Mercurial > hg > constant-q-cpp
view vamp/CQChromaVamp.cpp @ 112:a45b51ea00a2
Smaller range, faster chromagram
author | Chris Cannam <c.cannam@qmul.ac.uk> |
---|---|
date | Wed, 14 May 2014 14:59:45 +0100 |
parents | fdd32f995b0d |
children | 26217edee359 |
line wrap: on
line source
/* -*- c-basic-offset: 4 indent-tabs-mode: nil -*- vi:set ts=8 sts=4 sw=4: */ /* Constant-Q library Copyright (c) 2013-2014 Queen Mary, University of London Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. Except as contained in this notice, the names of the Centre for Digital Music; Queen Mary, University of London; and Chris Cannam shall not be used in advertising or otherwise to promote the sale, use or other dealings in this Software without prior written authorization. */ #include "CQChromaVamp.h" #include "cpp-qm-dsp/CQSpectrogram.h" #include "base/Pitch.h" #include <algorithm> #include <cstdio> using std::string; using std::vector; using std::cerr; using std::endl; static const int defaultLowestOctave = 1; static const int defaultOctaveCount = 8; static const int defaultBPO = 36; static const float defaultTuningFrequency = 440.f; CQChromaVamp::CQChromaVamp(float inputSampleRate) : Vamp::Plugin(inputSampleRate), m_lowestOctave(defaultLowestOctave), m_octaveCount(defaultOctaveCount), m_tuningFrequency(defaultTuningFrequency), m_bpo(defaultBPO), m_cq(0), m_maxFrequency(0), m_minFrequency(0), m_haveStartTime(false), m_columnCount(0) { } CQChromaVamp::~CQChromaVamp() { delete m_cq; } string CQChromaVamp::getIdentifier() const { return "cqchromavamp"; } string CQChromaVamp::getName() const { return "Chromagram"; } string CQChromaVamp::getDescription() const { return "Extract a Constant-Q spectrogram with constant ratio of centre frequency to resolution from the audio, then wrapping it around into a single-octave chromagram."; } string CQChromaVamp::getMaker() const { return "Queen Mary, University of London"; } int CQChromaVamp::getPluginVersion() const { return 1; } string CQChromaVamp::getCopyright() const { return "Plugin by Chris Cannam. Method by Christian Schörkhuber and Anssi Klapuri. Copyright (c) 2013 QMUL"; } CQChromaVamp::ParameterList CQChromaVamp::getParameterDescriptors() const { ParameterList list; ParameterDescriptor desc; desc.identifier = "lowestoct"; desc.name = "Lowest Contributing Octave"; desc.unit = ""; desc.description = "Octave number of the lowest octave to include in the chromagram. Octave numbering is ASA standard, with -1 as the first octave in the MIDI range and middle-C being C4. The octave starts at C."; desc.minValue = -1; desc.maxValue = 12; desc.defaultValue = defaultLowestOctave; desc.isQuantized = true; desc.quantizeStep = 1; list.push_back(desc); desc.identifier = "octaves"; desc.name = "Contributing Octave Count"; desc.unit = "octaves"; desc.description = "Number of octaves to use when generating the Constant-Q transform. All octaves are wrapped around and summed to produce a single octave chromagram as output."; desc.minValue = 1; desc.maxValue = 12; desc.defaultValue = defaultOctaveCount; desc.isQuantized = true; desc.quantizeStep = 1; list.push_back(desc); desc.identifier = "tuning"; desc.name = "Tuning Frequency"; desc.unit = "Hz"; desc.description = "Frequency of concert A"; desc.minValue = 360; desc.maxValue = 500; desc.defaultValue = 440; desc.isQuantized = false; list.push_back(desc); desc.identifier = "bpo"; desc.name = "Bins per Octave"; desc.unit = "bins"; desc.description = "Number of constant-Q transform bins per octave"; desc.minValue = 2; desc.maxValue = 480; desc.defaultValue = defaultBPO; desc.isQuantized = true; desc.quantizeStep = 1; list.push_back(desc); return list; } float CQChromaVamp::getParameter(std::string param) const { if (param == "lowestoct") { return m_lowestOctave; } if (param == "octaves") { return m_octaveCount; } if (param == "tuning") { return m_tuningFrequency; } if (param == "bpo") { return m_bpo; } std::cerr << "WARNING: CQChromaVamp::getParameter: unknown parameter \"" << param << "\"" << std::endl; return 0.0; } void CQChromaVamp::setParameter(std::string