c@131: /* -*- c-basic-offset: 4 indent-tabs-mode: nil -*- vi:set ts=8 sts=4 sw=4: */ c@131: c@131: #include "dsp/FFT.h" c@131: c@131: #define BOOST_TEST_DYN_LINK c@131: #define BOOST_TEST_MAIN c@131: c@131: #include c@131: c@131: #include c@131: c@131: BOOST_AUTO_TEST_SUITE(TestFFT) c@131: c@131: #define COMPARE_CONST(a, n) \ c@131: for (int cmp_i = 0; cmp_i < (int)(sizeof(a)/sizeof(a[0])); ++cmp_i) { \ c@131: BOOST_CHECK_SMALL(a[cmp_i] - n, 1e-14); \ c@131: } c@131: c@131: #define COMPARE_ARRAY(a, b) \ c@131: for (int cmp_i = 0; cmp_i < (int)(sizeof(a)/sizeof(a[0])); ++cmp_i) { \ c@131: BOOST_CHECK_SMALL(a[cmp_i] - b[cmp_i], 1e-14); \ c@131: } c@131: c@131: //!!! need at least one test with complex time-domain signal c@131: c@131: BOOST_AUTO_TEST_CASE(forwardArrayBounds) c@131: { c@131: // initialise bins to something recognisable, so we can tell if c@131: // they haven't been written; and allocate the inputs on the heap c@131: // so that, if running under valgrind, we get warnings about c@131: // overruns c@131: double *in = new double[4]; c@131: in[0] = 1; c@131: in[1] = 1; c@131: in[2] = -1; c@131: in[3] = -1; c@131: double re[] = { 999, 999, 999, 999, 999, 999 }; c@131: double im[] = { 999, 999, 999, 999, 999, 999 }; c@131: FFT(4).process(false, in, 0, re+1, im+1); c@131: // And check we haven't overrun the arrays c@131: BOOST_CHECK_EQUAL(re[0], 999.0); c@131: BOOST_CHECK_EQUAL(im[0], 999.0); c@131: BOOST_CHECK_EQUAL(re[5], 999.0); c@131: BOOST_CHECK_EQUAL(im[5], 999.0); c@131: delete[] in; c@131: } c@131: c@131: BOOST_AUTO_TEST_CASE(r_forwardArrayBounds) c@131: { c@131: // initialise bins to something recognisable, so we can tell if c@131: // they haven't been written; and allocate the inputs on the heap c@131: // so that, if running under valgrind, we get warnings about c@131: // overruns c@131: double *in = new double[4]; c@131: in[0] = 1; c@131: in[1] = 1; c@131: in[2] = -1; c@131: in[3] = -1; c@131: double re[] = { 999, 999, 999, 999, 999, 999 }; c@131: double im[] = { 999, 999, 999, 999, 999, 999 }; c@131: FFTReal(4).forward(in, re+1, im+1); c@131: // And check we haven't overrun the arrays c@131: BOOST_CHECK_EQUAL(re[0], 999.0); c@131: BOOST_CHECK_EQUAL(im[0], 999.0); c@131: BOOST_CHECK_EQUAL(re[5], 999.0); c@131: BOOST_CHECK_EQUAL(im[5], 999.0); c@131: delete[] in; c@131: } c@131: c@131: BOOST_AUTO_TEST_CASE(inverseArrayBounds) c@131: { c@131: // initialise bins to something recognisable, so we can tell if c@131: // they haven't been written; and allocate the inputs on the heap c@131: // so that, if running under valgrind, we get warnings about c@131: // overruns c@131: double *re = new double[4]; c@131: double *im = new double[4]; c@131: re[0] = 0; c@131: re[1] = 1; c@131: re[2] = 0; c@131: re[3] = 1; c@131: im[0] = 0; c@131: im[1] = -2; c@131: im[2] = 0; c@131: im[3] = 2; c@131: double outre[] = { 999, 999, 999, 999, 999, 999 }; c@131: double outim[] = { 999, 999, 999, 999, 999, 999 }; c@131: FFT(4).process(true, re, im, outre+1, outim+1); c@131: // And check we haven't overrun the arrays c@131: BOOST_CHECK_EQUAL(outre[0], 