c@119
|
1 /* -*- c-basic-offset: 4 indent-tabs-mode: nil -*- vi:set ts=8 sts=4 sw=4: */
|
c@119
|
2 /*
|
c@119
|
3 Constant-Q library
|
c@119
|
4 Copyright (c) 2013-2014 Queen Mary, University of London
|
c@119
|
5
|
c@119
|
6 Permission is hereby granted, free of charge, to any person
|
c@119
|
7 obtaining a copy of this software and associated documentation
|
c@119
|
8 files (the "Software"), to deal in the Software without
|
c@119
|
9 restriction, including without limitation the rights to use, copy,
|
c@119
|
10 modify, merge, publish, distribute, sublicense, and/or sell copies
|
c@119
|
11 of the Software, and to permit persons to whom the Software is
|
c@119
|
12 furnished to do so, subject to the following conditions:
|
c@119
|
13
|
c@119
|
14 The above copyright notice and this permission notice shall be
|
c@119
|
15 included in all copies or substantial portions of the Software.
|
c@119
|
16
|
c@119
|
17 THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
|
c@119
|
18 EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
|
c@119
|
19 MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
|
c@119
|
20 NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY
|
c@119
|
21 CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF
|
c@119
|
22 CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
|
c@119
|
23 WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
|
c@119
|
24
|
c@119
|
25 Except as contained in this notice, the names of the Centre for
|
c@119
|
26 Digital Music; Queen Mary, University of London; and Chris Cannam
|
c@119
|
27 shall not be used in advertising or otherwise to promote the sale,
|
c@119
|
28 use or other dealings in this Software without prior written
|
c@119
|
29 authorization.
|
c@119
|
30 */
|
c@119
|
31
|
c@119
|
32 #include "Resampler.h"
|
c@119
|
33
|
c@122
|
34 #include "MathUtilities.h"
|
c@122
|
35 #include "KaiserWindow.h"
|
c@122
|
36 #include "SincWindow.h"
|
c@119
|
37
|
c@119
|
38 #include <iostream>
|
c@119
|
39 #include <vector>
|
c@119
|
40 #include <map>
|
c@119
|
41 #include <cassert>
|
c@119
|
42
|
c@122
|
43 #include <pthread.h>
|
c@122
|
44
|
c@119
|
45 using std::vector;
|
c@119
|
46 using std::map;
|
c@119
|
47 using std::cerr;
|
c@119
|
48 using std::endl;
|
c@119
|
49
|
c@119
|
50 //#define DEBUG_RESAMPLER 1
|
c@119
|
51 //#define DEBUG_RESAMPLER_VERBOSE 1
|
c@119
|
52
|
c@119
|
53 Resampler::Resampler(int sourceRate, int targetRate) :
|
c@119
|
54 m_sourceRate(sourceRate),
|
c@119
|
55 m_targetRate(targetRate)
|
c@119
|
56 {
|
c@119
|
57 initialise(100, 0.02);
|
c@119
|
58 }
|
c@119
|
59
|
c@119
|
60 Resampler::Resampler(int sourceRate, int targetRate,
|
c@119
|
61 double snr, double bandwidth) :
|
c@119
|
62 m_sourceRate(sourceRate),
|
c@119
|
63 m_targetRate(targetRate)
|
c@119
|
64 {
|
c@119
|
65 initialise(snr, bandwidth);
|
c@119
|
66 }
|
c@119
|
67
|
c@119
|
68 Resampler::~Resampler()
|
c@119
|
69 {
|
c@119
|
70 delete[] m_phaseData;
|
c@119
|
71 }
|
c@119
|
72
|
c@119
|
73 // peakToPole -> length -> beta -> window
|
c@119
|
74 static map<double, map<int, map<double, vector<double> > > >
|
c@119
|
75 knownFilters;
|
c@119
|
76
|
c@122
|
77 static pthread_mutex_t
|
c@122
|
78 knownFilterMutex = PTHREAD_MUTEX_INITIALIZER;
|
c@119
|
79
|
c@119
|
80 void
|
c@119
|
81 Resampler::initialise(double snr, double bandwidth)
|
c@119
|
82 {
|
c@119
|
83 int higher = std::max(m_sourceRate, m_targetRate);
|
c@119
|
84 int lower = std::min(m_sourceRate, m_targetRate);
|
c@119
|
85
|
c@119
|
86 m_gcd = MathUtilities::gcd(lower, higher);
|
c@119
|
87 m_peakToPole = higher / m_gcd;
|
c@119
|
88
|
c@119
|
89 if (m_targetRate < m_sourceRate) {
|
c@119
|
90 // antialiasing filter, should be slightly below nyquist
|
c@119
|
91 m_peakToPole = m_peakToPole / (1.0 - bandwidth/2.0);
|
c@119
|
92 }
|
c@119
|
93
|
c@119
|
94 KaiserWindow::Parameters params =
|
c@119
|
95 KaiserWindow::parametersForBandwidth(snr, bandwidth, higher / m_gcd);
|
c@119
|
96
|
c@119
|
97 params.length =
|
c@119
|
98 (params.length % 2 == 0 ? params.length + 1 : params.length);
|
c@119
|
99
|
c@119
|
100 params.length =
|
c@119
|
101 (params.length > 200001 ? 200001 : params.length);
|
c@119
|
102
|
c@119
|
103 m_filterLength = params.length;
|
c@119
|
104
|
c@119
|
105 vector<double> filter;
|
c@122
|
106
|
c@122
|
107 pthread_mutex_lock(&knownFilterMutex);
|
c@119
|
108
|
c@119
|
109 if (knownFilters[m_peakToPole][m_filterLength].find(params.beta) ==
|
c@119
|
110 knownFilters[m_peakToPole][m_filterLength].end()) {
|
c@119
|
111
|
c@119
|
112 KaiserWindow kw(params);
|
c@119
|
113 SincWindow sw(m_filterLength, m_peakToPole * 2);
|
c@119
|
114
|
c@119
|
115 filter = vector<double>(m_filterLength, 0.0);
|
c@119
|
116 for (int i = 0; i < m_filterLength; ++i) filter[i] = 1.0;
|
c@119
|
117 sw.cut(filter.data());
|
c@119
|
118 kw.cut(filter.data());
|
c@119
|
119
|
c@119
|
120 knownFilters[m_peakToPole][m_filterLength][params.beta] = filter;
|
c@119
|
121 }
|
c@119
|
122
|
c@119
|
123 filter = knownFilters[m_peakToPole][m_filterLength][params.beta];
|
c@122
|
124
|
c@122
|
125 pthread_mutex_unlock(&knownFilterMutex);
|
c@119
|
126
|
c@119
|
127 int inputSpacing = m_targetRate / m_gcd;
|
c@119
|
128 int outputSpacing = m_sourceRate / m_gcd;
|
c@119
|
129
|
c@119
|
130 #ifdef DEBUG_RESAMPLER
|
c@119
|
131 cerr << "resample " << m_sourceRate << " -> " << m_targetRate
|
c@119
|
132 << ": inputSpacing " << inputSpacing << ", outputSpacing "
|
c@119
|
133 << outputSpacing << ": filter length " << m_filterLength
|
c@119
|
134 << endl;
|
c@119
|
135 #endif
|
c@119
|
136
|
c@119
|
137 // Now we have a filter of (odd) length flen in which the lower
|
c@119
|
138 // sample rate corresponds to every n'th point and the higher rate
|
c@119
|
139 // to every m'th where n and m are higher and lower rates divided
|
c@119
|
140 // by their gcd respectively. So if x coordinates are on the same
|
c@119
|
141 // scale as our filter resolution, then source sample i is at i *
|
c@119
|
142 // (targetRate / gcd) and target sample j is at j * (sourceRate /
|
c@119
|
143 // gcd).
|
c@119
|
144
|
c@119
|
145 // To reconstruct a single target sample, we want a buffer (real
|
c@119
|
146 // or virtual) of flen values formed of source samples spaced at
|
c@119
|
147 // intervals of (targetRate / gcd), in our example case 3. This
|
c@119
|
148 // is initially formed with the first sample at the filter peak.
|
c@119
|
149 //
|
c@119
|
150 // 0 0 0 0 a 0 0 b 0
|
c@119
|
151 //
|
c@119
|
152 // and of course we have our filter
|
c@119
|
153 //
|
c@119
|
154 // f1 f2 f3 f4 f5 f6 f7 f8 f9
|
c@119
|
155 //
|
c@119
|
156 // We take the sum of products of non-zero values from this buffer
|
c@119
|
157 // with corresponding values in the filter
|
c@119
|
158 //
|
c@119
|
159 // a * f5 + b * f8
|
c@119
|
160 //
|
c@119
|
161 // Then we drop (sourceRate / gcd) values, in our example case 4,
|
c@119
|
162 // from the start of the buffer and fill until it has flen values
|
c@119
|
163 // again
|
c@119
|
164 //
|
c@119
|
165 // a 0 0 b 0 0 c 0 0
|
c@119
|
166 //
|
c@119
|
167 // repeat to reconstruct the next target sample
|
c@119
|
168 //
|
c@119
|
169 // a * f1 + b * f4 + c * f7
|
c@119
|
170 //
|
c@119
|
171 // and so on.
|
c@119
|
172 //
|
c@119
|
173 // Above I said the buffer could be "real or virtual" -- ours is
|
c@119
|
174 // virtual. We don't actually store all the zero spacing values,
|
c@119
|
175 // except for padding at the start; normally we store only the
|
c@119
|
176 // values that actually came from the source stream, along with a
|
c@119
|
177 // phase value that tells us how many virtual zeroes there are at
|
c@119
|
178 // the start of the virtual buffer. So the two examples above are
|
c@119
|
179 //
|
c@119
|
180 // 0 a b [ with phase 1 ]
|
c@119
|
181 // a b c [ with phase 0 ]
|
c@119
|
182 //
|
c@119
|
183 // Having thus broken down the buffer so that only the elements we
|
c@119
|
184 // need to multiply are present, we can also unzip the filter into
|
c@119
|
185 // every-nth-element subsets at each phase, allowing us to do the
|
c@119
|
186 // filter multiplication as a simply vector multiply. That is, rather
|
c@119
|
187 // than store
|
c@119
|
188 //
|
c@119
|
189 // f1 f2 f3 f4 f5 f6 f7 f8 f9
|
c@119
|
190 //
|
c@119
|
191 // we store separately
|
c@119
|
192 //
|
c@119
|
193 // f1 f4 f7
|
c@119
|
194 // f2 f5 f8
|
c@119
|
195 // f3 f6 f9
|
c@119
|
196 //
|
c@119
|
197 // Each time we complete a multiply-and-sum, we need to work out
|
c@119
|
198 // how many (real) samples to drop from the start of our buffer,
|
c@119
|
199 // and how many to add at the end of it for the next multiply. We
|
c@119
|
200 // know we want to drop enough real samples to move along by one
|
c@119
|
201 // computed output sample, which is our outputSpacing number of
|
c@119
|
202 // virtual buffer samples. Depending on the relationship between
|
c@119
|
203 // input and output spacings, this may mean dropping several real
|
c@119
|
204 // samples, one real sample, or none at all (and simply moving to
|
c@119
|
205 // a different "phase").
