c@116: /* -*- c-basic-offset: 4 indent-tabs-mode: nil -*- vi:set ts=8 sts=4 sw=4: */ c@116: /* c@116: Constant-Q library c@116: Copyright (c) 2013-2014 Queen Mary, University of London c@116: c@116: Permission is hereby granted, free of charge, to any person c@116: obtaining a copy of this software and associated documentation c@116: files (the "Software"), to deal in the Software without c@116: restriction, including without limitation the rights to use, copy, c@116: modify, merge, publish, distribute, sublicense, and/or sell copies c@116: of the Software, and to permit persons to whom the Software is c@116: furnished to do so, subject to the following conditions: c@116: c@116: The above copyright notice and this permission notice shall be c@116: included in all copies or substantial portions of the Software. c@116: c@116: THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, c@116: EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF c@116: MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND c@116: NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY c@116: CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF c@116: CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION c@116: WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. c@116: c@116: Except as contained in this notice, the names of the Centre for c@116: Digital Music; Queen Mary, University of London; and Chris Cannam c@116: shall not be used in advertising or otherwise to promote the sale, c@116: use or other dealings in this Software without prior written c@116: authorization. c@116: */ c@116: c@116: #ifndef CQINVERSE_H c@116: #define CQINVERSE_H c@116: c@116: #include "CQBase.h" c@116: #include "CQKernel.h" c@116: c@116: class Resampler; c@116: class FFTReal; c@116: c@147: /** c@147: * Calculate an inverse constant-Q transform. The input must be the c@147: * same representation as returned as output of a \ref ConstantQ c@147: * object with the same parameters. The output is a time-domain c@147: * signal. c@147: * c@147: * Note that you cannot perform an inverse transform from the c@147: * magnitude-only output of \ref CQSpectrogram; you need the complex c@147: * valued data from \ref ConstantQ. c@147: * c@147: * Our implementation of the Constant-Q transform is not exactly c@147: * invertible, and this produces only an approximation of the original c@147: * signal (see publications for details). c@147: */ c@116: class CQInverse : public CQBase c@116: { c@116: public: c@147: /** c@147: * Construct an inverse Constant-Q transform object using the c@147: * given transform parameters. c@147: */ c@127: CQInverse(CQParameters params); c@116: virtual ~CQInverse(); c@116: c@147: // CQBase methods, see CQBase.h for documentation c@147: virtual bool isValid() const { return m_kernel && m_kernel->isValid(); } c@116: virtual double getSampleRate() const { return m_sampleRate; } c@116: virtual int getBinsPerOctave() const { return m_binsPerOctave; } c@116: virtual int getOctaves() const { return m_octaves; } c@116: virtual int getTotalBins() const { return m_octaves * m_binsPerOctave; } c@116: virtual int getColumnHop() const { return m_p.fftHop / m_p.atomsPerFrame; } c@116: virtual int getLatency() const { return m_outputLatency; } c@116: virtual double getMaxFrequency() const { return m_p.maxFrequency; } c@116: virtual double getMinFrequency() const; // actual min, not that passed to ctor c@145: virtual double getBinFrequency(double bin) const; c@116: c@147: /** c@147: * Given a series of constant-Q columns in the form produced by c@147: * the \ref ConstantQ class, return a series of time-domain c@147: * samples resulting from approximately inverting the constant-Q c@147: * transform. c@147: */ c@147: RealSequence process(const ComplexBlock &); c@116: c@147: /** c@147: * Return the remaining time-domain samples following the end of c@147: * processing. c@147: */ c@116: RealSequence getRemainingOutput(); c@116: c@116: private: c@127: const CQParameters m_inparams; c@127: const double m_sampleRate; c@127: const double m_maxFrequency; c@127: const double m_minFrequency; c@127: const int m_binsPerOctave; c@127: c@116: int m_octaves; c@116: CQKernel *m_kernel; c@116: CQKernel::Properties m_p; c@116: c@116: std::vector m_upsamplers; c@116: std::vector m_buffers; c@116: std::vector m_olaBufs; // fixed-length, for overlap-add c@116: c@116: int m_outputLatency; c@116: c@116: FFTReal *m_fft; c@116: c@116: void initialise(); c@116: void processOctave(int octave, const ComplexBlock &block); c@116: void processOctaveColumn(int octave, const ComplexColumn &column); c@116: void overlapAddAndResample(int octave, const RealSequence &); c@116: RealSequence drawFromBuffers(); c@116: }; c@116: c@116: #endif