c@131: /* -*- c-basic-offset: 4 indent-tabs-mode: nil -*- vi:set ts=8 sts=4 sw=4: */ c@131: c@131: #include "cq/CQSpectrogram.h" c@131: c@131: #include "dsp/Window.h" c@131: c@131: #include c@131: #include c@132: #include c@131: c@131: using std::vector; c@132: using std::cerr; c@132: using std::endl; c@131: c@131: #define BOOST_TEST_DYN_LINK c@131: #define BOOST_TEST_MAIN c@131: c@131: #include c@131: c@131: BOOST_AUTO_TEST_SUITE(TestCQFrequency) c@131: c@131: // The principle here is to feed a single windowed sinusoid into a c@131: // small CQ transform and check that the output has its peak bin at c@131: // the correct frequency. We can repeat for different frequencies both c@131: // inside and outside the frequency range supported by the CQ. We c@131: // should also repeat for CQSpectrogram outputs as well as the raw CQ. c@131: c@131: // Set up fs/2 = 50, frequency range 10 -> 40 i.e. 2 octaves, fixed c@131: // duration of 2 seconds c@131: static const double sampleRate = 100; c@131: static const double cqmin = 10; c@131: static const double cqmax = 40; c@131: static const double bpo = 4; c@131: static const int duration = sampleRate * 2; c@131: c@132: // Threshold below which to ignore a column completely c@131: static const double threshold = 0.08; c@131: c@132: int c@132: binForFrequency(double freq) c@132: { c@132: int bin = (2 * bpo) - round(bpo * log2(freq / cqmin)); c@132: cerr << "binForFrequency: " << freq << " -> " << bin << endl; c@132: return bin; c@132: } c@132: c@131: void c@132: checkCQFreqColumn(int i, vector column, double freq) c@131: { c@132: double maxval = 0.0; c@132: int maxidx = -1; c@132: int height = column.size(); c@132: for (int j = 0; j < height; ++j) { c@132: if (j == 0 || column[j] > maxval) { c@132: maxval = column[j]; c@132: maxidx = j; c@132: } c@132: } c@132: cerr << "maxval = " << maxval << " at " << maxidx << endl; c@132: int expected = binForFrequency(freq); c@132: if (maxval < threshold) { c@132: return; // ignore these columns at start and end c@132: } else if (expected < 0 || expected >= height) { c@132: cerr << "maxval = " << maxval << endl; c@132: BOOST_CHECK(maxval < threshold); c@132: } else { c@132: BOOST_CHECK_EQUAL(maxidx, expected); c@132: } c@131: } c@131: c@131: void c@131: testCQFrequency(double freq) c@131: { c@131: CQParameters params(sampleRate, cqmin, cqmax, bpo); c@131: CQSpectrogram cq(params, CQSpectrogram::InterpolateLinear); c@131: c@132: BOOST_CHECK_EQUAL(cq.getBinsPerOctave(), bpo); c@132: BOOST_CHECK_EQUAL(cq.getOctaves(), 2); c@132: c@131: vector input; c@131: for (int i = 0; i < duration; ++i) { c@131: input.push_back(sin((i * 2 * M_PI * freq) / sampleRate)); c@131: } c@131: Window(HanningWindow, duration).cut(input.data()); c@131: c@131: CQSpectrogram::RealBlock output = cq.process(input); c@131: CQSpectrogram::RealBlock rest = cq.getRemainingOutput(); c@131: output.insert(output.end(), rest.begin(), rest.end()); c@131: c@132: BOOST_CHECK_EQUAL(output[0].size(), cq.getBinsPerOctave() * cq.getOctaves()); c@132: c@132: for (int i = 0; i < int(output.size()); ++i) { c@132: checkCQFreqColumn(i, output[i], freq); c@132: } c@131: } c@131: c@131: BOOST_AUTO_TEST_CASE(freq_5) { testCQFrequency(5); } c@131: BOOST_AUTO_TEST_CASE(freq_10) { testCQFrequency(10); } c@131: BOOST_AUTO_TEST_CASE(freq_15) { testCQFrequency(15); } c@131: BOOST_AUTO_TEST_CASE(freq_20) { testCQFrequency(20); } c@131: BOOST_AUTO_TEST_CASE(freq_25) { testCQFrequency(25); } c@131: BOOST_AUTO_TEST_CASE(freq_30) { testCQFrequency(30); } c@131: BOOST_AUTO_TEST_CASE(freq_35) { testCQFrequency(35); } c@131: BOOST_AUTO_TEST_CASE(freq_40) { testCQFrequency(40); } c@131: BOOST_AUTO_TEST_CASE(freq_45) { testCQFrequency(45); } c@131: BOOST_AUTO_TEST_CASE(freq_50) { testCQFrequency(50); } c@131: c@131: BOOST_AUTO_TEST_SUITE_END() c@131: