c@116
|
1 /*
|
c@116
|
2 Constant-Q library
|
c@116
|
3 Copyright (c) 2013-2014 Queen Mary, University of London
|
c@116
|
4
|
c@116
|
5 Permission is hereby granted, free of charge, to any person
|
c@116
|
6 obtaining a copy of this software and associated documentation
|
c@116
|
7 files (the "Software"), to deal in the Software without
|
c@116
|
8 restriction, including without limitation the rights to use, copy,
|
c@116
|
9 modify, merge, publish, distribute, sublicense, and/or sell copies
|
c@116
|
10 of the Software, and to permit persons to whom the Software is
|
c@116
|
11 furnished to do so, subject to the following conditions:
|
c@116
|
12
|
c@116
|
13 The above copyright notice and this permission notice shall be
|
c@116
|
14 included in all copies or substantial portions of the Software.
|
c@116
|
15
|
c@116
|
16 THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
|
c@116
|
17 EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
|
c@116
|
18 MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
|
c@116
|
19 NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY
|
c@116
|
20 CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF
|
c@116
|
21 CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
|
c@116
|
22 WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
|
c@116
|
23
|
c@116
|
24 Except as contained in this notice, the names of the Centre for
|
c@116
|
25 Digital Music; Queen Mary, University of London; and Chris Cannam
|
c@116
|
26 shall not be used in advertising or otherwise to promote the sale,
|
c@116
|
27 use or other dealings in this Software without prior written
|
c@116
|
28 authorization.
|
c@116
|
29 */
|
c@116
|
30
|
c@116
|
31 module cqtkernel;
|
c@116
|
32
|
c@116
|
33 vec = load may.vector;
|
c@116
|
34 complex = load may.complex;
|
c@116
|
35 window = load may.signal.window;
|
c@116
|
36 fft = load may.transform.fft;
|
c@116
|
37 cm = load may.matrix.complex;
|
c@116
|
38
|
c@116
|
39 { pow, round, floor, ceil, nextPowerOfTwo } = load may.mathmisc;
|
c@116
|
40
|
c@116
|
41 makeKernel { sampleRate, maxFreq, binsPerOctave } =
|
c@116
|
42 (q = 1;
|
c@116
|
43 atomHopFactor = 0.25;
|
c@116
|
44 thresh = 0.0005;
|
c@116
|
45 minFreq = (maxFreq/2) * (pow 2 (1/binsPerOctave));
|
c@116
|
46 bigQ = q / ((pow 2 (1/binsPerOctave)) - 1);
|
c@116
|
47
|
c@116
|
48 maxNK = round(bigQ * sampleRate / minFreq);
|
c@116
|
49 minNK = round(bigQ * sampleRate /
|
c@116
|
50 (minFreq * (pow 2 ((binsPerOctave-1) / binsPerOctave))));
|
c@116
|
51
|
c@116
|
52 atomHop = round(minNK * atomHopFactor);
|
c@116
|
53
|
c@116
|
54 firstCentre = atomHop * (ceil ((ceil (maxNK/2)) / atomHop));
|
c@116
|
55
|
c@116
|
56 fftSize = nextPowerOfTwo (firstCentre + ceil (maxNK/2));
|
c@116
|
57
|
c@116
|
58 // eprintln "sampleRate = \(sampleRate), maxFreq = \(maxFreq), binsPerOctave = \(binsPerOctave), q = \(q), atomHopFactor = \(atomHopFactor), thresh = \(thresh)";
|
c@116
|
59 // eprintln "minFreq = \(minFreq), bigQ = \(bigQ), maxNK = \(maxNK), minNK = \(minNK), atomHop = \(atomHop), firstCentre = \(firstCentre), fftSize = \(fftSize)";
|
c@116
|
60
|
c@116
|
61 winNr = floor((fftSize - ceil(maxNK/2) - firstCentre) / atomHop) + 1;
|
c@116
|
62
|
c@116
|
63 lastCentre = firstCentre + (winNr - 1) * atomHop;
|
c@116
|
64
|
c@116
|
65 fftHop = (lastCentre + atomHop) - firstCentre;
|
c@116
|
66
|
c@116
|
67 // eprintln "winNr = \(winNr), lastCentre = \(lastCentre), fftHop = \(fftHop)";
|
c@116
|
68
|
c@116
|
69 fftFunc = fft.forward fftSize;
|
c@116
|
70
|
c@116
|
71 // Note the MATLAB uses exp(2*pi*1i*x) for a complex generating
|
c@116
|
72 // function. We can't do that here; we need to generate real and imag
|
c@116
|
73 // parts separately as real = cos(2*pi*x), imag = sin(2*pi*x).
