view cpp-qm-dsp/CQInverse.cpp @ 92:5a3163eff37a

A bit more on inverse
author Chris Cannam <c.cannam@qmul.ac.uk>
date Fri, 09 May 2014 11:15:56 +0100
parents 51f5f0deef2f
children 908be1d06bd2
line wrap: on
line source
/* -*- c-basic-offset: 4 indent-tabs-mode: nil -*-  vi:set ts=8 sts=4 sw=4: */
/*
    Constant-Q library
    Copyright (c) 2013-2014 Queen Mary, University of London

    Permission is hereby granted, free of charge, to any person
    obtaining a copy of this software and associated documentation
    files (the "Software"), to deal in the Software without
    restriction, including without limitation the rights to use, copy,
    modify, merge, publish, distribute, sublicense, and/or sell copies
    of the Software, and to permit persons to whom the Software is
    furnished to do so, subject to the following conditions:

    The above copyright notice and this permission notice shall be
    included in all copies or substantial portions of the Software.

    THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
    EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
    MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
    NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY
    CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF
    CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
    WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

    Except as contained in this notice, the names of the Centre for
    Digital Music; Queen Mary, University of London; and Chris Cannam
    shall not be used in advertising or otherwise to promote the sale,
    use or other dealings in this Software without prior written
    authorization.
*/

#include "CQInverse.h"

#include "dsp/rateconversion/Resampler.h"
#include "maths/MathUtilities.h"
#include "dsp/transforms/FFT.h"

#include <algorithm>
#include <iostream>
#include <stdexcept>

using std::vector;
using std::cerr;
using std::endl;

CQInverse::CQInverse(double sampleRate,
                     double minFreq,
                     double maxFreq,
                     int binsPerOctave) :
    m_sampleRate(sampleRate),
    m_maxFrequency(maxFreq),
    m_minFrequency(minFreq),
    m_binsPerOctave(binsPerOctave),
    m_fft(0)
{
    if (minFreq <= 0.0 || maxFreq <= 0.0) {
        throw std::invalid_argument("Frequency extents must be positive");
    }

    initialise();
}

CQInverse::~CQInverse()
{
    delete m_fft;
    for (int i = 0; i < (int)m_upsamplers.size(); ++i) {
        delete m_upsamplers[i];
    }
    delete m_kernel;
}

double
CQInverse::getMinFrequency() const
{
    return m_p.minFrequency / pow(2.0, m_octaves - 1);
}

double
CQInverse::getBinFrequency(int bin) const
{
    return getMinFrequency() * pow(2, (double(bin) / getBinsPerOctave()));
}

void
CQInverse::initialise()
{
    m_octaves = int(ceil(log2(m_maxFrequency / m_minFrequency)));
    m_kernel = new CQKernel(m_sampleRate, m_maxFrequency, m_binsPerOctave);
    m_p = m_kernel->getProperties();
    
    // Use exact powers of two for resampling rates. They don't have
    // to be related to our actual samplerate: the resampler only
    // cares about the ratio, but it only accepts integer source and
    // target rates, and if we start from the actual samplerate we
    // risk getting non-integer rates for lower octaves

    int sourceRate = pow(2, m_octaves);
    vector<int> latencies;

    // top octave, no resampling
    latencies.push_back(0);
    m_upsamplers.push_back(0);

    for (int i = 1; i < m_octaves; ++i) {

        int factor = pow(2, i);

        Resampler *r = new Resampler
            (sourceRate / factor, sourceRate, 60, 0.02);

	// See ConstantQ.cpp for discussion on latency -- output
	// latency here is at target rate which, this way around, is
	// what we want

        latencies.push_back(r->getLatency());
        m_upsamplers.push_back(r);
    }

    m_bigBlockSize = m_p.fftSize * pow(2, m_octaves - 1);

