annotate README.md @ 2:def2b3fa1450 tip master

corrected README
author Gerard Roma <gerard.roma@upf.edu>
date Mon, 04 Nov 2013 10:46:05 +0000
parents 96b1b8697b60
children
rev   line source
gerard@2 1 The files in this repository represent our submission for the Scene Classificatoin task of the IEEE D-CASE AASP Challenge (http://c4dm.eecs.qmul.ac.uk/sceneseventschallenge/)
gerard@1 2
gerard@2 3 The code has been tested mainly on Matlab2012 on OSX.
gerard@2 4
gerard@1 5 Required libraries: rastamat and libsvm
gerard@1 6
gerard@1 7 The implemented approach is described in:
gerard@2 8
gerard@1 9 G. Roma, W. Nogueira, P.Herrera, _Recurrence Quantification Analysis Features for Environmental Sound Recognition_. Proceedings of IEEE Workshop on Applications of Signal Processing to Audio and Acoustics. New Paltz, USA 2013.
gerard@1 10
gerard@1 11 The main files are:
gerard@1 12
gerard@1 13 * classify_scenes.m
gerard@1 14 * analyze_files.m
gerard@1 15 * RQA.m
gerard@1 16
gerard@2 17 The rest of matlab files can be used to test the code. Some of the files are taken from https://soundsoftware.ac.uk/projects/aasp-d-case-metrics
gerard@1 18
gerard@1 19 Two submissions were sent to the challenge, one uses hardcoded SVM parameters, the other does grid search:
gerard@1 20
gerard@1 21 classify_scenes(tmp_path, train_file,test_file, output_file, 0) % use hardcoded parameters for SVM
gerard@1 22 classify_scenes(tmp_path, train_file,test_file, output_file, 1) % use grid search
gerard@1 23
gerard@2 24 temp_path is used to store features.
gerard@1 25