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ABSTRACT

This abstract explores Gaussian Mixture Models (GMM) esti-
mated from Mel Frequency Cepstral Coefficients (MFCCs) for
acoustic event detection and classification. To limit the impact
of silence, a shared background model is used. An average F-
score of 48% for the office life subtask is obtained. However, the
analysis reveals that the proposed method has difficulties to cope
with the large intra-class variations (e.g. time durations, dynamic
range, characteristic sounds) in the provided dataset.

Index Terms— Acoustic Event Detection, Mel-
Frequency Cepstral Coefficients, Gaussian Mixture Mod-
els.

1. INTRODUCTION

The use of Gaussian Mixture Models is a well-known approach
in the domain of speech- and speaker recognition applications.
Research shows that this technique can achieve promising results
especially in the conjunction with auditory motivated features
(e.g. MFCCs) [1]. Therefore, this work will examine the use of
an MFCC-GMM baseline acoustic event detector and classifier
on the publicly available database from the IEEE-AASP chal-
lenge. The remainder of this abstract is organized as follows:
feature extraction and training phase will be briefly discussed in
section 2. Section 3 handles about the used event detector and
classifier. The executed experiments and obtained results from
the subtasks office life and office synthetic are given in section 4.
Finally, the conclusions are discussed in section 5.

2. FEATURE EXTRACTION AND TRAINING

Figure 1 is a flowchart of the feature extraction and training
phase which has been used during this work. This process starts
by iteratively loading the waveform (.wav) files from each event.
Next, the corresponding MFCC features, including the first and
second derivatives, are computed.

Labeling the extracted features into the actual event features
and background features happens in two stages. First, the provid-
ed annotation files from the 2 different annotators are used to
locate the event features. The earliest onset mark of both annota-
tors is used as onset and the latest offset mark of both is used as
offset in order to reduce the probability of labeling event features
as belonging to the background. Next, an threshold on the first
MFCC-coefficient, further denoted as C,, is applied to remove
the within event silences (e.g. silence between 2 phone rings)
from the remaining event features. Frames with a Cy lower than a
threshold can be assumed as low-energetic and are therefore
added to the background features.
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Figure 1: Flowchart of feature extraction and training phase.

The training process starts by estimating a shared back-
ground GMM and all the class GMMs (16 in total) on basis of
the background features and class event features respectively.
This by applying the Expectation-Maximization (EM) algorithm
as explained in [1].

Finally, the class GMMs will be combined and re-estimated
in the presence of the background model which is not re-
estimated. This is preferred over relying on each of the class-
GMMs to model the silence frames independently. This way,
the shared background GMM will produce the same score for
each of the class assumptions and hence the impact of silence
frames on the model likelihoods will be minimized. Reestima-
tion of the i-th Gaussian in a class mixture is achieved by re-
placing its posterior with:
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Compared to the standard EM-algorithm is (1) expanded with an
additional term in the denominator, i.e. the contribution of the
background GMM to the data likelihood. The weighting prior
defines the amount of probability mass that is be assigned during
the maximization step to the background model and is deter-
mined in (2). During the initialization of the EM-algorithm it is
required to set an initial value for A, because the sum over the
class weights still unities (property of GMMs).
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In the experimental setup will the influence of the proposed
technique examined by combining the shared background GMM
with the class GMMs. This by a) applying the adapted EM-
formula with an initial Z,o 0f 0.2 and b) a linear combination of
the background and class GMMs with a ratio 1/5 respectively.
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3. EVENT DETECTOR AND CLASSIFIER

The event detector and classifier for the subtask office life starts
by extracting the MFCC features (including 1% and 2™ deriva-
tive) from the acoustic event script (see Figure 2). A posterior-
gram is computed by comparing these features with both the
estimated background model and all the class GMMs. Next, the
posteriors from each class are moving averaged filtered with a
window size depending on the minimum class duration observed
in the training dataset. This smoothens the class posteriors and
takes the minimum occurring time duration of each class more or
less into account.

Detecting events in the office life subtask is based on Cq
thresholding. It can be assumed that an event has occurred when
the value of C, was above a predefined threshold during a certain
period of time. The values of Cy and minimum time duration are
defined experimentally and further mentioned in the next section.

As last comes classifying the detected events. This is simply
done by determining which GMM model produces the highest
averaged a-posteriori score. In case that the detected event is
classified as background it will be neglected and therefore re-
moving it as an occurred event.
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Figure 2: Flowchart of the event detector and classifier.

