Mercurial > hg > constant-q-cpp
view yeti/cqtkernel.yeti @ 8:68f673176a6c
Normalisation -- now it *really* matches the toolbox
author | Chris Cannam <c.cannam@qmul.ac.uk> |
---|---|
date | Fri, 25 Oct 2013 14:38:17 +0100 |
parents | 3cbf89635f34 |
children | c339dc95a7bd |
line wrap: on
line source
module cqtkernel; vec = load may.vector; bf = load may.vector.blockfuncs; complex = load may.complex; window = load may.signal.window; fft = load may.transform.fft; pl = load may.plot; cm = load may.matrix.complex; { pow, round, floor, ceil, nextPowerOfTwo } = load may.mathmisc; fs = 48000; fmax = fs/2; bins = 24; q = 1; atomHopFactor = 0.25; thresh = 0.0005; fmin = (fmax/2) * (pow 2 (1/bins)); bigQ = q / ((pow 2 (1/bins)) - 1); nk_max = round(bigQ * fs / fmin); nk_min = round(bigQ * fs / (fmin * (pow 2 ((bins-1)/bins)))); atomHop = round(nk_min * atomHopFactor); first_center = atomHop * Math#ceil(Math#ceil(nk_max/2) / atomHop); fftLen = nextPowerOfTwo (first_center + Math#ceil(nk_max/2)); println "fs = \(fs), fmax = \(fmax), bins = \(bins), q = \(q), atomHopFactor = \(atomHopFactor), thresh = \(thresh)"; println "fmin = \(fmin), bigQ = \(bigQ), nk_max = \(nk_max), nk_min = \(nk_min), atomHop = \(atomHop), first_center = \(first_center), fftLen = \(fftLen)"; winNr = floor((fftLen - ceil(nk_max/2) - first_center) / atomHop) + 1; last_center = first_center + (winNr - 1) * atomHop; fftHop = (last_center + atomHop) - first_center; fftOverlap = ((fftLen - fftHop) / fftLen) * 100; // as % -- why? just for diagnostics? println "winNr = \(winNr), last_center = \(last_center), fftHop = \(fftHop), fftOverlap = \(fftOverlap)%"; fftFunc = fft.forward fftLen; // Note the MATLAB uses exp(2*pi*1i*x) for a complex generating // function. We can't do that here; we need to generate real and imag // parts separately as real = cos(2*pi*x), imag = sin(2*pi*x). kernels = map do k: nk = round(bigQ * fs / (fmin * (pow 2 ((k-1)/bins)))); // the cq MATLAB toolbox uses a symmetric window for // blackmanharris -- which is odd because it uses a periodic one // for other types. Oh well win = bf.divideBy nk (bf.sqrt (window.windowFunction (BlackmanHarris ()) [Symmetric true] nk)); fk = fmin * (pow 2 ((k-1)/bins)); genKernel f = bf.multiply win (vec.fromList (map do i: f (2 * pi * fk * i / fs) done [0..nk-1])); reals = genKernel cos; imags = genKernel sin; atomOffset = first_center - ceil(nk/2); map do i: shift = vec.zeros (atomOffset + ((i-1) * atomHop)); specKernel = fftFunc (complex.complexArray (vec.concat [shift, reals]) (vec.concat [shift, imags])); map do c: if complex.magnitude c <= thresh then complex.zero else c fi done specKernel; done [1..winNr]; done [1..bins]; kmat = cm.toSparse (cm.scaled (1/fftLen) (cm.newComplexMatrix (RowMajor()) (concat kernels))); println "density = \(cm.density kmat)"; // Normalisation wx1 = bf.maxindex (complex.magnitudes (cm.getRow 0 kmat)); wx2 = bf.maxindex (complex.magnitudes (cm.getRow (cm.height kmat - 1) kmat)); subset = cm.columnSlice kmat wx1 (wx2+1); square = cm.product (cm.conjugateTransposed subset) subset; diag = complex.magnitudes (cm.getDiagonal 0 square); wK = vec.slice diag (round(1/q)) (vec.length diag - round(1/q) - 2); weight = (fftHop / fftLen) / (bf.mean (bf.abs wK)); weight = sqrt(weight); cm.scaled weight kmat;