Mercurial > hg > constant-q-cpp
view yeti/cqtkernel.yeti @ 45:73152bc3bb26
Start to address some padding and latency issues
author | Chris Cannam <c.cannam@qmul.ac.uk> |
---|---|
date | Fri, 22 Nov 2013 14:47:41 +0000 |
parents | f5bd00c97de3 |
children | df6d89381f49 |
line wrap: on
line source
module cqtkernel; vec = load may.vector; complex = load may.complex; window = load may.signal.window; fft = load may.transform.fft; cm = load may.matrix.complex; { pow, round, floor, ceil, nextPowerOfTwo } = load may.mathmisc; makeKernel { sampleRate, maxFreq, binsPerOctave } = (q = 1; atomHopFactor = 0.25; thresh = 0.0005; minFreq = (maxFreq/2) * (pow 2 (1/binsPerOctave)); bigQ = q / ((pow 2 (1/binsPerOctave)) - 1); maxNK = round(bigQ * sampleRate / minFreq); minNK = round(bigQ * sampleRate / (minFreq * (pow 2 ((binsPerOctave-1) / binsPerOctave)))); atomHop = round(minNK * atomHopFactor); firstCentre = atomHop * (ceil ((ceil (maxNK/2)) / atomHop)); fftSize = nextPowerOfTwo (firstCentre + ceil (maxNK/2)); eprintln "sampleRate = \(sampleRate), maxFreq = \(maxFreq), binsPerOctave = \(binsPerOctave), q = \(q), atomHopFactor = \(atomHopFactor), thresh = \(thresh)"; eprintln "minFreq = \(minFreq), bigQ = \(bigQ), maxNK = \(maxNK), minNK = \(minNK), atomHop = \(atomHop), firstCentre = \(firstCentre), fftSize = \(fftSize)"; winNr = floor((fftSize - ceil(maxNK/2) - firstCentre) / atomHop) + 1; lastCentre = firstCentre + (winNr - 1) * atomHop; fftHop = (lastCentre + atomHop) - firstCentre; eprintln "winNr = \(winNr), lastCentre = \(lastCentre), fftHop = \(fftHop)"; fftFunc = fft.forward fftSize; // Note the MATLAB uses exp(2*pi*1i*x) for a complex generating // function. We can't do that here; we need to generate real and imag // parts separately as real = cos(2*pi*x), imag = sin(2*pi*x). binFrequencies = array []; kernels = map do k: nk = round(bigQ * sampleRate / (minFreq * (pow 2 ((k-1)/binsPerOctave)))); // the cq MATLAB toolbox uses a symmetric window for // blackmanharris -- which is odd because it uses a periodic one // for other types. Oh well win = vec.divideBy nk (vec.sqrt (window.windowFunction (BlackmanHarris ()) [Symmetric true] nk)); fk = minFreq * (pow 2 ((k-1)/binsPerOctave)); push binFrequencies fk; genKernel f = vec.multiply win (vec.fromList (map do i: f (2 * pi * fk * i / sampleRate) done [0..nk-1])); reals = genKernel cos; imags = genKernel sin; atomOffset = firstCentre - ceil(nk/2); map do i: shift = vec.zeros (atomOffset + ((i-1) * atomHop)); specKernel = fftFunc (complex.complexArray (vec.concat [shift, reals]) (vec.concat [shift, imags])); map do c: if complex.magnitude c <= thresh then complex.zero else c fi done specKernel; done [1..winNr]; done [1..binsPerOctave]; kmat = cm.toSparse (cm.scaled (1/fftSize) (cm.fromRows (concat kernels))); eprintln "density = \(cm.density kmat) (\(cm.nonZeroValues kmat) of \(cm.width kmat * cm.height kmat))"; // Normalisation wx1 = vec.maxindex (complex.magnitudes (cm.getRow 0 kmat)); wx2 = vec.maxindex (complex.magnitudes (cm.getRow (cm.height kmat - 1) kmat)); subset = cm.columnSlice kmat wx1 (wx2+1); square = cm.product (cm.conjugateTransposed subset) subset; diag = complex.magnitudes (cm.getDiagonal 0 square); wK = vec.slice diag (round(1/q)) (vec.length diag - round(1/q) - 2); weight = (fftHop / fftSize) / (vec.mean (vec.abs wK)); weight = sqrt(weight); eprintln "weight = \(weight)"; { kernel = cm.scaled weight kmat, fftSize, fftHop, binsPerOctave, atomsPerFrame = winNr, atomSpacing = atomHop, firstCentre, maxFrequency = maxFreq, minFrequency = minFreq, binFrequencies, bigQ }); { makeKernel }