4. EXPERIMENTS AND RESULTS

In order to determine the performance of the proposed method
are following parameters examined in function of the averaged
event based F-score: a) resampling to a lower sample frequency
i.e. 16kHz, b) influence of the first and second derivative, c) the
number of Gaussians and d) re-estimation or just linear combi-
nation both with a Apyir 0f 0.2.

During this experiment, the minimum value of C,was set to
-150 and -189.5 (determined experimentally) for a sample fre-
quency of 44,1kHz and 16kHz respectively. Also the window
sizes of the moving average filter applied on the class posteriors
was set as half of the minimum event duration of each class. Fig-
ure 3 shows the obtained averaged F-scores and following obser-
vations are made:

e  Applying a down sampling to 16kHz has for the most
parameter combinations a positive effect on the F-
score. A possible explanation is that the higher fre-
quency bands contain more noise than actual character-
istic information of the occurring event.

e  The usage of the first and second derivative has a small
positive effect on the F-score.

e Applying the proposed re-estimation algorithm does
not increase the F-score.
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Figure 3: Averaged results of the event based F-score

Table 1 on the other hand gives the associated evaluation
metrics corresponding to the highest achieved averaged F-score
(in Figure 3). i.e. 46,9% and 48% for with and without re-
estimation respectively. These F-scores occurs both when the
derivatives are included and a resampling to 16kHz is applied.
The corresponding number of Gaussians are 17 (with re-
estimation) and 18 (without re-estimation) and as one can see,
no major differences occurs between both methods.

Table 1: Results on the Office Live Dataset for various met-
rics.

Evaluation Method

. Event Class-Wise
Metric Based Event Based Frame Based
Re-estimation Y N Y N Y N
R 36,4 37,4 39,9 40,9 33,7 38,2
P 68,2 | 69,6 44,0 40,1 81,7 84,6
F-score 46,9 48 37,8 38,2 50,3 52,2
AEER 0,99 | 0,96 0,93 0,86 0,80 0,76
Offset R 30,0 30,1 31,1 32,2 - -
Offset P 56,3 | 58,3 37,7 35,0
Offset F-score 38,6 39,9 31,0 31,2
Offset AEER 1,89 | 1,17 1,19 1,12

Table 2 and 3 gives the corresponding F-scores of the office
synthetic task. The same parameters were used as in Table 1
however the minimum Cy was changed to a value just above the
noise floor, i.e. -35, -45 and -95 for the SNR of -6, 0 and 6 re-
spectively.

As one can see, the achieved results are dropped extremely,
even for the easiest combination, i.e. a SNR of 6 and the lowest
degree of overlapping. One of the reasons of a lower score is
because our detection algorithm expects only 1 event when an
event is detected during a certain time span. Second, research
shows that GMM s are extremely independent to the contribution
of noise. Even the smallest amount of noise can cause an enor-
mous drop of performance [4].
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Table 2: F-scores on the Office Synthetic Dataset (with re-
estimation).

. SNR

Density 6 0 6

low 16,7 0 0

Event based medium 0 0 9,1
high 0 187 | 2,08

Evaluation | Class-wise lO\.N 167 0 0
method event Based me(_ilum 0 0 556
high 0 2,22 2,22

F low 12,6 0 0
Braasr;ﬁ medium 0 0 5,18
high 043 | 259 | 524

Table 3: F-scores on the Office Synthetic Dataset (without
re-estimation).

. SNR

Density 6 0 6

low 16,7 0 0
Event based medium 0 0 9,09
high 0 187 | 2,08

Evaluation | Class-wise lO\.N 16.7 0 0
method event Based me(_jlum 0 0 54
high 0 2,22 2,67

low 12,6 0 0
Er:!:g mefiium 0 0 5,18
high 043 | 1,00 | 598

5. DISCUSSION

The overall performance of the proposed method were not so
promising as hoped, especially for office synthetic subtask. The
most obvious explanation is that Gaussian Mixture Models have
difficulties to cope with a) the large variation in the characteris-
tic sounds of some classes (e.g. phone and alert) and b) the rela-
tive low amount of training examples in the dataset. This results
in a harder classification problem and therefore reducing the
accuracy of the classifier. Besides, the large variation in time
duration and energy increases the difficulty of the detection task
and therefore also decreasing overall the performance of the
system.
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