|
c@119
|
206
|
c@119
|
207 m_phaseData = new Phase[inputSpacing];
|
c@119
|
208
|
c@119
|
209 for (int phase = 0; phase < inputSpacing; ++phase) {
|
c@119
|
210
|
c@119
|
211 Phase p;
|
c@119
|
212
|
c@119
|
213 p.nextPhase = phase - outputSpacing;
|
c@119
|
214 while (p.nextPhase < 0) p.nextPhase += inputSpacing;
|
c@119
|
215 p.nextPhase %= inputSpacing;
|
c@119
|
216
|
c@119
|
217 p.drop = int(ceil(std::max(0.0, double(outputSpacing - phase))
|
c@119
|
218 / inputSpacing));
|
c@119
|
219
|
c@119
|
220 int filtZipLength = int(ceil(double(m_filterLength - phase)
|
c@119
|
221 / inputSpacing));
|
c@119
|
222
|
c@119
|
223 for (int i = 0; i < filtZipLength; ++i) {
|
c@119
|
224 p.filter.push_back(filter[i * inputSpacing + phase]);
|
c@119
|
225 }
|
c@119
|
226
|
c@119
|
227 m_phaseData[phase] = p;
|
c@119
|
228 }
|
c@119
|
229
|
c@119
|
230 #ifdef DEBUG_RESAMPLER
|
c@119
|
231 int cp = 0;
|
c@119
|
232 int totDrop = 0;
|
c@119
|
233 for (int i = 0; i < inputSpacing; ++i) {
|
c@119
|
234 cerr << "phase = " << cp << ", drop = " << m_phaseData[cp].drop
|
c@119
|
235 << ", filter length = " << m_phaseData[cp].filter.size()
|
c@119
|
236 << ", next phase = " << m_phaseData[cp].nextPhase << endl;
|
c@119
|
237 totDrop += m_phaseData[cp].drop;
|
c@119
|
238 cp = m_phaseData[cp].nextPhase;
|
c@119
|
239 }
|
c@119
|
240 cerr << "total drop = " << totDrop << endl;
|
c@119
|
241 #endif
|
c@119
|
242
|
c@119
|
243 // The May implementation of this uses a pull model -- we ask the
|
c@119
|
244 // resampler for a certain number of output samples, and it asks
|
c@119
|
245 // its source stream for as many as it needs to calculate
|
c@119
|
246 // those. This means (among other things) that the source stream
|
c@119
|
247 // can be asked for enough samples up-front to fill the buffer
|
c@119
|
248 // before the first output sample is generated.
|
c@119
|
249 //
|
c@119
|
250 // In this implementation we're using a push model in which a
|
c@119
|
251 // certain number of source samples is provided and we're asked
|
c@119
|
252 // for as many output samples as that makes available. But we
|
c@119
|
253 // can't return any samples from the beginning until half the
|
c@119
|
254 // filter length has been provided as input. This means we must
|
c@119
|
255 // either return a very variable number of samples (none at all
|
c@119
|
256 // until the filter fills, then half the filter length at once) or
|
c@119
|
257 // else have a lengthy declared latency on the output. We do the
|
c@119
|
258 // latter. (What do other implementations do?)
|
c@119
|
259 //
|
c@119
|
260 // We want to make sure the first "real" sample will eventually be
|
c@119
|
261 // aligned with the centre sample in the filter (it's tidier, and
|
c@119
|
262 // easier to do diagnostic calculations that way). So we need to
|
c@119
|
263 // pick the initial phase and buffer fill accordingly.
|
c@119
|
264 //
|
c@119
|
265 // Example: if the inputSpacing is 2, outputSpacing is 3, and
|
c@119
|
266 // filter length is 7,
|
c@119
|
267 //
|
c@119
|
268 // x x x x a b c ... input samples
|
c@119
|
269 // 0 1 2 3 4 5 6 7 8 9 10 11 12 13 ...
|
c@119
|
270 // i j k l ... output samples
|
c@119
|
271 // [--------|--------] <- filter with centre mark
|
c@119
|
272 //
|
c@119
|
273 // Let h be the index of the centre mark, here 3 (generally
|
c@119
|
274 // int(filterLength/2) for odd-length filters).
|
c@119
|
275 //
|
c@119
|
276 // The smallest n such that h + n * outputSpacing > filterLength
|
c@119
|
277 // is 2 (that is, ceil((filterLength - h) / outputSpacing)), and
|
c@119
|
278 // (h + 2 * outputSpacing) % inputSpacing == 1, so the initial
|
c@119
|
279 // phase is 1.
|
c@119
|
280 //
|
c@119
|
281 // To achieve our n, we need to pre-fill the "virtual" buffer with
|
c@119
|
282 // 4 zero samples: the x's above. This is int((h + n *
|
c@119
|
283 // outputSpacing) / inputSpacing). It's the phase that makes this
|
c@119
|
284 // buffer get dealt with in such a way as to give us an effective
|
c@119
|
285 // index for sample a of 9 rather than 8 or 10 or whatever.
|
c@119
|
286 //
|
c@119
|
287 // This gives us output latency of 2 (== n), i.e. output samples i
|
c@119
|
288 // and j will appear before the one in which input sample a is at
|
c@119
|
289 // the centre of the filter.
|
c@119
|
290
|
c@119
|
291 int h = int(m_filterLength / 2);
|
c@119
|
292 int n = ceil(double(m_filterLength - h) / outputSpacing);
|
c@119
|
293
|
c@119
|
294 m_phase = (h + n * outputSpacing) % inputSpacing;
|
c@119
|
295
|
c@119
|
296 int fill = (h + n * outputSpacing) / inputSpacing;
|
c@119
|
297
|
c@119
|
298 m_latency = n;
|
c@119
|
299
|
c@119
|
300 m_buffer = vector<double>(fill, 0);
|
c@119
|
301 m_bufferOrigin = 0;
|
c@119
|
302
|
c@119
|
303 #ifdef DEBUG_RESAMPLER
|
c@119
|
304 cerr << "initial phase " << m_phase << " (as " << (m_filterLength/2) << " % " << inputSpacing << ")"
|
c@119
|
305 << ", latency " << m_latency << endl;
|
c@119
|
306 #endif
|
c@119
|
307 }
|
c@119
|
308
|
c@119
|
309 double
|
c@119
|
310 Resampler::reconstructOne()
|
c@119
|
311 {
|
c@119
|
312 Phase &pd = m_phaseData[m_phase];
|
c@119
|
313 double v = 0.0;
|
c@119
|
314 int n = pd.filter.size();
|
c@119
|
315
|
c@119
|
316 assert(n + m_bufferOrigin <= (int)m_buffer.size());
|
c@119
|
317
|
c@119
|
318 const double *const __restrict__ buf = m_buffer.data() + m_bufferOrigin;
|
c@119
|
319 const double *const __restrict__ filt = pd.filter.data();
|
c@119
|
320
|
c@119
|
321 for (int i = 0; i < n; ++i) {
|
c@119
|
322 // NB gcc can only vectorize this with -ffast-math
|
c@119
|
323 v += buf[i] * filt[i];
|
c@119
|
324 }
|
c@119
|
325
|
c@119
|
326 m_bufferOrigin += pd.drop;
|
c@119
|
327 m_phase = pd.nextPhase;
|
c@119
|
328 return v;
|
c@119
|
329 }
|
c@119
|
330
|
c@119
|
331 int
|
c@119
|
332 Resampler::process(const double *src, double *dst, int n)
|
c@119
|
333 {
|
c@119
|
334 for (int i = 0; i < n; ++i) {
|
c@119
|
335 m_buffer.push_back(src[i]);
|
c@119
|
336 }
|
c@119
|
337
|
c@119
|
338 int maxout = int(ceil(double(n) * m_targetRate / m_sourceRate));
|
c@119
|
339 int outidx = 0;
|
c@119
|
340
|
c@119
|
341 #ifdef DEBUG_RESAMPLER
|
c@119
|
342 cerr << "process: buf siz " << m_buffer.size() << " filt siz for phase " << m_phase << " " << m_phaseData[m_phase].filter.size() << endl;
|
c@119
|
343 #endif
|
c@119
|
344
|
c@119
|
345 double scaleFactor = (double(m_targetRate) / m_gcd) / m_peakToPole;
|
c@119
|
346
|
c@119
|
347 while (outidx < maxout &&
|
c@119
|
348 m_buffer.size() >= m_phaseData[m_phase].filter.size() + m_bufferOrigin) {
|
c@119
|
349 dst[outidx] = scaleFactor * reconstructOne();
|
c@119
|
350 outidx++;
|
c@119
|
351 }
|
c@119
|
352
|
c@119
|
353 m_buffer = vector<double>(m_buffer.begin() + m_bufferOrigin, m_buffer.end());
|
c@119
|
354 m_bufferOrigin = 0;
|
c@119
|
355
|
c@119
|
356 return outidx;
|
c@119
|
357 }
|
c@119
|
358
|
c@119
|
359 vector<double>
|
c@119
|
360 Resampler::process(const double *src, int n)
|
c@119
|
361 {
|
c@119
|
362 int maxout = int(ceil(double(n) * m_targetRate / m_sourceRate));
|
c@119
|
363 vector<double> out(maxout, 0.0);
|
c@119
|
364 int got = process(src, out.data(), n);
|
c@119
|
365 assert(got <= maxout);
|
c@119
|
366 if (got < maxout) out.resize(got);
|
c@119
|
367 return out;
|
c@119
|
368 }
|
c@119
|
369