param, float value) { if (param == "lowestoct") { m_lowestOctave = lrintf(value); } else if (param == "octaves") { m_octaveCount = lrintf(value); } else if (param == "tuning") { m_tuningFrequency = value; } else if (param == "bpo") { m_bpo = lrintf(value); } else { std::cerr << "WARNING: CQChromaVamp::setParameter: unknown parameter \"" << param << "\"" << std::endl; } } bool CQChromaVamp::initialise(size_t channels, size_t stepSize, size_t blockSize) { if (m_cq) { delete m_cq; m_cq = 0; } if (channels < getMinChannelCount() || channels > getMaxChannelCount()) return false; m_stepSize = stepSize; m_blockSize = blockSize; int highestOctave = m_lowestOctave + m_octaveCount - 1; int highestMIDIPitch = (1 + highestOctave) * 12 + 11; m_maxFrequency = Pitch::getFrequencyForPitch (highestMIDIPitch, 0, m_tuningFrequency); m_minFrequency = m_maxFrequency / pow(2, m_octaveCount + 1) * pow(2, 1.0 / m_bpo); cerr << "lowest octave: " << m_lowestOctave << ", highest octave: " << highestOctave << ", highest midi pitch: " << highestMIDIPitch << ", min freq " << m_minFrequency << ", max freq " << m_maxFrequency << endl; m_cq = new CQSpectrogram (m_inputSampleRate, m_minFrequency, m_maxFrequency, m_bpo, CQSpectrogram::InterpolateLinear); return true; } void CQChromaVamp::reset() { if (m_cq) { delete m_cq; m_cq = new CQSpectrogram (m_inputSampleRate, m_minFrequency, m_maxFrequency, m_bpo, CQSpectrogram::InterpolateLinear); } m_haveStartTime = false; m_columnCount = 0; } size_t CQChromaVamp::getPreferredStepSize() const { return 0; } size_t CQChromaVamp::getPreferredBlockSize() const { return 0; } CQChromaVamp::OutputList CQChromaVamp::getOutputDescriptors() const { static const char *names[] = { "C", "C#", "D", "D#", "E", "F", "F#", "G", "G#", "A", "A#", "B" }; OutputList list; OutputDescriptor d; d.identifier = "chromagram"; d.name = "Chromagram"; d.unit = ""; d.description = "Chromagram obtained from output of constant-Q transform, folding over each process block into a single-octave vector"; d.hasFixedBinCount = true; d.binCount = m_bpo; if (m_cq) { char name[20]; for (int i = 0; i < (int)d.binCount; ++i) { float freq = m_cq->getBinFrequency(i); int note = Pitch::getPitchForFrequency(freq, 0, m_tuningFrequency); float nearestFreq = Pitch::getFrequencyForPitch(note, 0, m_tuningFrequency); sprintf(name, "%d", i); if (fabs(freq - nearestFreq) < 0.01) { d.binNames.push_back(name + std::string(" ") + names[note % 12]); } else { d.binNames.push_back(name); } } } d.hasKnownExtents = false; d.isQuantized = false; d.sampleType = OutputDescriptor::FixedSampleRate; d.sampleRate = m_inputSampleRate / (m_cq ? m_cq->getColumnHop() : 256); list.push_back(d); return list; } CQChromaVamp::FeatureSet CQChromaVamp::process(const float *const *inputBuffers, Vamp::RealTime timestamp) { if (!m_cq) { cerr << "ERROR: CQChromaVamp::process: " << "Plugin has not been initialised" << endl; return FeatureSet(); } if (!m_haveStartTime) { m_startTime = timestamp; m_haveStartTime = true; } vector<double> data; for (int i = 0; i < m_blockSize; ++i) data.push_back(inputBuffers[0][i]); vector<vector<double> > cqout = m_cq->process(data); return convertToFeatures(cqout); } CQChromaVamp::FeatureSet CQChromaVamp::getRemainingFeatures() { vector<vector<double> > cqout = m_cq->getRemainingOutput(); return convertToFeatures(cqout); } CQChromaVamp::FeatureSet CQChromaVamp::convertToFeatures(const vector<vector<double> > &cqout) { FeatureSet returnFeatures; int width = cqout.size(); for (int i = 0; i < width; ++i) { vector<float> column(m_bpo, 0.f); // fold and invert to put low frequencies at the start int thisHeight = cqout[i].size(); for (int j = 0; j < thisHeight; ++j) { column[m_bpo - (j % m_bpo) - 1] += cqout[i][j]; } Feature feature; feature.hasTimestamp = true; feature.timestamp = m_startTime + Vamp::RealTime::frame2RealTime (m_columnCount * m_cq->getColumnHop() - m_cq->getLatency(), m_inputSampleRate); feature.values = column; feature.label = ""; if (feature.timestamp >= m_startTime) { returnFeatures[0].push_back(feature); } ++m_columnCount; } return returnFeatures; }