view ddm_fft_3.m @ 4:72c011ed1977 tip

more elaborate example with non-stat. estimate explanation
author smusevic
date Tue, 30 Jul 2013 09:56:27 +0100
parents a4a7e3405062
children
line wrap: on
line source
function [df3,A_sys,b_sys] = ddm_fft_3(win, win_der, mf_ders, sig, N, N_fft, fs)
  R = 3;
  Q = R; % nr of unknows is the same as the number of model funcs
  [A_sys b_sys] =  ddm_lin_sys_fft(Q, R, win, win_der, mf_ders, sig, N, N_fft, fs);
%   A_sys1 = cat(2,shiftdim(A(1:N_fft-2,1),-2),shiftdim(A(1:N_fft-2,2),-2),shiftdim(A(1:N_fft-2,3),-2));
%   A_sys2 = cat(2,shiftdim(A(2:N_fft-1,1),-2),shiftdim(A(2:N_fft-1,2),-2),shiftdim(A(2:N_fft-1,3),-2));
%   A_sys3 = cat(2,shiftdim(A(3:N_fft  ,1),-2),shiftdim(A(3:N_fft  ,2),-2),shiftdim(A(3:N_fft  ,3),-2));
%   A_sys  = cat(1,A_sys1,A_sys2,A_sys3);
%   b_sys  = cat(1,shiftdim(b(1:N_fft-2).',-1),shiftdim(b(2:N_fft-1).',  -1),shiftdim(b(3:N_fft  ).',  -1));
  df3    =  lin_solve_dgr_3(A_sys,b_sys,N_fft-2); %hardcoded degree 3 solver (fast)

end