c@37: c@37: program test; c@37: c@37: af = load may.stream.audiofile; c@37: plot = load may.plot; c@37: cm = load may.matrix.complex; c@37: mat = load may.matrix; c@37: vec = load may.vector; c@59: win = load may.signal.window; c@60: test = load may.test.test; c@59: mm = load may.mathmisc; c@37: manipulate = load may.stream.manipulate; c@37: syn = load may.stream.syntheticstream; c@37: c@60: { cqtkernel } = load cqtkernel; c@37: { cqt } = load cqt; c@37: c@60: // We want to test: c@60: // c@60: // Kernel design -- check size (number of bins, number of atoms); c@60: // check an example kernel against known data c@60: // c@60: // Time alignment -- feed a dirac train, check that peaks in all bins c@60: // align c@60: // c@60: // Frequency discrimination -- feed a sinusoid, check peaks c@60: // c@60: // Latency compensation -- for dirac at 0, check peak can be found at c@60: // 0 plus the declared latency c@60: // c@60: // Signal-noise ratio c@60: // c@60: // Specimen output for simple test case c@60: c@60: /* c@60: c@59: // Test with a single windowed sinusoid, repeating at various frequencies c@59: c@59: sinTestStream sampleRate duration signalFreq = // duration is in samples c@59: (sin = syn.sinusoid sampleRate signalFreq; c@59: chunk = mat.getRow 0 (sin.read duration); c@59: syn.precalculatedMono sampleRate (win.windowed win.hann chunk)); c@59: c@59: // We want to make a CQ transform spanning more than one octave, but c@59: // not going all the way to fs/2 so we can test it also with c@59: // frequencies above and below its extents c@59: c@59: sampleRate = 100; c@59: c@59: // fs/2 = 50 so 10->40 gives us 2 octaves c@59: cqmin = 10; c@59: cqmax = 40; c@59: bpo = 4; // fairly arbitrary c@59: c@59: testFreqs = map (* 5) [ 0..10 ]; c@59: duration = sampleRate * 2; c@59: c@59: streamBuilder = sinTestStream sampleRate duration; c@59: c@59: binForFreq f = c@59: mm.round (bpo * mm.log2 (f / cqmin)) - 1; c@59: c@59: for testFreqs do f: c@59: str = streamBuilder f; c@59: cq = cqt { maxFreq = cqmax, minFreq = cqmin, binsPerOctave = bpo } str; c@59: m = mat.concatHorizontal (map cm.magnitudes cq.output); c@59: println "binFrequencies = \(cq.kernel.binFrequencies)"; c@59: println "binForFreq \(f) = \(binForFreq f)"; c@59: success = all id c@59: (map do c: c@59: // passes test if the correct max bin, or the expected max c@59: // is out of range, or if all bins are below a threshold c@59: expected = binForFreq f; c@59: good = c@59: (expected < 0 or expected >= vec.length c) or c@59: (vec.max c < 0.001) or c@59: (vec.maxindex c == binForFreq f); c@59: if (not good) then c@59: println " * bad! maxindex \(vec.maxindex c) != expected \(binForFreq f) for freq \(f) in column: \(vec.list c)"; c@59: // println "matrix is:"; c@59: // mat.print m; c@59: else c@59: print "✓"; c@59: fi; c@59: good; c@59: done (mat.asColumns m)); c@59: println " success = \(success) for freq \(f)"; c@59: done; c@59: c@59: c@59: c@59: /* c@37: //testStream = manipulate.withDuration 96000 (syn.sinusoid 48000 500); c@37: //testStream = manipulate.withDuration 96000 (syn.pulseTrain 48000 4); c@44: testStream = af.open "sweep-48000.wav"; c@37: //testStream = af.open "sweep.wav"; c@37: c@43: // So the stream is [ 0, 1, 0, -1, 0, 1, 0, -1, ... ] : c@44: //testStream = manipulate.withDuration 64 (syn.sinusoid 8 2); c@38: c@56: testStream = manipulate.withDuration 32 (syn.pulseTrain 8 0.001); c@37: c@37: eprintln "have test stream"; c@37: c@44: cq = cqt { maxFreq = testStream.sampleRate/2, minFreq = 50, binsPerOctave = 24 } testStream; c@37: c@40: eprintln "bin frequencies: \(cq.kernel.binFrequencies)"; c@40: c@40: bigM = mat.concatHorizontal (map cm.magnitudes cq.output); c@37: c@38: eprintln "overall output size = \(mat.size bigM)"; c@38: c@39: mat.print bigM; c@38: c@38: //\() (plot.plot [Contour bigM]); c@56: \() (plot.plot [Grid bigM]); c@59: */ c@37: () c@37: