view src/dsp/MathUtilities.cpp @ 120:3fa7e938e7d4

Add FFT interface code
author Chris Cannam <c.cannam@qmul.ac.uk>
date Thu, 15 May 2014 12:29:30 +0100
parents a38d6940f8fb
children b87290781071
line wrap: on
line source
/* -*- c-basic-offset: 4 indent-tabs-mode: nil -*-  vi:set ts=8 sts=4 sw=4: */
/*
    Constant-Q library
    Copyright (c) 2013-2014 Queen Mary, University of London

    Permission is hereby granted, free of charge, to any person
    obtaining a copy of this software and associated documentation
    files (the "Software"), to deal in the Software without
    restriction, including without limitation the rights to use, copy,
    modify, merge, publish, distribute, sublicense, and/or sell copies
    of the Software, and to permit persons to whom the Software is
    furnished to do so, subject to the following conditions:

    The above copyright notice and this permission notice shall be
    included in all copies or substantial portions of the Software.

    THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
    EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
    MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
    NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY
    CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF
    CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
    WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

    Except as contained in this notice, the names of the Centre for
    Digital Music; Queen Mary, University of London; and Chris Cannam
    shall not be used in advertising or otherwise to promote the sale,
    use or other dealings in this Software without prior written
    authorization.
*/

#include "MathUtilities.h"

#include <iostream>
#include <algorithm>
#include <vector>
#include <cmath>


double MathUtilities::mod(double x, double y)
{
    double a = floor( x / y );

    double b = x - ( y * a );
    return b;
}

double MathUtilities::princarg(double ang)
{
    double ValOut;

    ValOut = mod( ang + M_PI, -2 * M_PI ) + M_PI;

    return ValOut;
}

void MathUtilities::getAlphaNorm(const double *data, unsigned int len, unsigned int alpha, double* ANorm)
{
    unsigned int i;
    double temp = 0.0;
    double a=0.0;
	
    for( i = 0; i < len; i++)
    {
	temp = data[ i ];
		
	a  += ::pow( fabs(temp), double(alpha) );
    }
    a /= ( double )len;
    a = ::pow( a, ( 1.0 / (double) alpha ) );

    *ANorm = a;
}

double MathUtilities::getAlphaNorm( const std::vector <double> &data, unsigned int alpha )
{
    unsigned int i;
    unsigned int len = data.size();
    double temp = 0.0;
    double a=0.0;
	
    for( i = 0; i < len; i++)
    {
	temp = data[ i ];
		
	a  += ::pow( fabs(temp), double(alpha) );
    }
    a /= ( double )len;
    a = ::pow( a, ( 1.0 / (double) alpha ) );

    return a;
}

double MathUtilities::round(double x)
{
    if (x < 0) {
        return -floor(-x + 0.5);
    } else {
        return floor(x + 0.5);
    }
}

double MathUtilities::median(const double *src, unsigned int len)
{
    if (len == 0) return 0;
    
    std::vector<double> scratch;
    for (int i = 0; i < len; ++i) scratch.push_back(src[i]);
    std::sort(scratch.begin(), scratch.end());

    int middle = len/2;
    if (len % 2 == 0) {
        return (scratch[middle] + scratch[middle - 1]) / 2;
    } else {
        return scratch[middle];
    }
}

double MathUtilities::sum(const double *src, unsigned int len)
{
    unsigned int i ;
    double retVal =0.0;

    for(  i = 0; i < len; i++)
    {
	retVal += src[ i ];
    }

    return retVal;
}

double MathUtilities::mean(const double *src, unsigned int len)
{
    double retVal =0.0;

    if (len == 0) return 0;

    double s = sum( src, len );
	
    retVal =  s  / (double)len;

    return retVal;
}

double MathUtilities::mean(const std::vector<double> &src,
                           unsigned int start,
                           unsigned int count)
{
    double sum = 0.;
	
    if (count == 0) return 0;
    
    for (int i = 0; i < (int)count; ++i)
    {
        sum += src[start + i];
    }

    return sum / count;
}

void MathUtilities::getFrameMinMax(const double *data, unsigned int len, double *min, double *max)
{
    unsigned int i;
    double temp = 0.0;

    if (len == 0) {
        *min = *max = 0;
        return;
    }
	
    *min = data[0];
    *max = data[0];

    for( i = 0; i < len; i++)
    {
	temp = data[ i ];

	if( temp < *min )
	{
	    *min =  temp ;
	}
	if( temp > *max )
	{
	    *max =  temp ;
	}
		
