c@116
|
1 /* -*- c-basic-offset: 4 indent-tabs-mode: nil -*- vi:set ts=8 sts=4 sw=4: */
|
c@116
|
2 /*
|
c@116
|
3 Constant-Q library
|
c@116
|
4 Copyright (c) 2013-2014 Queen Mary, University of London
|
c@116
|
5
|
c@116
|
6 Permission is hereby granted, free of charge, to any person
|
c@116
|
7 obtaining a copy of this software and associated documentation
|
c@116
|
8 files (the "Software"), to deal in the Software without
|
c@116
|
9 restriction, including without limitation the rights to use, copy,
|
c@116
|
10 modify, merge, publish, distribute, sublicense, and/or sell copies
|
c@116
|
11 of the Software, and to permit persons to whom the Software is
|
c@116
|
12 furnished to do so, subject to the following conditions:
|
c@116
|
13
|
c@116
|
14 The above copyright notice and this permission notice shall be
|
c@116
|
15 included in all copies or substantial portions of the Software.
|
c@116
|
16
|
c@116
|
17 THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
|
c@116
|
18 EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
|
c@116
|
19 MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
|
c@116
|
20 NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY
|
c@116
|
21 CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF
|
c@116
|
22 CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
|
c@116
|
23 WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
|
c@116
|
24
|
c@116
|
25 Except as contained in this notice, the names of the Centre for
|
c@116
|
26 Digital Music; Queen Mary, University of London; and Chris Cannam
|
c@116
|
27 shall not be used in advertising or otherwise to promote the sale,
|
c@116
|
28 use or other dealings in this Software without prior written
|
c@116
|
29 authorization.
|
c@116
|
30 */
|
c@116
|
31
|
c@116
|
32 #include "CQKernel.h"
|
c@116
|
33
|
c@121
|
34 #include "dsp/MathUtilities.h"
|
c@121
|
35 #include "dsp/FFT.h"
|
c@121
|
36 #include "dsp/Window.h"
|
c@116
|
37
|
c@116
|
38 #include <cmath>
|
c@116
|
39 #include <cassert>
|
c@116
|
40 #include <vector>
|
c@116
|
41 #include <iostream>
|
c@116
|
42 #include <algorithm>
|
c@116
|
43
|
c@116
|
44 using std::vector;
|
c@116
|
45 using std::complex;
|
c@116
|
46 using std::cerr;
|
c@116
|
47 using std::endl;
|
c@116
|
48
|
c@116
|
49 typedef std::complex<double> C;
|
c@116
|
50
|
c@127
|
51 CQKernel::CQKernel(CQParameters params) :
|
c@127
|
52 m_inparams(params),
|
c@116
|
53 m_fft(0)
|
c@116
|
54 {
|
c@127
|
55 m_p.sampleRate = params.sampleRate;
|
c@127
|
56 m_p.maxFrequency = params.maxFrequency;
|
c@127
|
57 m_p.binsPerOctave = params.binsPerOctave;
|
c@116
|
58 generateKernel();
|
c@116
|
59 }
|
c@116
|
60
|
c@116
|
61 CQKernel::~CQKernel()
|
c@116
|
62 {
|
c@116
|
63 delete m_fft;
|
c@116
|
64 }
|
c@116
|
65
|
c@127
|
66 vector<double>
|
c@127
|
67 CQKernel::makeWindow(int len) const
|
c@127
|
68 {
|
c@127
|
69 // The MATLAB version uses a symmetric window, but our windows
|
c@127
|
70 // are periodic. A symmetric window of size N is a periodic
|
c@127
|
71 // one of size N-1 with the first element stuck on the end.
