Mercurial > hg > constant-q-cpp
view src/dsp/MathUtilities.cpp @ 196:da283326bcd3 tip master
Update plugin versions in RDF
author | Chris Cannam <cannam@all-day-breakfast.com> |
---|---|
date | Fri, 28 Feb 2020 09:43:02 +0000 |
parents | b87290781071 |
children |
line wrap: on
line source
/* -*- c-basic-offset: 4 indent-tabs-mode: nil -*- vi:set ts=8 sts=4 sw=4: */ /* Constant-Q library Copyright (c) 2013-2014 Queen Mary, University of London Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. Except as contained in this notice, the names of the Centre for Digital Music; Queen Mary, University of London; and Chris Cannam shall not be used in advertising or otherwise to promote the sale, use or other dealings in this Software without prior written authorization. */ #include "MathUtilities.h" #include <iostream> #include <algorithm> #include <vector> #include <cmath> double MathUtilities::mod(double x, double y) { double a = floor( x / y ); double b = x - ( y * a ); return b; } double MathUtilities::princarg(double ang) { double ValOut; ValOut = mod( ang + M_PI, -2 * M_PI ) + M_PI; return ValOut; } void MathUtilities::getAlphaNorm(const double *data, unsigned int len, unsigned int alpha, double* ANorm) { unsigned int i; double temp = 0.0; double a=0.0; for( i = 0; i < len; i++) { temp = data[ i ]; a += ::pow( fabs(temp), double(alpha) ); } a /= ( double )len; a = ::pow( a, ( 1.0 / (double) alpha ) ); *ANorm = a; } double MathUtilities::getAlphaNorm( const std::vector <double> &data, unsigned int alpha ) { unsigned int i; unsigned int len = data.size(); double temp = 0.0; double a=0.0; for( i = 0; i < len; i++) { temp = data[ i ]; a += ::pow( fabs(temp), double(alpha) ); } a /= ( double )len; a = ::pow( a, ( 1.0 / (double) alpha ) ); return a; } double MathUtilities::round(double x) { if (x < 0) { return -floor(-x + 0.5); } else { return floor(x + 0.5); } } double MathUtilities::median(const double *src, unsigned int len) { if (len == 0) return 0; std::vector<double> scratch; for (int i = 0; i < (int)len; ++i) scratch.push_back(src[i]); std::sort(scratch.begin(), scratch.end()); int middle = len/2; if (len % 2 == 0) { return (scratch[middle] + scratch[middle - 1]) / 2; } else { return scratch[middle]; } } double MathUtilities::sum(const double *src, unsigned int len) { unsigned int i ; double retVal =0.0; for( i = 0; i < len; i++) { retVal += src[ i ]; } return retVal; } double MathUtilities::mean(const double *src, unsigned int len) { double retVal =0.0; if (len == 0) return 0; double s = sum( src, len ); retVal = s / (double)len; return retVal; } double MathUtilities::mean(const std::vector<double> &src, unsigned int start, unsigned int count) { double sum = 0.; if (count == 0) return 0; for (int i = 0; i < (int)count; ++i) { sum += src[start + i]; } return sum / count; } void MathUtilities::getFrameMinMax(const double *data, unsigned int len, double *min, double *max) { unsigned int i; double temp = 0.0; if (len == 0) { *min = *max = 0; return; } *min = data[0]; *max = data[0]; for( i = 0; i < len; i++) { temp = data[ i ]; if( temp < *min ) { *min = temp ; } if( temp > *max ) { *max = temp ; } } } int MathUtilities::getMax( double* pData, unsigned int Length, double* pMax ) { unsigned int index = 0; unsigned int i; double temp = 0.0; double max = pData[0]; for( i = 0; i < Length; i++) { temp = pData[ i ]; if( temp > max ) { max = temp ; index = i; } } if (pMax) *pMax = max; return index; } int MathUtilities::getMax( const std::vector<double> & data, double* pMax ) { unsigned int index = 0; unsigned int i; double temp = 0.0; double max = data[0]; for( i = 0; i < data.size(); i++) { temp = data[ i ]; if( temp > max ) { max = temp ; index = i; } } if (pMax) *pMax = max; return index; } void MathUtilities::circShift( double* pData, int length, int shift) { shift = shift % length; double temp; int i,n; for( i = 0; i < shift; i++) { temp=*(pData + length - 1); for( n = length-2; n >= 0; n--) { *(pData+n+1)=*(pData+n); } *pData = temp; } } int MathUtilities::compareInt (const void * a, const void * b) { return ( *(int*)a - *(int*)b ); } void MathUtilities::normalise(double *data, int length, NormaliseType type) { switch (type) { case NormaliseNone: return; case NormaliseUnitSum: { double sum = 0.0; for (int i = 0; i < length; ++i) { sum += data[i]; } if (sum != 0.0) { for (int i = 0; i < length; ++i) { data[i] /= sum; } } } break; case NormaliseUnitMax: { double max = 0.0; for (int i = 0; i < length; ++i) { if (fabs(data[i]) > max) { max = fabs(data[i]); } } if (max != 0.0) { for (int i = 0; i < length; ++i) { data[i] /= max; } } } break; } } void MathUtilities::normalise(std::vector<double> &data, NormaliseType type) { switch (type) { case NormaliseNone: return; case NormaliseUnitSum: { double sum = 0.0; for (int i = 0; i < (int)data.size(); ++i) sum += data[i]; if (sum != 0.0) { for (int i = 0; i < (int)data.size(); ++i) data[i] /= sum; } } break; case NormaliseUnitMax: { double max = 0.0; for (int i = 0; i < (int)data.size(); ++i) { if (fabs(data[i]) > max) max = fabs(data[i]); } if (max != 0.0) { for (int i = 0; i < (int)data.size(); ++i) data[i] /= max; } } break; } } void MathUtilities::adaptiveThreshold(std::vector<double> &data) { int sz = int(data.size()); if (sz == 0) return; std::vector<double> smoothed(sz); int p_pre = 8; int p_post = 7; for (int i = 0; i < sz; ++i) { int first = std::max(0, i - p_pre); int last = std::min(sz - 1, i + p_post); smoothed[i] = mean(data, first, last - first + 1); } for (int i = 0; i < sz; i++) { data[i] -= smoothed[i]; if (data[i] < 0.0) data[i] = 0.0; } } bool MathUtilities::isPowerOfTwo(int x) { if (x < 1) return false; if (x & (x-1)) return false; return true; } int MathUtilities::nextPowerOfTwo(int x) { if (isPowerOfTwo(x)) return x; if (x < 1) return 1; int n = 1; while (x) { x >>= 1; n <<= 1; } return n; } int MathUtilities::previousPowerOfTwo(int x) { if (isPowerOfTwo(x)) return x; if (x < 1) return 1; int n = 1; x >>= 1; while (x) { x >>= 1; n <<= 1; } return n; } int MathUtilities::nearestPowerOfTwo(int x) { if (isPowerOfTwo(x)) return x; int n0 = previousPowerOfTwo(x), n1 = nextPowerOfTwo(x); if (x - n0 < n1 - x) return n0; else return n1; } double MathUtilities::factorial(int x) { if (x < 0) return 0; double f = 1; for (int i = 1; i <= x; ++i) { f = f * i; } return f; } int MathUtilities::gcd(int a, int b) { int c = a % b; if (c == 0) { return b; } else { return gcd(b, c); } }