999.0); c@131: BOOST_CHECK_EQUAL(outim[0], 999.0); c@131: BOOST_CHECK_EQUAL(outre[5], 999.0); c@131: BOOST_CHECK_EQUAL(outim[5], 999.0); c@131: delete[] re; c@131: delete[] im; c@131: } c@131: c@131: BOOST_AUTO_TEST_CASE(r_inverseArrayBounds) c@131: { c@131: // initialise bins to something recognisable, so we can tell if c@131: // they haven't been written; and allocate the inputs on the heap c@131: // so that, if running under valgrind, we get warnings about c@131: // overruns c@131: double *re = new double[3]; c@131: double *im = new double[3]; c@131: re[0] = 0; c@131: re[1] = 1; c@131: re[2] = 0; c@131: im[0] = 0; c@131: im[1] = -2; c@131: im[2] = 0; c@131: double outre[] = { 999, 999, 999, 999, 999, 999 }; c@131: FFTReal(4).inverse(re, im, outre+1); c@131: // And check we haven't overrun the arrays c@131: BOOST_CHECK_EQUAL(outre[0], 999.0); c@131: BOOST_CHECK_EQUAL(outre[5], 999.0); c@131: delete[] re; c@131: delete[] im; c@131: } c@131: c@131: BOOST_AUTO_TEST_CASE(dc) c@131: { c@131: // DC-only signal. The DC bin is purely real c@131: double in[] = { 1, 1, 1, 1 }; c@131: double re[] = { 999, 999, 999, 999 }; c@131: double im[] = { 999, 999, 999, 999 }; c@131: FFT(4).process(false, in, 0, re, im); c@131: BOOST_CHECK_EQUAL(re[0], 4.0); c@131: BOOST_CHECK_EQUAL(re[1], 0.0); c@131: BOOST_CHECK_EQUAL(re[2], 0.0); c@131: BOOST_CHECK_EQUAL(re[3], 0.0); c@131: COMPARE_CONST(im, 0.0); c@131: double back[4]; c@131: double backim[4]; c@131: FFT(4).process(true, re, im, back, backim); c@131: COMPARE_ARRAY(back, in); c@131: COMPARE_CONST(backim, 0.0); c@131: } c@131: c@131: BOOST_AUTO_TEST_CASE(r_dc) c@131: { c@131: // DC-only signal. The DC bin is purely real c@131: double in[] = { 1, 1, 1, 1 }; c@131: double re[] = { 999, 999, 999, 999 }; c@131: double im[] = { 999, 999, 999, 999 }; c@131: FFTReal(4).forward(in, re, im); c@131: BOOST_CHECK_EQUAL(re[0], 4.0); c@131: BOOST_CHECK_EQUAL(re[1], 0.0); c@131: BOOST_CHECK_EQUAL(re[2], 0.0); c@131: BOOST_CHECK_EQUAL(re[3], 0.0); c@131: COMPARE_CONST(im, 0.0); c@131: double back[4]; c@131: // check conjugates are reconstructed c@131: re[3] = 999; c@131: im[3] = 999; c@131: FFTReal(4).inverse(re, im, back); c@131: COMPARE_ARRAY(back, in); c@131: } c@131: c@131: BOOST_AUTO_TEST_CASE(c_dc) c@131: { c@131: // DC-only signal. The DC bin is purely real c@131: double rin[] = { 1, 1, 1, 1 }; c@131: double iin[] = { 1, 1, 1, 1 }; c@131: double re[] = { 999, 999, 999, 999 }; c@131: double im[] = { 999, 999, 999, 999 }; c@131: FFT(4).process(false, rin, iin, re, im); c@131: BOOST_CHECK_EQUAL(re[0], 4.0); c@131: BOOST_CHECK_EQUAL(re[1], 0.0); c@131: BOOST_CHECK_EQUAL(re[2], 0.0); c@131: BOOST_CHECK_EQUAL(re[3], 0.0); c@131: BOOST_CHECK_EQUAL(im[0], 4.0); c@131: BOOST_CHECK_EQUAL(im[1], 0.0); c@131: BOOST_CHECK_EQUAL(im[2], 0.0); c@131: BOOST_CHECK_EQUAL(im[3], 0.0); c@131: double back[4]; c@131: double backim[4]; c@131: FFT(4).process(true, re, im, back, backim); c@131: COMPARE_ARRAY(back, rin); c@131: COMPARE_ARRAY(backim, iin); c@131: } c@131: c@131: BOOST_AUTO_TEST_CASE(sine) c@131: { c@131: // Sine. Output is purely imaginary c@131: double in[] = { 0, 1, 0, -1 }; c@131: double re[] = { 999, 999, 999, 999 }; c@131: double im[] = { 999, 999, 999, 999 }; c@131: FFT(4).process(false, in, 0, re, im); c@131: COMPARE_CONST(re, 0.0); c@131: BOOST_CHECK_EQUAL(im[0], 0.0); c@131: BOOST_CHECK_EQUAL(im[1], -2.0); c@131: BOOST_CHECK_EQUAL(im[2], 0.0); c@131: BOOST_CHECK_EQUAL(im[3], 2.0); c@131: double back[4]; c@131: double backim[4]; c@131: FFT(4).process(true, re, im, back, backim); c@131: COMPARE_ARRAY(back, in); c@131: COMPARE_CONST(backim, 0.0); c@131: } c@131: c@131: BOOST_AUTO_TEST_CASE(r_sine) c@131: { c@131: // Sine. Output is purely imaginary c@131: double in[] = { 0, 1, 0, -1 }; c@131: double re[] = { 999, 999, 999, 999 }; c@131: double im[] = { 999, 999, 999, 999 }; c@131: FFTReal(4).forward(in, re, im); c@131: COMPARE_CONST(re, 0.0); c@131: BOOST_CHECK_EQUAL(im[0], 0.0); c@131: BOOST_CHECK_EQUAL(im[1], -2.0); c@131: BOOST_CHECK_EQUAL(im[2], 0.0); c@131: BOOST_CHECK_EQUAL(im[3], 2.0); c@131: double back[4]; c@131: // check conjugates are reconstructed c@131: re[3] = 999; c@131: im[3] = 999; c@131: FFTReal(4).inverse(re, im, back); c@131: COMPARE_ARRAY(back, in); c@131: } c@131: c@131: BOOST_AUTO_TEST_CASE(cosine) c@131: { c@131: // Cosine. Output is purely real c@131: double in[] = { 1, 0, -1, 0 }; c@131: double re[] = { 999, 999, 999, 999 }; c@131: double im[] = { 999, 999, 999, 999 }; c@131: FFT(4).process(false, in, 0, re, im); c@131: BOOST_CHECK_EQUAL(re[0], 0.0); c@131: BOOST_CHECK_EQUAL(re[1], 2.0); c@131: BOOST_CHECK_EQUAL(re[2], 0.0); c@131: BOOST_CHECK_EQUAL(re[3], 2.0); c@131: COMPARE_CONST(im, 0.0); c@131: double back[4]; c@131: double backim[4]; c@131: FFT(4).process(true, re, im, back, backim); c@131: COMPARE_ARRAY(back, in); c@131: COMPARE_CONST(backim, 0.0); c@131: } c@131: c@131: BOOST_AUTO_TEST_CASE(r_cosine) c@131: { c@131: // Cosine. Output is purely real c@131: double in[] = { 1, 0, -1, 0 }; c@131: double re[] = { 999, 999, 999, 999 }; c@131: double im[] = { 999, 999, 999, 999 }; c@131: FFTReal(4).forward(in, re, im); c@131: BOOST_CHECK_EQUAL(re[0], 0.0); c@131: BOOST_CHECK_EQUAL(re[1], 2.0); c@131: BOOST_CHECK_EQUAL(re[2], 0.0); c@131: BOOST_CHECK_EQUAL(re[3], 2.0); c@131: COMPARE_CONST(im, 0.0); c@131: double back[4]; c@131: // check conjugates are reconstructed c@131: re[3] = 999; c@131: im[3] = 999; c@131: FFTReal(4).inverse(re, im, back); c@131: COMPARE_ARRAY(back, in); c@131: } c@131: c@131: BOOST_AUTO_TEST_CASE(c_cosine) c@131: { c@131: // Cosine. Output is purely real c@131: double rin[] = { 1, 0, -1, 0 }; c@131: double iin[] = { 1, 0, -1, 0 }; c@131: double re[] = { 999, 999, 999, 999 }; c@131: double im[] = { 999, 999, 999, 999 }; c@131: FFT(4).process(false, rin, iin, re, im); c@131: BOOST_CHECK_EQUAL(re[0], 0.0); c@131: BOOST_CHECK_EQUAL(re[1], 2.0); c@131: BOOST_CHECK_EQUAL(re[2], 0.0); c@131: BOOST_CHECK_EQUAL(re[3], 2.0); c@131: BOOST_CHECK_EQUAL(im[0], 0.0); c@131: BOOST_CHECK_EQUAL(im[1], 2.0); c@131: BOOST_CHECK_EQUAL(im[2], 0.0); c@131: BOOST_CHECK_EQUAL(im[3], 2.0); c@131: double back[4]; c@131: double