Mercurial > hg > constant-q-cpp
view cpp-qm-dsp/ConstantQ.cpp @ 75:f4fb0ac6120a
Interpolation for CQ. But this is wrong, it is interpolating between points in the nearest full-height columns even where there is a nearer point in the not-full-height ones
author | Chris Cannam <c.cannam@qmul.ac.uk> |
---|---|
date | Fri, 04 Apr 2014 11:49:53 +0100 |
parents | be277d1367f4 |
children | 4a3005934850 |
line wrap: on
line source
/* -*- c-basic-offset: 4 indent-tabs-mode: nil -*- vi:set ts=8 sts=4 sw=4: */ /* Constant-Q library Copyright (c) 2013-2014 Queen Mary, University of London Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. Except as contained in this notice, the names of the Centre for Digital Music; Queen Mary, University of London; and Chris Cannam shall not be used in advertising or otherwise to promote the sale, use or other dealings in this Software without prior written authorization. */ #include "ConstantQ.h" #include "CQKernel.h" #include "dsp/rateconversion/Resampler.h" #include "maths/MathUtilities.h" #include "dsp/transforms/FFT.h" #include <algorithm> #include <complex> #include <iostream> #include <stdexcept> using std::vector; using std::complex; using std::cerr; using std::endl; typedef std::complex<double> C; ConstantQ::ConstantQ(double sampleRate, double minFreq, double maxFreq, int binsPerOctave) : m_sampleRate(sampleRate), m_maxFrequency(maxFreq), m_minFrequency(minFreq), m_binsPerOctave(binsPerOctave), m_fft(0) { if (minFreq <= 0.0 || maxFreq <= 0.0) { throw std::invalid_argument("Frequency extents must be positive"); } initialise(); } ConstantQ::~ConstantQ() { delete m_fft; for (int i = 0; i < (int)m_decimators.size(); ++i) { delete m_decimators[i]; } delete m_kernel; } double ConstantQ::getMinFrequency() const { return m_p.minFrequency / pow(2.0, m_octaves - 1); } double ConstantQ::getBinFrequency(int bin) const { return getMinFrequency() * pow(2, (double(bin) / getBinsPerOctave())); } void ConstantQ::initialise() { m_octaves = int(ceil(log2(m_maxFrequency / m_minFrequency))); m_kernel = new CQKernel(m_sampleRate, m_maxFrequency, m_binsPerOctave); m_p = m_kernel->getProperties(); // Use exact powers of two for resampling rates. They don't have // to be related to our actual samplerate: the resampler only // cares about the ratio, but it only accepts integer source and // target rates, and if we start from the actual samplerate we // risk getting non-integer rates for lower octaves int sourceRate = pow(2, m_octaves); vector<int> latencies; // top octave, no resampling latencies.push_back(0); m_decimators.push_back(0); for (int i = 1; i < m_octaves; ++i) { int factor = pow(2, i); Resampler *r = new Resampler (sourceRate, sourceRate / factor, 60, 0.02); // We need to adapt the latencies so as to get the first input // sample to be aligned, in time, at the decimator output // across all octaves. // // Our decimator uses a linear phase filter, but being causal // it is not zero phase: it has a latency that depends on the // decimation factor. Those latencies have been calculated // per-octave and are available to us in the latencies // array. Left to its own devices, the first input sample will // appear at output sample 0 in the highest octave (where no // decimation is needed), sample number latencies[1] in the // next octave down, latencies[2] in the next one, etc. We get // to apply some artificial per-octave latency after the // decimator in the processing chain, in order to compensate // for the differing latencies associated with different // decimation factors. How much should we insert? // // The outputs of the decimators are at different rates (in // terms of the relation between clock time and samples) and // we want them aligned in terms of time. So, for example, a // latency of 10 samples with a decimation factor of 2 is // equivalent to a latency of 20 with no decimation -- they // both result in the first output sample happening at the // same equivalent time in milliseconds. // // So here we record the latency added by the decimator, in // terms of the sample rate of the undecimated signal. Then we // use that to compensate in a moment, when we've discovered // what the longest latency across all octaves is. latencies.push_back(r->getLatency() * factor); m_decimators.push_back(r); } m_bigBlockSize = m_p.fftSize * pow(2, m_octaves - 1); // Now add in the extra padding and compensate for hops that must // be dropped in order to align the atom centres across // octaves. Again this is a bit trickier because we are doing it // at input rather than output and so must work in per-octave // sample rates rather than output blocks int emptyHops = m_p.firstCentre / m_p.atomSpacing; vector<int> drops; for (int i = 0; i < m_octaves; ++i) { int factor = pow(2, i); int dropHops = emptyHops * pow(2, m_octaves - i - 1) - emptyHops; int drop = ((dropHops * m_p.fftHop) * factor) / m_p.atomsPerFrame; drops.push_back(drop); } int maxLatPlusDrop = 0; for (int i = 0; i < m_octaves; ++i) { int latPlusDrop = latencies[i] + drops[i]; if (latPlusDrop > maxLatPlusDrop) maxLatPlusDrop = latPlusDrop; } // we want to design totalLatency such that totalLatency - // latencies[0] - drops[0] is a multiple of m_p.fftHop, so that we // can get identical results in octave 0 to our reference // implementation, making for easier testing (though other octaves // will differ because of different resampler implementations) int totalLatency = maxLatPlusDrop; int lat0 = totalLatency - latencies[0] - drops[0]; totalLatency = ceil(double(lat0 / m_p.fftHop) * m_p.fftHop) + latencies[0] + drops[0]; // cerr << "total latency = " << totalLatency << endl; // Padding as in the reference (will be introduced with the // latency compensation in the loop below) m_outputLatency = totalLatency + m_bigBlockSize - m_p.firstCentre * pow(2, m_octaves-1); // cerr << "m_bigBlockSize = " << m_bigBlockSize << ", firstCentre = " // << m_p.firstCentre << ", m_octaves = " << m_octaves << ", so m_outputLatency = " << m_outputLatency << endl; for (int i = 0; i < m_octaves; ++i) { double factor = pow(2, i); // Calculate the difference between the total latency applied // across all octaves, and the existing latency due to the // decimator for this octave, and then convert it back into // the sample rate appropriate for the output latency of this // decimator -- including one additional big block of padding // (as in the reference). double octaveLatency = double(totalLatency - latencies[i] - drops[i] + m_bigBlockSize) / factor; m_buffers.push_back (vector<double>(int(round(octaveLatency)), 0.0)); } m_fft = new FFTReal(m_p.fftSize); } vector<vector<double> > ConstantQ::process(const vector<double> &td) { m_buffers[0].insert(m_buffers[0].end(), td.begin(), td.end()); for (int i = 1; i < m_octaves; ++i) { vector<double> dec = m_decimators[i]->process(td.data(), td.size()); m_buffers[i].insert(m_buffers[i].end(), dec.begin(), dec.end()); } vector<vector<double> > out; while (true) { // We could have quite different remaining sample counts in // different octaves, because (apart from the predictable // added counts for decimator output on each block) we also // have variable additional latency per octave bool enough = true; for (int i = 0; i < m_octaves; ++i) { int required = m_p.fftSize * pow(2, m_octaves - i - 1); // cerr << "for octave " << i << ", buf len = "<< m_buffers[i].size() << " (need " << required << ")" << endl; if ((int)m_buffers[i].size() < required) { enough = false; } } if (!enough) break; int base = out.size(); int totalColumns = pow(2, m_octaves - 1) * m_p.atomsPerFrame; for (int i = 0; i < totalColumns; ++i) { out.push_back(vector<double>()); } for (int octave = 0; octave < m_octaves; ++octave) { int blocksThisOctave = pow(2, (m_octaves - octave - 1)); for (int b = 0; b < blocksThisOctave; ++b) { vector<vector<double> > block = processOctaveBlock(octave); for (int j = 0; j < m_p.atomsPerFrame; ++j) { int target = base + (b * (totalColumns / blocksThisOctave) + (j * ((totalColumns / blocksThisOctave) / m_p.atomsPerFrame))); while (out[target].size() < m_p.binsPerOctave * (octave + 1)) { out[target].push_back(0.0); } for (int i = 0; i < m_p.binsPerOctave; ++i) { out[target][m_p.binsPerOctave * octave + i] = block[j][m_p.binsPerOctave - i - 1]; } } } } } return out; } vector<vector<double> > ConstantQ::getRemainingBlocks() { // Same as padding added at start, though rounded up int pad = ceil(double(m_outputLatency) / m_bigBlockSize) * m_bigBlockSize; vector<double> zeros(pad, 0.0); return process(zeros); } vector<vector<double> > ConstantQ::processOctaveBlock(int octave) { vector<double> ro(m_p.fftSize, 0.0); vector<double> io(m_p.fftSize, 0.0); m_fft->forward(m_buffers[octave].data(), ro.data(), io.data()); vector<double> shifted; shifted.insert(shifted.end(), m_buffers[octave].begin() + m_p.fftHop, m_buffers[octave].end()); m_buffers[octave] = shifted; vector<C> cv; for (int i = 0; i < m_p.fftSize; ++i) { cv.push_back(C(ro[i], io[i])); } vector<C> cqrowvec = m_kernel->process(cv); // Reform into a column matrix and use only the magnitude vector<vector<double> > cqblock; for (int j = 0; j < m_p.atomsPerFrame; ++j) { cqblock.push_back(vector<double>()); for (int i = 0; i < m_p.binsPerOctave; ++i) { cqblock[j].push_back(abs(cqrowvec[i * m_p.atomsPerFrame + j])); } } return cqblock; }