annotate misc/yeti/test_frequency.yeti @ 196:da283326bcd3 tip master

Update plugin versions in RDF
author Chris Cannam <cannam@all-day-breakfast.com>
date Fri, 28 Feb 2020 09:43:02 +0000
parents 6deec2a51d13
children
rev   line source
c@116 1 /*
c@116 2 Constant-Q library
c@116 3 Copyright (c) 2013-2014 Queen Mary, University of London
c@116 4
c@116 5 Permission is hereby granted, free of charge, to any person
c@116 6 obtaining a copy of this software and associated documentation
c@116 7 files (the "Software"), to deal in the Software without
c@116 8 restriction, including without limitation the rights to use, copy,
c@116 9 modify, merge, publish, distribute, sublicense, and/or sell copies
c@116 10 of the Software, and to permit persons to whom the Software is
c@116 11 furnished to do so, subject to the following conditions:
c@116 12
c@116 13 The above copyright notice and this permission notice shall be
c@116 14 included in all copies or substantial portions of the Software.
c@116 15
c@116 16 THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
c@116 17 EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
c@116 18 MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
c@116 19 NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY
c@116 20 CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF
c@116 21 CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
c@116 22 WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
c@116 23
c@116 24 Except as contained in this notice, the names of the Centre for
c@116 25 Digital Music; Queen Mary, University of London; and Chris Cannam
c@116 26 shall not be used in advertising or otherwise to promote the sale,
c@116 27 use or other dealings in this Software without prior written
c@116 28 authorization.
c@116 29 */
c@116 30
c@116 31 module test_frequency;
c@116 32
c@116 33 mat = load may.matrix;
c@116 34 vec = load may.vector;
c@116 35 win = load may.signal.window;
c@116 36 mm = load may.mathmisc;
c@116 37 cm = load may.matrix.complex;
c@116 38 syn = load may.stream.syntheticstream;
c@116 39 plot = load may.plot;
c@116 40
c@116 41 { compare } = load may.test;
c@116 42
c@116 43 { cqt } = load cqt;
c@116 44
c@116 45 // Test with a single windowed sinusoid, repeating at various frequencies
c@116 46
c@116 47 sinTestStream sampleRate duration signalFreq = // duration is in samples
c@116 48 (sin = syn.sinusoid sampleRate signalFreq;
c@116 49 chunk = mat.getRow 0 (sin.read duration);
c@116 50 syn.precalculatedMono sampleRate (win.windowed win.hann chunk));
c@116 51
c@116 52 // We want to make a CQ transform spanning more than one octave, but
c@116 53 // not going all the way to fs/2 so we can test it also with
c@116 54 // frequencies above and below its extents
c@116 55
c@116 56 sampleRate = 100;
c@116 57
c@116 58 // fs/2 = 50 so 10->40 gives us 2 octaves
c@116 59 cqmin = 10;
c@116 60 cqmax = 40;
c@116 61 bpo = 4; // fairly arbitrary
c@116 62
c@116 63 testFreqs = map (* 5) [ 0..10 ];
c@116 64 duration = sampleRate * 2;
c@116 65
c@116 66 threshold = 0.08;
c@116 67
c@116 68 streamBuilder = sinTestStream sampleRate duration;
c@116 69
c@116 70 binForFreq f =
c@116 71 mm.round (bpo * mm.log2 (f / cqmin)) - 1;
c@116 72
c@116 73 report message matrix =
c@116 74 (eprintln message;
c@116 75 eprintln "matrix is:";
c@116 76 mat.eprint matrix);
c@116 77 // chart = plot.plot [Grid matrix];
c@116 78 // sleep 100;
c@116 79 // chart#dispose());
c@116 80
c@116 81 tests = mapIntoHash
c@116 82 do f: "freq_\(f)" done
c@116 83 do f: \(
c@116 84 str = streamBuilder f;
c@116 85 cq = cqt { maxFreq = cqmax, minFreq = cqmin, binsPerOctave = bpo } str;
c@116 86 spec = cq.cqSpectrogram;
c@116 87 rightSize = all id
c@116 88 (map do s:
c@116 89 compare (mat.size s) {
c@116 90 rows = cq.kernel.binsPerOctave * cq.octaves,
c@116 91 columns = cq.kernel.atomsPerFrame * mm.pow 2 (cq.octaves - 1)
c@116 92 }
c@116 93 done spec);
c@116 94 m = mat.concatHorizontal spec;
c@116 95 // println "binFrequencies = \(cq.kernel.binFrequencies)";
c@116 96 // println "binForFreq \(f) = \(binForFreq f)";
c@116 97 var colno = 0;
c@116 98 success = all id
c@116 99 (rightSize :: map do c:
c@116 100 // The test passes for this column if:
c@116 101 //
c@116 102 // * the max bin is the expected one, or
c@116 103 //
c@116 104 // * the expected max is out of range entirely (but
c@116 105 // we need to test _something_ in this case --
c@116 106 // what?), or
c@116 107 //
c@116 108 // * all bins are below a threshold, or
c@116 109 //
c@116 110 // * this is an odd column and the expected max is in
c@116 111 // the lower octave
c@116 112 //
c@116 113 // We should also check that all values in the lower
c@116 114 // octave are zero for odd columns.
c@116 115 //
c@116 116 expected = binForFreq f;
c@116 117 good =
c@116 118 (expected < 0 or expected >= vec.length c) or
c@116 119 ((colno % 2 == 1) and expected < (vec.length c / 2)) or
c@116 120 (vec.max c < threshold) or
c@116 121 (vec.maxindex c == binForFreq f);
c@116 122 if (not good) then
c@116 123 report " * bad! maxindex \(vec.maxindex c) != expected \(binForFreq f) for freq \(f) in column \(colno) of \(mat.width m): column is \(vec.list c)" m;
c@116 124 fi;
c@116 125 colno := colno + 1;
c@116 126 good;
c@116 127 done (mat.asColumns m));
c@116 128 success;
c@116 129 ) done
c@116 130 testFreqs;
c@116 131
c@116 132 tests is hash<string, () -> boolean>