|
c@119
|
370 vector<double>
|
c@119
|
371 Resampler::resample(int sourceRate, int targetRate, const double *data, int n)
|
c@119
|
372 {
|
c@119
|
373 Resampler r(sourceRate, targetRate);
|
c@119
|
374
|
c@119
|
375 int latency = r.getLatency();
|
c@119
|
376
|
c@119
|
377 // latency is the output latency. We need to provide enough
|
c@119
|
378 // padding input samples at the end of input to guarantee at
|
c@119
|
379 // *least* the latency's worth of output samples. that is,
|
c@119
|
380
|
c@119
|
381 int inputPad = int(ceil((double(latency) * sourceRate) / targetRate));
|
c@119
|
382
|
c@119
|
383 // that means we are providing this much input in total:
|
c@119
|
384
|
c@119
|
385 int n1 = n + inputPad;
|
c@119
|
386
|
c@119
|
387 // and obtaining this much output in total:
|
c@119
|
388
|
c@119
|
389 int m1 = int(ceil((double(n1) * targetRate) / sourceRate));
|
c@119
|
390
|
c@119
|
391 // in order to return this much output to the user:
|
c@119
|
392
|
c@119
|
393 int m = int(ceil((double(n) * targetRate) / sourceRate));
|
c@119
|
394
|
c@119
|
395 #ifdef DEBUG_RESAMPLER
|
c@119
|
396 cerr << "n = " << n << ", sourceRate = " << sourceRate << ", targetRate = " << targetRate << ", m = " << m << ", latency = " << latency << ", inputPad = " << inputPad << ", m1 = " << m1 << ", n1 = " << n1 << ", n1 - n = " << n1 - n << endl;
|
c@119
|
397 #endif
|
c@119
|
398
|
c@119
|
399 vector<double> pad(n1 - n, 0.0);
|
c@119
|
400 vector<double> out(m1 + 1, 0.0);
|
c@119
|
401
|
c@119
|
402 int gotData = r.process(data, out.data(), n);
|
c@119
|
403 int gotPad = r.process(pad.data(), out.data() + gotData, pad.size());
|
c@119
|
404 int got = gotData + gotPad;
|
c@119
|
405
|
c@119
|
406 #ifdef DEBUG_RESAMPLER
|
c@119
|
407 cerr << "resample: " << n << " in, " << pad.size() << " padding, " << got << " out (" << gotData << " data, " << gotPad << " padding, latency = " << latency << ")" << endl;
|
c@119
|
408 #endif
|
c@119
|
409 #ifdef DEBUG_RESAMPLER_VERBOSE
|
c@119
|
410 int printN = 50;
|
c@119
|
411 cerr << "first " << printN << " in:" << endl;
|
c@119
|
412 for (int i = 0; i < printN && i < n; ++i) {
|
c@119
|
413 if (i % 5 == 0) cerr << endl << i << "... ";
|
c@119
|
414 cerr << data[i] << " ";
|
c@119
|
415 }
|
c@119
|
416 cerr << endl;
|
c@119
|
417 #endif
|
c@119
|
418
|
c@119
|
419 int toReturn = got - latency;
|
c@119
|
420 if (toReturn > m) toReturn = m;
|
c@119
|
421
|
c@119
|
422 vector<double> sliced(out.begin() + latency,
|
c@119
|
423 out.begin() + latency + toReturn);
|
c@119
|
424
|
c@119
|
425 #ifdef DEBUG_RESAMPLER_VERBOSE
|
c@119
|
426 cerr << "first " << printN << " out (after latency compensation), length " << sliced.size() << ":";
|
c@119
|
427 for (int i = 0; i < printN && i < sliced.size(); ++i) {
|
c@119
|
428 if (i % 5 == 0) cerr << endl << i << "... ";
|
c@119
|
429 cerr << sliced[i] << " ";
|
c@119
|
430 }
|
c@119
|
431 cerr << endl;
|
c@119
|
432 #endif
|
c@119
|
433
|
c@119
|
434 return sliced;
|
c@119
|
435 }
|
c@119
|
436
|