    //!!! review this later for the hops-dropped stuff
    int maxLatency = 0;
    for (int i = 0; i < m_octaves; ++i) {
	if (latencies[i] > maxLatency) maxLatency = latencies[i];
    }

    m_outputLatency = maxLatency; //!!! for now

    for (int i = 0; i < m_octaves; ++i) {

	// Calculate the difference between the total latency applied
	// across all octaves, and the existing latency due to the
	// upsampler for this octave

        m_buffers.push_back
            (vector<double>(m_outputLatency - latencies[i], 0.0));
    }

    m_fft = new FFTReal(m_p.fftSize);
}

CQInverse::RealSequence
CQInverse::process(const ComplexBlock &block)
{
    // The input data is of the form produced by ConstantQ::process --
    // an unknown number N of columns of varying height. We assert
    // that N is a multiple of atomsPerFrame * 2^(octaves-1), as must
    // be the case for data that came directly from our ConstantQ
    // implementation.

    int blockWidth = m_p.atomsPerFrame * int(pow(2, m_octaves - 1));

    int widthProvided = block.size();

    if (widthProvided % blockWidth != 0) {
        cerr << "ERROR: CQInverse::process: Input block size ("
             << widthProvided
             << ") must be a multiple of processing block width "
             << "(atoms-per-frame * 2^(octaves-1) = "
             << m_p.atomsPerFrame << " * 2^(" << m_octaves << "-1) = "
             << blockWidth << ")" << endl;
        throw std::invalid_argument
            ("Input block size must be a multiple of processing block width");
    }

    // Procedure:
    // 
    // 1. Slice the list of columns into a set of lists of columns,
    // one per octave, each of width N / (2^octave-1) and height
    // binsPerOctave, containing the values present in that octave
    //
    // 2. Group each octave list by atomsPerFrame columns at a time,
    // and stack these so as to achieve a list, for each octave, of
    // taller columns of height binsPerOctave * atomsPerFrame
    //
    // 3. For each column, take the product with the inverse CQ kernel
    // (which is the conjugate of the forward kernel) and perform an
    // inverse FFT
    //
    // 4. Overlap-add each octave's resynthesised blocks (unwindowed)
    //
    // 5. Resample each octave's overlap-add stream to the original
    // rate, and sum.
    
    // We will, for now, do all but the last step in sequence, one
    // octave at a time, and push the results to m_buffers for summing
    // and return.

    for (int i = 0; i < m_octaves; ++i) {
        
        ComplexBlock oct;

        for (int j = 0; j < widthProvided; ++j) {
            int h = block[j].size();
            if (h < m_binsPerOctave * (i+1)) {
                continue;
            }
            ComplexColumn col(block[j].begin() + m_binsPerOctave * i,
                              block[j].begin() + m_binsPerOctave * (i+1));
            oct.push_back(col);
        }

        processOctave(i, oct);
    }
            
#error need to return something
}

void
CQInverse::processOctave(int octave, const ComplexBlock &columns)
{
    // 2. Group each octave list by atomsPerFrame columns at a time,
    // and stack these so as to achieve a list, for each octave, of
    // taller columns of height binsPerOctave * atomsPerFrame

    int ncols = columns.size();

    if (ncols % m_p.atomsPerFrame != 0) {
        cerr << "ERROR: CQInverse::process: Number of columns ("
             << ncols
             << ") in octave " << octave
             << " must be a multiple of atoms-per-frame ("
             << m_p.atomsPerFrame << ")" << endl;
        throw std::invalid_argument
            ("Columns in octave must be a multiple of atoms per frame");
    }

    ComplexBlock reshaped;
    for (int i = 0; i < ncols; i += m_p.atomsPerFrame) {
        ComplexColumn tallcol;
        for (int b = 0; b < m_binsPerOctave; ++b) {
            for (int a = 0; a < m_p.atomsPerFrame; ++a) {
                tallcol.push_back(columns[i + a][b]);
            }
        }
        reshaped.push_back(tallcol);
    }

    

}