Mercurial > hg > dcase2013_sc_rnh
view libsvm_linux64/svmpredict.c @ 0:1b2ac32f7152
import code sent by Gerard Roma
author | Dan Stowell <dan.stowell@elec.qmul.ac.uk> |
---|---|
date | Fri, 01 Nov 2013 08:48:19 +0000 |
parents | |
children |
line wrap: on
line source
#include <stdio.h> #include <stdlib.h> #include <string.h> #include "../svm.h" #include "mex.h" #include "svm_model_matlab.h" #ifdef MX_API_VER #if MX_API_VER < 0x07030000 typedef int mwIndex; #endif #endif #define CMD_LEN 2048 int print_null(const char *s,...) {} int (*info)(const char *fmt,...) = &mexPrintf; void read_sparse_instance(const mxArray *prhs, int index, struct svm_node *x) { int i, j, low, high; mwIndex *ir, *jc; double *samples; ir = mxGetIr(prhs); jc = mxGetJc(prhs); samples = mxGetPr(prhs); // each column is one instance j = 0; low = (int)jc[index], high = (int)jc[index+1]; for(i=low;i<high;i++) { x[j].index = (int)ir[i] + 1; x[j].value = samples[i]; j++; } x[j].index = -1; } static void fake_answer(int nlhs, mxArray *plhs[]) { int i; for(i=0;i<nlhs;i++) plhs[i] = mxCreateDoubleMatrix(0, 0, mxREAL); } void predict(int nlhs, mxArray *plhs[], const mxArray *prhs[], struct svm_model *model, const int predict_probability) { int label_vector_row_num, label_vector_col_num; int feature_number, testing_instance_number; int instance_index; double *ptr_instance, *ptr_label, *ptr_predict_label; double *ptr_prob_estimates, *ptr_dec_values, *ptr; struct svm_node *x; mxArray *pplhs[1]; // transposed instance sparse matrix mxArray *tplhs[3]; // temporary storage for plhs[] int correct = 0; int total = 0; double error = 0; double sump = 0, sumt = 0, sumpp = 0, sumtt = 0, sumpt = 0; int svm_type=svm_get_svm_type(model); int nr_class=svm_get_nr_class(model); double *prob_estimates=NULL; // prhs[1] = testing instance matrix feature_number = (int)mxGetN(prhs[1]); testing_instance_number = (int)mxGetM(prhs[1]); label_vector_row_num = (int)mxGetM(prhs[0]); label_vector_col_num = (int)mxGetN(prhs[0]); if(label_vector_row_num!=testing_instance_number) { mexPrintf("Length of label vector does not match # of instances.\n"); fake_answer(nlhs, plhs); return; } if(label_vector_col_num!=1) { mexPrintf("label (1st argument) should be a vector (# of column is 1).\n"); fake_answer(nlhs, plhs); return; } ptr_instance = mxGetPr(prhs[1]); ptr_label = mxGetPr(prhs[0]); // transpose instance matrix if(mxIsSparse(prhs[1])) { if(model->param.kernel_type == PRECOMPUTED) { // precomputed kernel requires dense matrix, so we make one mxArray *rhs[1], *lhs[1]; rhs[0] = mxDuplicateArray(prhs[1]); if(mexCallMATLAB(1, lhs, 1, rhs, "full")) { mexPrintf("Error: cannot full testing instance matrix\n"); fake_answer(nlhs, plhs); return; } ptr_instance = mxGetPr(lhs[0]); mxDestroyArray(rhs[0]); } else { mxArray *pprhs[1]; pprhs[0] = mxDuplicateArray(prhs[1]); if(mexCallMATLAB(1, pplhs, 1, pprhs, "transpose")) { mexPrintf("Error: cannot transpose testing instance matrix\n"); fake_answer(nlhs, plhs); return; } } } if(predict_probability) { if(svm_type==NU_SVR || svm_type==EPSILON_SVR) info("Prob. model for test data: target value = predicted value + z,\nz: Laplace distribution e^(-|z|/sigma)/(2sigma),sigma=%g\n",svm_get_svr_probability(model)); else prob_estimates = (double *) malloc(nr_class*sizeof(double)); } tplhs[0] = mxCreateDoubleMatrix(testing_instance_number, 1, mxREAL); if(predict_probability) { // prob estimates are in plhs[2] if(svm_type==C_SVC || svm_type==NU_SVC) tplhs[2] = mxCreateDoubleMatrix(testing_instance_number, nr_class, mxREAL); else tplhs[2] = mxCreateDoubleMatrix(0, 0, mxREAL); } else { // decision values are in plhs[2] if(svm_type == ONE_CLASS || svm_type == EPSILON_SVR || svm_type == NU_SVR || nr_class == 1) // if only one class in training data, decision values are still returned. tplhs[2] = mxCreateDoubleMatrix(testing_instance_number, 1, mxREAL); else tplhs[2] = mxCreateDoubleMatrix(testing_instance_number, nr_class*(nr_class-1)/2, mxREAL); } ptr_predict_label = mxGetPr(tplhs[0]); ptr_prob_estimates = mxGetPr(tplhs[2]); ptr_dec_values = mxGetPr(tplhs[2]); x = (struct svm_node*)malloc((feature_number+1)*sizeof(struct svm_node) ); for(instance_index=0;instance_index<testing_instance_number;instance_index++) { int i; double target_label, predict_label; target_label = ptr_label[instance_index]; if(mxIsSparse(prhs[1]) && model->param.kernel_type != PRECOMPUTED) // prhs[1]^T is still sparse read_sparse_instance(pplhs[0], instance_index, x); else { for(i=0;i<feature_number;i++) { x[i].index = i+1; x[i].value = ptr_instance[testing_instance_number*i+instance_index]; } x[feature_number].index = -1; } if(predict_probability) { if(svm_type==C_SVC || svm_type==NU_SVC) { predict_label = svm_predict_probability(model, x, prob_estimates); ptr_predict_label[instance_index] = predict_label; for(i=0;i<nr_class;i++) ptr_prob_estimates[instance_index + i * testing_instance_number] = prob_estimates[i]; } else { predict_label = svm_predict(model,x); ptr_predict_label[instance_index] = predict_label; } } else { if(svm_type == ONE_CLASS || svm_type == EPSILON_SVR || svm_type == NU_SVR) { double res; predict_label = svm_predict_values(model, x, &res); ptr_dec_values[instance_index] = res; } else { double *dec_values = (double *) malloc(sizeof(double) * nr_class*(nr_class-1)/2); predict_label = svm_predict_values(model, x, dec_values); if(nr_class == 1) ptr_dec_values[instance_index] = 1; else for(i=0;i<(nr_class*(nr_class-1))/2;i++) ptr_dec_values[instance_index + i * testing_instance_number] = dec_values[i]; free(dec_values); } ptr_predict_label[instance_index] = predict_label; } if(predict_label == target_label) ++correct; error += (predict_label-target_label)*(predict_label-target_label); sump += predict_label; sumt += target_label; sumpp += predict_label*predict_label; sumtt += target_label*target_label; sumpt += predict_label*target_label; ++total; } if(svm_type==NU_SVR || svm_type==EPSILON_SVR) { info("Mean squared error = %g (regression)\n",error/total); info("Squared correlation coefficient = %g (regression)\n", ((total*sumpt-sump*sumt)*(total*sumpt-sump*sumt))/ ((total*sumpp-sump*sump)*(total*sumtt-sumt*sumt)) ); } else info("Accuracy = %g%% (%d/%d) (classification)\n", (double)correct/total*100,correct,total); // return accuracy, mean squared error, squared correlation coefficient tplhs[1] = mxCreateDoubleMatrix(3, 1, mxREAL); ptr = mxGetPr(tplhs[1]); ptr[0] = (double)correct/total*100; ptr[1] = error/total; ptr[2] = ((total*sumpt-sump*sumt)*(total*sumpt-sump*sumt))/ ((total*sumpp-sump*sump)*(total*sumtt-sumt*sumt)); free(x); if(prob_estimates != NULL) free(prob_estimates); switch(nlhs) { case 3: plhs[2] = tplhs[2]; plhs[1] = tplhs[1]; case 1: case 0: plhs[0] = tplhs[0]; } } void exit_with_help() { mexPrintf( "Usage: [predicted_label, accuracy, decision_values/prob_estimates] = svmpredict(testing_label_vector, testing_instance_matrix, model, 'libsvm_options')\n" " [predicted_label] = svmpredict(testing_label_vector, testing_instance_matrix, model, 'libsvm_options')\n" "Parameters:\n" " model: SVM model structure from svmtrain.\n" " libsvm_options:\n" " -b probability_estimates: whether to predict probability estimates, 0 or 1 (default 0); one-class SVM not supported yet\n" " -q : quiet mode (no outputs)\n" "Returns:\n" " predicted_label: SVM prediction output vector.\n" " accuracy: a vector with accuracy, mean squared error, squared correlation coefficient.\n" " prob_estimates: If selected, probability estimate vector.\n" ); } void mexFunction( int nlhs, mxArray *plhs[], int nrhs, const mxArray *prhs[] ) { int prob_estimate_flag = 0; struct svm_model *model; info = &mexPrintf; if(nlhs == 2 || nlhs > 3 || nrhs > 4 || nrhs < 3) { exit_with_help(); fake_answer(nlhs, plhs); return; } if(!mxIsDouble(prhs[0]) || !mxIsDouble(prhs[1])) { mexPrintf("Error: label vector and instance matrix must be double\n"); fake_answer(nlhs, plhs); return; } if(mxIsStruct(prhs[2])) { const char *error_msg; // parse options if(nrhs==4) { int i, argc = 1; char cmd[CMD_LEN], *argv[CMD_LEN/2]; // put options in argv[] mxGetString(prhs[3], cmd, mxGetN(prhs[3]) + 1); if((argv[argc] = strtok(cmd, " ")) != NULL) while((argv[++argc] = strtok(NULL, " ")) != NULL) ; for(i=1;i<argc;i++) { if(argv[i][0] != '-') break; if((++i>=argc) && argv[i-1][1] != 'q') { exit_with_help(); fake_answer(nlhs, plhs); return; } switch(argv[i-1][1]) { case 'b': prob_estimate_flag = atoi(argv[i]); break; case 'q': i--; info = &print_null; break; default: mexPrintf("Unknown option: -%c\n", argv[i-1][1]); exit_with_help(); fake_answer(nlhs, plhs); return; } } } model = matlab_matrix_to_model(prhs[2], &error_msg); if (model == NULL) { mexPrintf("Error: can't read model: %s\n", error_msg); fake_answer(nlhs, plhs); return; } if(prob_estimate_flag) { if(svm_check_probability_model(model)==0) { mexPrintf("Model does not support probabiliy estimates\n"); fake_answer(nlhs, plhs); svm_free_and_destroy_model(&model); return; } } else { if(svm_check_probability_model(model)!=0) info("Model supports probability estimates, but disabled in predicton.\n"); } predict(nlhs, plhs, prhs, model, prob_estimate_flag); // destroy model svm_free_and_destroy_model(&model); } else { mexPrintf("model file should be a struct array\n"); fake_answer(nlhs, plhs); } return; }