Mercurial > hg > constant-q-cpp
diff src/dsp/MathUtilities.cpp @ 119:a38d6940f8fb
Bring in dsp dependencies
author | Chris Cannam <c.cannam@qmul.ac.uk> |
---|---|
date | Thu, 15 May 2014 12:24:11 +0100 |
parents | |
children | b87290781071 |
line wrap: on
line diff
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/src/dsp/MathUtilities.cpp Thu May 15 12:24:11 2014 +0100 @@ -0,0 +1,419 @@ +/* -*- c-basic-offset: 4 indent-tabs-mode: nil -*- vi:set ts=8 sts=4 sw=4: */ +/* + Constant-Q library + Copyright (c) 2013-2014 Queen Mary, University of London + + Permission is hereby granted, free of charge, to any person + obtaining a copy of this software and associated documentation + files (the "Software"), to deal in the Software without + restriction, including without limitation the rights to use, copy, + modify, merge, publish, distribute, sublicense, and/or sell copies + of the Software, and to permit persons to whom the Software is + furnished to do so, subject to the following conditions: + + The above copyright notice and this permission notice shall be + included in all copies or substantial portions of the Software. + + THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, + EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF + MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND + NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY + CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF + CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION + WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. + + Except as contained in this notice, the names of the Centre for + Digital Music; Queen Mary, University of London; and Chris Cannam + shall not be used in advertising or otherwise to promote the sale, + use or other dealings in this Software without prior written + authorization. +*/ + +#include "MathUtilities.h" + +#include <iostream> +#include <algorithm> +#include <vector> +#include <cmath> + + +double MathUtilities::mod(double x, double y) +{ + double a = floor( x / y ); + + double b = x - ( y * a ); + return b; +} + +double MathUtilities::princarg(double ang) +{ + double ValOut; + + ValOut = mod( ang + M_PI, -2 * M_PI ) + M_PI; + + return ValOut; +} + +void MathUtilities::getAlphaNorm(const double *data, unsigned int len, unsigned int alpha, double* ANorm) +{ + unsigned int i; + double temp = 0.0; + double a=0.0; + + for( i = 0; i < len; i++) + { + temp = data[ i ]; + + a += ::pow( fabs(temp), double(alpha) ); + } + a /= ( double )len; + a = ::pow( a, ( 1.0 / (double) alpha ) ); + + *ANorm = a; +} + +double MathUtilities::getAlphaNorm( const std::vector <double> &data, unsigned int alpha ) +{ + unsigned int i; + unsigned int len = data.size(); + double temp = 0.0; + double a=0.0; + + for( i = 0; i < len; i++) + { + temp = data[ i ]; + + a += ::pow( fabs(temp), double(alpha) ); + } + a /= ( double )len; + a = ::pow( a, ( 1.0 / (double) alpha ) ); + + return a; +} + +double MathUtilities::round(double x) +{ + if (x < 0) { + return -floor(-x + 0.5); + } else { + return floor(x + 0.5); + } +} + +double MathUtilities::median(const double *src, unsigned int len) +{ + if (len == 0) return 0; + + std::vector<double> scratch; + for (int i = 0; i < len; ++i) scratch.push_back(src[i]); + std::sort(scratch.begin(), scratch.end()); + + int middle = len/2; + if (len % 2 == 0) { + return (scratch[middle] + scratch[middle - 1]) / 2; + } else { + return scratch[middle]; + } +} + +double MathUtilities::sum(const double *src, unsigned int len) +{ + unsigned int i ; + double retVal =0.0; + + for( i = 0; i < len; i++) + { + retVal += src[ i ]; + } + + return retVal; +} + +double MathUtilities::mean(const double *src, unsigned int len) +{ + double retVal =0.0; + + if (len == 0) return 0; + + double s = sum( src, len ); + + retVal = s / (double)len; + + return retVal; +} + +double MathUtilities::mean(const std::vector<double> &src, + unsigned int start, + unsigned int count) +{ + double sum = 0.; + + if (count == 0) return 0; + + for (int i = 0; i < (int)count; ++i) + { + sum += src[start + i]; + } + + return sum / count; +} + +void MathUtilities::getFrameMinMax(const double *data, unsigned int len, double *min, double *max) +{ + unsigned int i; + double temp = 0.0; + + if (len == 0) { + *min = *max = 0; + return; + } + + *min = data[0]; + *max = data[0]; + + for( i = 0; i < len; i++) + { + temp = data[ i ]; + + if( temp < *min ) + { + *min = temp ; + } + if( temp > *max ) + { + *max = temp ; + } + + } +} + +int MathUtilities::getMax( double* pData, unsigned int Length, double* pMax ) +{ + unsigned int index = 0; + unsigned int i; + double temp = 0.0; + + double max = pData[0]; + + for( i = 0; i < Length; i++) + { + temp = pData[ i ]; + + if( temp > max ) + { + max = temp ; + index = i; + } + + } + + if (pMax) *pMax = max; + + + return index; +} + +int MathUtilities::getMax( const std::vector<double> & data, double* pMax ) +{ + unsigned int index = 0; + unsigned int i; + double temp = 0.0; + + double max = data[0]; + + for( i = 0; i < data.size(); i++) + { + temp = data[ i ]; + + if( temp > max ) + { + max = temp ; + index = i; + } + + } + + if (pMax) *pMax = max; + + + return index; +} + +void MathUtilities::circShift( double* pData, int length, int shift) +{ + shift = shift % length; + double temp; + int i,n; + + for( i = 0; i < shift; i++) + { + temp=*(pData + length - 1); + + for( n = length-2; n >= 0; n--) + { + *(pData+n+1)=*(pData+n); + } + + *pData = temp; + } +} + +int MathUtilities::compareInt (const void * a, const void * b) +{ + return ( *(int*)a - *(int*)b ); +} + +void MathUtilities::normalise(double *data, int length, NormaliseType type) +{ + switch (type) { + + case NormaliseNone: return; + + case NormaliseUnitSum: + { + double sum = 0.0; + for (int i = 0; i < length; ++i) { + sum += data[i]; + } + if (sum != 0.0) { + for (int i = 0; i < length; ++i) { + data[i] /= sum; + } + } + } + break; + + case NormaliseUnitMax: + { + double max = 0.0; + for (int i = 0; i < length; ++i) { + if (fabs(data[i]) > max) { + max = fabs(data[i]); + } + } + if (max != 0.0) { + for (int i = 0; i < length; ++i) { + data[i] /= max; + } + } + } + break; + + } +} + +void MathUtilities::normalise(std::vector<double> &data, NormaliseType type) +{ + switch (type) { + + case NormaliseNone: return; + + case NormaliseUnitSum: + { + double sum = 0.0; + for (int i = 0; i < (int)data.size(); ++i) sum += data[i]; + if (sum != 0.0) { + for (int i = 0; i < (int)data.size(); ++i) data[i] /= sum; + } + } + break; + + case NormaliseUnitMax: + { + double max = 0.0; + for (int i = 0; i < (int)data.size(); ++i) { + if (fabs(data[i]) > max) max = fabs(data[i]); + } + if (max != 0.0) { + for (int i = 0; i < (int)data.size(); ++i) data[i] /= max; + } + } + break; + + } +} + +void MathUtilities::adaptiveThreshold(std::vector<double> &data) +{ + int sz = int(data.size()); + if (sz == 0) return; + + std::vector<double> smoothed(sz); + + int p_pre = 8; + int p_post = 7; + + for (int i = 0; i < sz; ++i) { + + int first = std::max(0, i - p_pre); + int last = std::min(sz - 1, i + p_post); + + smoothed[i] = mean(data, first, last - first + 1); + } + + for (int i = 0; i < sz; i++) { + data[i] -= smoothed[i]; + if (data[i] < 0.0) data[i] = 0.0; + } +} + +bool +MathUtilities::isPowerOfTwo(int x) +{ + if (x < 1) return false; + if (x & (x-1)) return false; + return true; +} + +int +MathUtilities::nextPowerOfTwo(int x) +{ + if (isPowerOfTwo(x)) return x; + if (x < 1) return 1; + int n = 1; + while (x) { x >>= 1; n <<= 1; } + return n; +} + +int +MathUtilities::previousPowerOfTwo(int x) +{ + if (isPowerOfTwo(x)) return x; + if (x < 1) return 1; + int n = 1; + x >>= 1; + while (x) { x >>= 1; n <<= 1; } + return n; +} + +int +MathUtilities::nearestPowerOfTwo(int x) +{ + if (isPowerOfTwo(x)) return x; + int n0 = previousPowerOfTwo(x), n1 = nextPowerOfTwo(x); + if (x - n0 < n1 - x) return n0; + else return n1; +} + +double +MathUtilities::factorial(int x) +{ + if (x < 0) return 0; + double f = 1; + for (int i = 1; i <= x; ++i) { + f = f * i; + } + return f; +} + +int +MathUtilities::gcd(int a, int b) +{ + int c = a % b; + if (c == 0) { + return b; + } else { + return gcd(b, c); + } +} +