Mercurial > hg > constant-q-cpp
view test/TestCQFrequency.cpp @ 132:c188cade44f8
Tests (not quite correct yet)
author | Chris Cannam <c.cannam@qmul.ac.uk> |
---|---|
date | Mon, 19 May 2014 12:03:04 +0100 |
parents | 6b13f9c694a8 |
children | 16822c41b9af |
line wrap: on
line source
/* -*- c-basic-offset: 4 indent-tabs-mode: nil -*- vi:set ts=8 sts=4 sw=4: */ #include "cq/CQSpectrogram.h" #include "dsp/Window.h" #include <cmath> #include <vector> #include <iostream> using std::vector; using std::cerr; using std::endl; #define BOOST_TEST_DYN_LINK #define BOOST_TEST_MAIN #include <boost/test/unit_test.hpp> BOOST_AUTO_TEST_SUITE(TestCQFrequency) // The principle here is to feed a single windowed sinusoid into a // small CQ transform and check that the output has its peak bin at // the correct frequency. We can repeat for different frequencies both // inside and outside the frequency range supported by the CQ. We // should also repeat for CQSpectrogram outputs as well as the raw CQ. // Set up fs/2 = 50, frequency range 10 -> 40 i.e. 2 octaves, fixed // duration of 2 seconds static const double sampleRate = 100; static const double cqmin = 10; static const double cqmax = 40; static const double bpo = 4; static const int duration = sampleRate * 2; // Threshold below which to ignore a column completely static const double threshold = 0.08; int binForFrequency(double freq) { int bin = (2 * bpo) - round(bpo * log2(freq / cqmin)); cerr << "binForFrequency: " << freq << " -> " << bin << endl; return bin; } void checkCQFreqColumn(int i, vector<double> column, double freq) { double maxval = 0.0; int maxidx = -1; int height = column.size(); for (int j = 0; j < height; ++j) { if (j == 0 || column[j] > maxval) { maxval = column[j]; maxidx = j; } } cerr << "maxval = " << maxval << " at " << maxidx << endl; int expected = binForFrequency(freq); if (maxval < threshold) { return; // ignore these columns at start and end } else if (expected < 0 || expected >= height) { cerr << "maxval = " << maxval << endl; BOOST_CHECK(maxval < threshold); } else { BOOST_CHECK_EQUAL(maxidx, expected); } } void testCQFrequency(double freq) { CQParameters params(sampleRate, cqmin, cqmax, bpo); CQSpectrogram cq(params, CQSpectrogram::InterpolateLinear); BOOST_CHECK_EQUAL(cq.getBinsPerOctave(), bpo); BOOST_CHECK_EQUAL(cq.getOctaves(), 2); vector<double> input; for (int i = 0; i < duration; ++i) { input.push_back(sin((i * 2 * M_PI * freq) / sampleRate)); } Window<double>(HanningWindow, duration).cut(input.data()); CQSpectrogram::RealBlock output = cq.process(input); CQSpectrogram::RealBlock rest = cq.getRemainingOutput(); output.insert(output.end(), rest.begin(), rest.end()); BOOST_CHECK_EQUAL(output[0].size(), cq.getBinsPerOctave() * cq.getOctaves()); for (int i = 0; i < int(output.size()); ++i) { checkCQFreqColumn(i, output[i], freq); } } BOOST_AUTO_TEST_CASE(freq_5) { testCQFrequency(5); } BOOST_AUTO_TEST_CASE(freq_10) { testCQFrequency(10); } BOOST_AUTO_TEST_CASE(freq_15) { testCQFrequency(15); } BOOST_AUTO_TEST_CASE(freq_20) { testCQFrequency(20); } BOOST_AUTO_TEST_CASE(freq_25) { testCQFrequency(25); } BOOST_AUTO_TEST_CASE(freq_30) { testCQFrequency(30); } BOOST_AUTO_TEST_CASE(freq_35) { testCQFrequency(35); } BOOST_AUTO_TEST_CASE(freq_40) { testCQFrequency(40); } BOOST_AUTO_TEST_CASE(freq_45) { testCQFrequency(45); } BOOST_AUTO_TEST_CASE(freq_50) { testCQFrequency(50); } BOOST_AUTO_TEST_SUITE_END()