|
c@116
|
74
|
c@116
|
75 binFrequencies = array [];
|
c@116
|
76
|
c@116
|
77 kernels = map do k:
|
c@116
|
78
|
c@116
|
79 nk = round(bigQ * sampleRate / (minFreq * (pow 2 ((k-1)/binsPerOctave))));
|
c@116
|
80
|
c@116
|
81 // the cq MATLAB toolbox uses a symmetric window for
|
c@116
|
82 // blackmanharris -- which is odd because it uses a periodic one
|
c@116
|
83 // for other types. Oh well
|
c@116
|
84 win = vec.divideBy nk
|
c@116
|
85 (vec.sqrt
|
c@116
|
86 (window.windowFunction (BlackmanHarris ()) [Symmetric true] nk));
|
c@116
|
87
|
c@116
|
88 fk = minFreq * (pow 2 ((k-1)/binsPerOctave));
|
c@116
|
89
|
c@116
|
90 push binFrequencies fk;
|
c@116
|
91
|
c@116
|
92 genKernel f = vec.multiply
|
c@116
|
93 [win,
|
c@116
|
94 vec.fromList
|
c@116
|
95 (map do i: f (2 * pi * fk * i / sampleRate) done [0..nk-1])];
|
c@116
|
96
|
c@116
|
97 reals = genKernel cos;
|
c@116
|
98 imags = genKernel sin;
|
c@116
|
99
|
c@116
|
100 atomOffset = firstCentre - ceil(nk/2);
|
c@116
|
101
|
c@116
|
102 map do i:
|
c@116
|
103
|
c@116
|
104 shift = vec.zeros (atomOffset + ((i-1) * atomHop));
|
c@116
|
105
|
c@116
|
106 specKernel = fftFunc
|
c@116
|
107 (complex.complexArray
|
c@116
|
108 (vec.concat [shift, reals])
|
c@116
|
109 (vec.concat [shift, imags]));
|
c@116
|
110
|
c@116
|
111 map do c:
|
c@116
|
112 if complex.magnitude c <= thresh then complex.zero else c fi
|
c@116
|
113 done specKernel;
|
c@116
|
114
|
c@116
|
115 done [1..winNr];
|
c@116
|
116
|
c@116
|
117 done [1..binsPerOctave];
|
c@116
|
118
|
c@116
|
119 kmat = cm.toSparse (cm.scaled (1/fftSize) (cm.fromRows (concat kernels)));
|
c@116
|
120
|
c@116
|
121 // eprintln "density = \(cm.density kmat) (\(cm.nonZeroValues kmat) of \(cm.width kmat * cm.height kmat))";
|
c@116
|
122
|
c@116
|
123 // Normalisation
|
c@116
|
124
|
c@116
|
125 wx1 = vec.maxindex (complex.magnitudes (cm.getRow 0 kmat));
|
c@116
|
126 wx2 = vec.maxindex (complex.magnitudes (cm.getRow (cm.height kmat - 1) kmat));
|
c@116
|
127
|
c@116
|
128 subset = cm.flipped (cm.columnSlice kmat wx1 (wx2+1));
|
c@116
|
129 square = cm.product (cm.conjugateTransposed subset) subset;
|
c@116
|
130
|
c@116
|
131 diag = complex.magnitudes (cm.getDiagonal 0 square);
|
c@116
|
132 wK = vec.slice diag (round(1/q)) (vec.length diag - round(1/q) - 2);
|
c@116
|
133
|
c@116
|
134 weight = (fftHop / fftSize) / (vec.mean (vec.abs wK));
|
c@116
|
135 weight = sqrt(weight);
|
c@116
|
136
|
c@116
|
137 kernel = cm.scaled weight kmat;
|
c@116
|
138
|
c@116
|
139 // eprintln "weight = \(weight)";
|
c@116
|
140
|
c@116
|
141 {
|
c@116
|
142 kernel,
|
c@116
|
143 fftSize,
|
c@116
|
144 fftHop,
|
c@116
|
145 binsPerOctave,
|
c@116
|
146 atomsPerFrame = winNr,
|
c@116
|
147 atomSpacing = atomHop,
|
c@116
|
148 firstCentre,
|
c@116
|
149 maxFrequency = maxFreq,
|
c@116
|
150 minFrequency = minFreq,
|
c@116
|
151 binFrequencies,
|
c@116
|
152 bigQ
|
c@116
|
153 });
|
c@116
|
154
|
c@116
|
155 {
|
c@116
|
156 makeKernel
|
c@116
|
157 }
|
c@116
|
158
|