diff src/dsp/MathUtilities.cpp @ 119:a38d6940f8fb

Bring in dsp dependencies
author Chris Cannam <c.cannam@qmul.ac.uk>
date Thu, 15 May 2014 12:24:11 +0100
parents
children b87290781071
line wrap: on
line diff
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/src/dsp/MathUtilities.cpp	Thu May 15 12:24:11 2014 +0100
@@ -0,0 +1,419 @@
+/* -*- c-basic-offset: 4 indent-tabs-mode: nil -*-  vi:set ts=8 sts=4 sw=4: */
+/*
+    Constant-Q library
+    Copyright (c) 2013-2014 Queen Mary, University of London
+
+    Permission is hereby granted, free of charge, to any person
+    obtaining a copy of this software and associated documentation
+    files (the "Software"), to deal in the Software without
+    restriction, including without limitation the rights to use, copy,
+    modify, merge, publish, distribute, sublicense, and/or sell copies
+    of the Software, and to permit persons to whom the Software is
+    furnished to do so, subject to the following conditions:
+
+    The above copyright notice and this permission notice shall be
+    included in all copies or substantial portions of the Software.
+
+    THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
+    EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
+    MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
+    NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY
+    CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF
+    CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
+    WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
+
+    Except as contained in this notice, the names of the Centre for
+    Digital Music; Queen Mary, University of London; and Chris Cannam
+    shall not be used in advertising or otherwise to promote the sale,
+    use or other dealings in this Software without prior written
+    authorization.
+*/
+
+#include "MathUtilities.h"
+
+#include <iostream>
+#include <algorithm>
+#include <vector>
+#include <cmath>
+
+
+double MathUtilities::mod(double x, double y)
+{
+    double a = floor( x / y );
+
+    double b = x - ( y * a );
+    return b;
+}
+
+double MathUtilities::princarg(double ang)
+{
+    double ValOut;
+
+    ValOut = mod( ang + M_PI, -2 * M_PI ) + M_PI;
+
+    return ValOut;
+}
+
+void MathUtilities::getAlphaNorm(const double *data, unsigned int len, unsigned int alpha, double* ANorm)
+{
+    unsigned int i;
+    double temp = 0.0;
+    double a=0.0;
+	
+    for( i = 0; i < len; i++)
+    {
+	temp = data[ i ];
+		
+	a  += ::pow( fabs(temp), double(alpha) );
+    }
+    a /= ( double )len;
+    a = ::pow( a, ( 1.0 / (double) alpha ) );
+
+    *ANorm = a;
+}
+
+double MathUtilities::getAlphaNorm( const std::vector <double> &data, unsigned int alpha )
+{
+    unsigned int i;
+    unsigned int len = data.size();
+    double temp = 0.0;
+    double a=0.0;
+	
+    for( i = 0; i < len; i++)
+    {
+	temp = data[ i ];
+		
+	a  += ::pow( fabs(temp), double(alpha) );
+    }
+    a /= ( double )len;
+    a = ::pow( a, ( 1.0 / (double) alpha ) );
+
+    return a;
+}
+
+double MathUtilities::round(double x)
+{
+    if (x < 0) {
+        return -floor(-x + 0.5);
+    } else {
+        return floor(x + 0.5);
+    }
+}
+
+double MathUtilities::median(const double *src, unsigned int len)
+{
+    if (len == 0) return 0;
+    
+    std::vector<double> scratch;
+    for (int i = 0; i < len; ++i) scratch.push_back(src[i]);
+    std::sort(scratch.begin(), scratch.end());
+
+    int middle = len/2;
+    if (len % 2 == 0) {
+        return (scratch[middle] + scratch[middle - 1]) / 2;
+    } else {
+        return scratch[middle];
+    }
+}
+
+double MathUtilities::sum(const double *src, unsigned int len)
+{
+    unsigned int i ;
+    double retVal =0.0;
+
+    for(  i = 0; i < len; i++)
+    {
+	retVal += src[ i ];
+    }
+
+    return retVal;
+}
+
+double MathUtilities::mean(const double *src, unsigned int len)
+{
+    double retVal =0.0;
+
+    if (len == 0) return 0;
+
+    double s = sum( src, len );
+	
+    retVal =  s  / (double)len;
+
+    return retVal;
+}
+
+double MathUtilities::mean(const std::vector<double> &src,
+                           unsigned int start,
+                           unsigned int count)
+{
+    double sum = 0.;
+	
+    if (count == 0) return 0;
+    
+    for (int i = 0; i < (int)count; ++i)
+    {
+        sum += src[start + i];
+    }
+
+    return sum / count;
+}
+
+void MathUtilities::getFrameMinMax(const double *data, unsigned int len, double *min, double *max)
+{
+    unsigned int i;
+    double temp = 0.0;
+
+    if (len == 0) {