backim[4]; c@131: FFT(4).process(true, re, im, back, backim); c@131: COMPARE_ARRAY(back, rin); c@131: COMPARE_ARRAY(backim, iin); c@131: } c@131: c@131: BOOST_AUTO_TEST_CASE(sineCosine) c@131: { c@131: // Sine and cosine mixed c@131: double in[] = { 0.5, 1, -0.5, -1 }; c@131: double re[] = { 999, 999, 999, 999 }; c@131: double im[] = { 999, 999, 999, 999 }; c@131: FFT(4).process(false, in, 0, re, im); c@131: BOOST_CHECK_EQUAL(re[0], 0.0); c@131: BOOST_CHECK_CLOSE(re[1], 1.0, 1e-12); c@131: BOOST_CHECK_EQUAL(re[2], 0.0); c@131: BOOST_CHECK_CLOSE(re[3], 1.0, 1e-12); c@131: BOOST_CHECK_EQUAL(im[0], 0.0); c@131: BOOST_CHECK_CLOSE(im[1], -2.0, 1e-12); c@131: BOOST_CHECK_EQUAL(im[2], 0.0); c@131: BOOST_CHECK_CLOSE(im[3], 2.0, 1e-12); c@131: double back[4]; c@131: double backim[4]; c@131: FFT(4).process(true, re, im, back, backim); c@131: COMPARE_ARRAY(back, in); c@131: COMPARE_CONST(backim, 0.0); c@131: } c@131: c@131: BOOST_AUTO_TEST_CASE(r_sineCosine) c@131: { c@131: // Sine and cosine mixed c@131: double in[] = { 0.5, 1, -0.5, -1 }; c@131: double re[] = { 999, 999, 999, 999 }; c@131: double im[] = { 999, 999, 999, 999 }; c@131: FFTReal(4).forward(in, re, im); c@131: BOOST_CHECK_EQUAL(re[0], 0.0); c@131: BOOST_CHECK_CLOSE(re[1], 1.0, 1e-12); c@131: BOOST_CHECK_EQUAL(re[2], 0.0); c@131: BOOST_CHECK_CLOSE(re[3], 1.0, 1e-12); c@131: BOOST_CHECK_EQUAL(im[0], 0.0); c@131: BOOST_CHECK_CLOSE(im[1], -2.0, 1e-12); c@131: BOOST_CHECK_EQUAL(im[2], 0.0); c@131: BOOST_CHECK_CLOSE(im[3], 2.0, 1e-12); c@131: double back[4]; c@131: // check conjugates are reconstructed c@131: re[3] = 999; c@131: im[3] = 999; c@131: FFTReal(4).inverse(re, im, back); c@131: COMPARE_ARRAY(back, in); c@131: } c@131: c@131: BOOST_AUTO_TEST_CASE(c_sineCosine) c@131: { c@131: double rin[] = { 1, 0, -1, 0 }; c@131: double iin[] = { 0, 1, 0, -1 }; c@131: double re[] = { 999, 999, 999, 999 }; c@131: double im[] = { 999, 999, 999, 999 }; c@131: FFT(4).process(false, rin, iin, re, im); c@131: BOOST_CHECK_EQUAL(re[0], 0.0); c@131: BOOST_CHECK_EQUAL(re[1], 4.0); c@131: BOOST_CHECK_EQUAL(re[2], 0.0); c@131: BOOST_CHECK_EQUAL(re[3], 0.0); c@131: COMPARE_CONST(im, 0.0); c@131: double back[4]; c@131: double backim[4]; c@131: FFT(4).process(true, re, im, back, backim); c@131: COMPARE_ARRAY(back, rin); c@131: COMPARE_ARRAY(backim, iin); c@131: } c@131: c@131: BOOST_AUTO_TEST_CASE(nyquist) c@131: { c@131: double in[] = { 1, -1, 1, -1 }; c@131: double re[] = { 999, 999, 999, 999 }; c@131: double im[] = { 999, 999, 999, 999 }; c@131: FFT(4).process(false, in, 0, re, im); c@131: BOOST_CHECK_EQUAL(re[0], 0.0); c@131: BOOST_CHECK_EQUAL(re[1], 0.0); c@131: BOOST_CHECK_EQUAL(re[2], 4.0); c@131: BOOST_CHECK_EQUAL(re[3], 0.0); c@131: COMPARE_CONST(im, 0.0); c@131: double back[4]; c@131: double backim[4]; c@131: FFT(4).process(true, re, im, back, backim); c@131: COMPARE_ARRAY(back, in); c@131: COMPARE_CONST(backim, 0.0); c@131: } c@131: c@131: BOOST_AUTO_TEST_CASE(r_nyquist) c@131: { c@131: double in[] = { 1, -1, 1, -1 }; c@131: double re[] = { 999, 999, 999, 999 }; c@131: double im[] = { 999, 999, 999, 999 }; c@131: FFTReal(4).forward(in, re, im); c@131: BOOST_CHECK_EQUAL(re[0], 0.0); c@131: BOOST_CHECK_EQUAL(re[1], 0.0); c@131: BOOST_CHECK_EQUAL(re[2], 4.0); c@131: BOOST_CHECK_EQUAL(re[3], 0.0); c@131: COMPARE_CONST(im, 0.0); c@131: double back[4]; c@131: // check conjugates are reconstructed c@131: re[3] = 999; c@131: im[3] = 999; c@131: FFTReal(4).inverse(re, im, back); c@131: COMPARE_ARRAY(back, in); c@131: } c@131: c@131: BOOST_AUTO_TEST_CASE(dirac) c@131: { c@131: double in[] = { 1, 0, 0, 0 }; c@131: double re[] = { 999, 999, 999, 999 }; c@131: double im[] = { 999, 999, 999, 999 }; c@131: FFT(4).process(false, in, 0, re, im); c@131: BOOST_CHECK_EQUAL(re[0], 1.0); c@131: BOOST_CHECK_EQUAL(re[1], 1.0); c@131: BOOST_CHECK_EQUAL(re[2], 1.0); c@131: BOOST_CHECK_EQUAL(re[3], 1.0); c@131: COMPARE_CONST(im, 0.0); c@131: double back[4]; c@131: double backim[4]; c@131: FFT(4).process(true, re, im, back, backim); c@131: COMPARE_ARRAY(back, in); c@131: COMPARE_CONST(backim, 0.0); c@131: } c@131: c@131: BOOST_AUTO_TEST_CASE(r_dirac) c@131: { c@131: double in[] = { 1, 0, 0, 0 }; c@131: double re[] = { 999, 999, 999, 999 }; c@131: double im[] = { 999, 999, 999, 999 }; c@131: FFTReal(4).forward(in, re, im); c@131: BOOST_CHECK_EQUAL(re[0], 1.0); c@131: BOOST_CHECK_EQUAL(re[1], 1.0); c@131: BOOST_CHECK_EQUAL(re[2], 1.0); c@131: BOOST_CHECK_EQUAL(re[3], 1.0); c@131: COMPARE_CONST(im, 0.0); c@131: double back[4]; c@131: // check conjugates are reconstructed c@131: re[3] = 999; c@131: im[3] = 999; c@131: FFTReal(4).inverse(re, im, back); c@131: COMPARE_ARRAY(back, in); c@131: } c@131: c@131: BOOST_AUTO_TEST_CASE(sizes) c@131: { c@131: // Complex supports any size. A single test with an odd size c@131: // will do here, without getting too much into our expectations c@131: // about supported butterflies etc c@131: c@131: double in[] = { 1, 1, 1 }; c@131: double re[] = { 999, 999, 999 }; c@131: double im[] = { 999, 999, 999 }; c@131: FFT(3).process(false, in, 0, re, im); c@131: BOOST_CHECK_EQUAL(re[0], 3.0); c@131: BOOST_CHECK_EQUAL(re[1], 0.0); c@131: BOOST_CHECK_EQUAL(re[2], 0.0); c@131: COMPARE_CONST(im, 0.0); c@131: double back[3]; c@131: double backim[3]; c@131: FFT(3).process(true, re, im, back, backim); c@131: COMPARE_ARRAY(back, in); c@131: COMPARE_CONST(backim, 0.0); c@131: } c@131: c@131: BOOST_AUTO_TEST_CASE(r_sizes) c@131: { c@131: // Real supports any even size, but not odd ones c@131: c@131: BOOST_CHECK_THROW(FFTReal r(3), std::invalid_argument); c@131: c@131: double in[] = { 1, 1, 1, 1, 1, 1 }; c@131: double re[] = { 999, 999, 999, 999, 999, 999 }; c@131: double im[] = { 999, 999, 999, 999, 999, 999 }; c@131: FFTReal(6).forward(in, re, im); c@131: BOOST_CHECK_EQUAL(re[0], 6.0); c@131: BOOST_CHECK_EQUAL(re[1], 0.0); c@131: BOOST_CHECK_EQUAL(re[2], 0.0); c@131: BOOST_CHECK_EQUAL(re[3], 0.0); c@131: BOOST_CHECK_EQUAL(re[4], 0.0); c@131: BOOST_CHECK_EQUAL(re[5], 0.0); c@131: COMPARE_CONST(im, 0.0); c@131: double back[6]; c@131: FFTReal(6).inverse(re, im, back); c@131: COMPARE_ARRAY(back, in); c@131: } c@131: c@131: BOOST_AUTO_TEST_SUITE_END() c@131: