R, otherwise it makes little sense. % Kernels must include the window function... % R = size(krnls,2); Q = size(mf_ders,2); assert(R == size(krlns_ders, 2) ); assert(R >= Q); % constructing the matrixes A and B from equation III.4 in [1] % 1st dimension is the discrete time sig_mat = repmat(sig, [1,R,Q]); krnls_mat = repmat(krnls, [1,1,Q]); mf_ders_mat = repmat(reshape(mf_ders,[N,1,Q]),[1,R,1]); % inner product for left and right hand side of the eq. A = shiftdim(sum( conj(krnls_mat) .* mf_ders_mat .* sig_mat, 1), 1); b = shiftdim(sum(- conj(krlns_ders) .* sig_mat(:,:,1), 1), 1); end