+        *min = *max = 0;
+        return;
+    }
+	
+    *min = data[0];
+    *max = data[0];
+
+    for( i = 0; i < len; i++)
+    {
+	temp = data[ i ];
+
+	if( temp < *min )
+	{
+	    *min =  temp ;
+	}
+	if( temp > *max )
+	{
+	    *max =  temp ;
+	}
+		
+    }
+}
+
+int MathUtilities::getMax( double* pData, unsigned int Length, double* pMax )
+{
+	unsigned int index = 0;
+	unsigned int i;
+	double temp = 0.0;
+	
+	double max = pData[0];
+
+	for( i = 0; i < Length; i++)
+	{
+		temp = pData[ i ];
+
+		if( temp > max )
+		{
+			max =  temp ;
+			index = i;
+		}
+		
+   	}
+
+	if (pMax) *pMax = max;
+
+
+	return index;
+}
+
+int MathUtilities::getMax( const std::vector<double> & data, double* pMax )
+{
+	unsigned int index = 0;
+	unsigned int i;
+	double temp = 0.0;
+	
+	double max = data[0];
+
+	for( i = 0; i < data.size(); i++)
+	{
+		temp = data[ i ];
+
+		if( temp > max )
+		{
+			max =  temp ;
+			index = i;
+		}
+		
+   	}
+
+	if (pMax) *pMax = max;
+
+
+	return index;
+}
+
+void MathUtilities::circShift( double* pData, int length, int shift)
+{
+	shift = shift % length;
+	double temp;
+	int i,n;
+
+	for( i = 0; i < shift; i++)
+	{
+		temp=*(pData + length - 1);
+
+		for( n = length-2; n >= 0; n--)
+		{
+			*(pData+n+1)=*(pData+n);
+		}
+
+        *pData = temp;
+    }
+}
+
+int MathUtilities::compareInt (const void * a, const void * b)
+{
+  return ( *(int*)a - *(int*)b );
+}
+
+void MathUtilities::normalise(double *data, int length, NormaliseType type)
+{
+    switch (type) {
+
+    case NormaliseNone: return;
+
+    case NormaliseUnitSum:
+    {
+        double sum = 0.0;
+        for (int i = 0; i < length; ++i) {
+            sum += data[i];
+        }
+        if (sum != 0.0) {
+            for (int i = 0; i < length; ++i) {
+                data[i] /= sum;
+            }
+        }
+    }
+    break;
+
+    case NormaliseUnitMax:
+    {
+        double max = 0.0;
+        for (int i = 0; i < length; ++i) {
+            if (fabs(data[i]) > max) {
+                max = fabs(data[i]);
+            }
+        }
+        if (max != 0.0) {
+            for (int i = 0; i < length; ++i) {
+                data[i] /= max;
+            }
+        }
+    }
+    break;
+
+    }
+}
+
+void MathUtilities::normalise(std::vector<double> &data, NormaliseType type)
+{
+    switch (type) {
+
+    case NormaliseNone: return;
+
+    case NormaliseUnitSum:
+    {
+        double sum = 0.0;
+        for (int i = 0; i < (int)data.size(); ++i) sum += data[i];
+        if (sum != 0.0) {
+            for (int i = 0; i < (int)data.size(); ++i) data[i] /= sum;
+        }
+    }
+    break;
+
+    case NormaliseUnitMax:
+    {
+        double max = 0.0;
+        for (int i = 0; i < (int)data.size(); ++i) {
+            if (fabs(data[i]) > max) max = fabs(data[i]);
+        }
+        if (max != 0.0) {
+            for (int i = 0; i < (int)data.size(); ++i) data[i] /= max;
+        }
+    }
+    break;
+
+    }
+}
+
+void MathUtilities::adaptiveThreshold(std::vector<double> &data)
+{
+    int sz = int(data.size());
+    if (sz == 0) return;
+
+    std::vector<double> smoothed(sz);
+	
+    int p_pre = 8;
+    int p_post = 7;
+
+    for (int i = 0; i < sz; ++i) {
+
+        int first = std::max(0,      i - p_pre);
+        int last  = std::min(sz - 1, i + p_post);
+
+        smoothed[i] = mean(data, first, last - first + 1);
+    }
+
+    for (int i = 0; i < sz; i++) {
+        data[i] -= smoothed[i];
+        if (data[i] < 0.0) data[i] = 0.0;
+    }
+}
+
+bool
+MathUtilities::isPowerOfTwo(int x)
+{
+    if (x < 1) return false;
+    if (x & (x-1)) return false;
+    return true;
+}
+
+int
+MathUtilities::nextPowerOfTwo(int x)
+{
+    if (isPowerOfTwo(x)) return x;
+    if (x < 1) return 1;
+    int n = 1;
+    while (x) { x >>= 1; n <<= 1; }
+    return n;
+}
+
+int
+MathUtilities::previousPowerOfTwo(int x)
+{
+    if (isPowerOfTwo(x)) return x;
+    if (x < 1) return 1;
+    int n = 1;
+    x >>= 1;
+    while (x) { x >>= 1; n <<= 1; }
+    return n;
+}
+
+int
+MathUtilities::nearestPowerOfTwo(int x)
+{
+    if (isPowerOfTwo(x)) return x;
+    int n0 = previousPowerOfTwo(x), n1 = nextPowerOfTwo(x);
+    if (x - n0 < n1 - x) return n0;
+    else return n1;
+}
+
+double
+MathUtilities::factorial(int x)
+{
+    if (x < 0) return 0;
+    double f = 1;
+    for (int i = 1; i <= x; ++i) {
+	f = f * i;
+    }
+    return f;
+}
+
+int
+MathUtilities::gcd(int a, int b)
+{
+    int c = a % b;
+    if (c == 0) {
+        return b;
+    } else {
+        return gcd(b, c);
+    }
+}
+