    }
}

int MathUtilities::getMax( double* pData, unsigned int Length, double* pMax )
{
	unsigned int index = 0;
	unsigned int i;
	double temp = 0.0;
	
	double max = pData[0];

	for( i = 0; i < Length; i++)
	{
		temp = pData[ i ];

		if( temp > max )
		{
			max =  temp ;
			index = i;
		}
		
   	}

	if (pMax) *pMax = max;


	return index;
}

int MathUtilities::getMax( const std::vector<double> & data, double* pMax )
{
	unsigned int index = 0;
	unsigned int i;
	double temp = 0.0;
	
	double max = data[0];

	for( i = 0; i < data.size(); i++)
	{
		temp = data[ i ];

		if( temp > max )
		{
			max =  temp ;
			index = i;
		}
		
   	}

	if (pMax) *pMax = max;


	return index;
}

void MathUtilities::circShift( double* pData, int length, int shift)
{
	shift = shift % length;
	double temp;
	int i,n;

	for( i = 0; i < shift; i++)
	{
		temp=*(pData + length - 1);

		for( n = length-2; n >= 0; n--)
		{
			*(pData+n+1)=*(pData+n);
		}

        *pData = temp;
    }
}

int MathUtilities::compareInt (const void * a, const void * b)
{
  return ( *(int*)a - *(int*)b );
}

void MathUtilities::normalise(double *data, int length, NormaliseType type)
{
    switch (type) {

    case NormaliseNone: return;

    case NormaliseUnitSum:
    {
        double sum = 0.0;
        for (int i = 0; i < length; ++i) {
            sum += data[i];
        }
        if (sum != 0.0) {
            for (int i = 0; i < length; ++i) {
                data[i] /= sum;
            }
        }
    }
    break;

    case NormaliseUnitMax:
    {
        double max = 0.0;
        for (int i = 0; i < length; ++i) {
            if (fabs(data[i]) > max) {
                max = fabs(data[i]);
            }
        }
        if (max != 0.0) {
            for (int i = 0; i < length; ++i) {
                data[i] /= max;
            }
        }
    }
    break;

    }
}

void MathUtilities::normalise(std::vector<double> &data, NormaliseType type)
{
    switch (type) {

    case NormaliseNone: return;

    case NormaliseUnitSum:
    {
        double sum = 0.0;
        for (int i = 0; i < (int)data.size(); ++i) sum += data[i];
        if (sum != 0.0) {
            for (int i = 0; i < (int)data.size(); ++i) data[i] /= sum;
        }
    }
    break;

    case NormaliseUnitMax:
    {
        double max = 0.0;
        for (int i = 0; i < (int)data.size(); ++i) {
            if (fabs(data[i]) > max) max = fabs(data[i]);
        }
        if (max != 0.0) {
            for (int i = 0; i < (int)data.size(); ++i) data[i] /= max;
        }
    }
    break;

    }
}

void MathUtilities::adaptiveThreshold(std::vector<double> &data)
{
    int sz = int(data.size());
    if (sz == 0) return;

    std::vector<double> smoothed(sz);
	
    int p_pre = 8;
    int p_post = 7;

    for (int i = 0; i < sz; ++i) {

        int first = std::max(0,      i - p_pre);
        int last  = std::min(sz - 1, i + p_post);

        smoothed[i] = mean(data, first, last - first + 1);
    }

    for (int i = 0; i < sz; i++) {
        data[i] -= smoothed[i];
        if (data[i] < 0.0) data[i] = 0.0;
    }
}

bool
MathUtilities::isPowerOfTwo(int x)
{
    if (x < 1) return false;
    if (x & (x-1)) return false;
    return true;
}

int
MathUtilities::nextPowerOfTwo(int x)
{
    if (isPowerOfTwo(x)) return x;
    if (x < 1) return 1;
    int n = 1;
    while (x) { x >>= 1; n <<= 1; }
    return n;
}

int
MathUtilities::previousPowerOfTwo(int x)
{
    if (isPowerOfTwo(x)) return x;
    if (x < 1) return 1;
    int n = 1;
    x >>= 1;
    while (x) { x >>= 1; n <<= 1; }
    return n;
}

int
MathUtilities::nearestPowerOfTwo(int x)
{
    if (isPowerOfTwo(x)) return x;
    int n0 = previousPowerOfTwo(x), n1 = nextPowerOfTwo(x);
    if (x - n0 < n1 - x) return n0;
    else return n1;
}

double
MathUtilities::factorial(int x)
{
    if (x < 0) return 0;
    double f = 1;
    for (int i = 1; i <= x; ++i) {
	f = f * i;
    }
    return f;
}

int
MathUtilities::gcd(int a, int b)
{
    int c = a % b;
    if (c == 0) {
        return b;
    } else {
        return gcd(b, c);
    }
}