|
c@127
|
72
|
c@127
|
73 WindowType wt(BlackmanHarrisWindow);
|
c@127
|
74
|
c@127
|
75 switch (m_inparams.window) {
|
c@127
|
76 case CQParameters::SqrtBlackmanHarris:
|
c@127
|
77 case CQParameters::BlackmanHarris:
|
c@127
|
78 wt = BlackmanHarrisWindow;
|
c@127
|
79 break;
|
c@127
|
80 case CQParameters::SqrtBlackman:
|
c@127
|
81 case CQParameters::Blackman:
|
c@127
|
82 wt = BlackmanWindow;
|
c@127
|
83 break;
|
c@127
|
84 case CQParameters::SqrtHann:
|
c@127
|
85 case CQParameters::Hann:
|
c@127
|
86 wt = HanningWindow;
|
c@127
|
87 break;
|
c@127
|
88 }
|
c@127
|
89
|
c@127
|
90 Window<double> w(wt, len-1);
|
c@127
|
91 vector<double> win = w.getWindowData();
|
c@127
|
92 win.push_back(win[0]);
|
c@127
|
93
|
c@127
|
94 switch (m_inparams.window) {
|
c@127
|
95 case CQParameters::SqrtBlackmanHarris:
|
c@127
|
96 case CQParameters::SqrtBlackman:
|
c@127
|
97 case CQParameters::SqrtHann:
|
c@127
|
98 for (int i = 0; i < (int)win.size(); ++i) {
|
c@127
|
99 win[i] = sqrt(win[i]) / len;
|
c@127
|
100 }
|
c@127
|
101 break;
|
c@127
|
102 case CQParameters::BlackmanHarris:
|
c@127
|
103 case CQParameters::Blackman:
|
c@127
|
104 case CQParameters::Hann:
|
c@127
|
105 for (int i = 0; i < (int)win.size(); ++i) {
|
c@127
|
106 win[i] = win[i] / len;
|
c@127
|
107 }
|
c@127
|
108 break;
|
c@127
|
109 }
|
c@127
|
110
|
c@127
|
111 return win;
|
c@127
|
112 }
|
c@127
|
113
|
c@116
|
114 void
|
c@116
|
115 CQKernel::generateKernel()
|
c@116
|
116 {
|
c@127
|
117 double q = m_inparams.q;
|
c@127
|
118 double atomHopFactor = m_inparams.atomHopFactor;
|
c@127
|
119 double thresh = m_inparams.threshold;
|
c@116
|
120
|
c@116
|
121 double bpo = m_p.binsPerOctave;
|
c@116
|
122
|
c@116
|
123 m_p.minFrequency = (m_p.maxFrequency / 2) * pow(2, 1.0/bpo);
|
c@116
|
124 m_p.Q = q / (pow(2, 1.0/bpo) - 1.0);
|
c@116
|
125
|
c@116
|
126 double maxNK = round(m_p.Q * m_p.sampleRate / m_p.minFrequency);
|
c@116
|
127 double minNK = round
|
c@116
|
128 (m_p.Q * m_p.sampleRate /
|
c@116
|
129 (m_p.minFrequency * pow(2, (bpo - 1.0) / bpo)));
|
c@116
|
130
|
c@116
|
131 if (minNK == 0 || maxNK == 0) {
|
c@116
|
132 // most likely pathological parameters of some sort
|
c@116
|
133 cerr << "WARNING: CQKernel::generateKernel: minNK or maxNK is zero (minNK == " << minNK << ", maxNK == " << maxNK << "), not generating a kernel" << endl;
|
c@116
|
134 m_p.atomSpacing = 0;
|
c@116
|
135 m_p.firstCentre = 0;
|
c@116
|
136 m_p.fftSize = 0;
|
c@116
|
137 m_p.atomsPerFrame = 0;
|
c@116
|
138 m_p.lastCentre = 0;
|
c@116
|
139 m_p.fftHop = 0;
|
c@116
|
140 return;
|
c@116
|
141 }
|
c@116
|
142
|
c@116
|
143 m_p.atomSpacing = round(minNK * atomHopFactor);
|
c@116
|
144 m_p.firstCentre = m_p.atomSpacing * ceil(ceil(maxNK / 2.0) / m_p.atomSpacing);
|
c@116
|
145 m_p.fftSize = MathUtilities::nextPowerOfTwo
|
c@116
|
146 (m_p.firstCentre + ceil(maxNK / 2.0));
|
c@116
|
147
|
c@116
|
148 m_p.atomsPerFrame = floor
|
c@116
|
149 (1.0 + (m_p.fftSize - ceil(maxNK / 2.0) - m_p.firstCentre) / m_p.atomSpacing);
|
c@116
|
150
|
c@127
|
151 cerr << "atomsPerFrame = " << m_p.atomsPerFrame << " (q = " << q << ", Q = " << m_p.Q << ", atomHopFactor = " << atomHopFactor << ", atomSpacing = " << m_p.atomSpacing << ", fftSize = " << m_p.fftSize << ", maxNK = " << maxNK << ", firstCentre = " << m_p.firstCentre << ")" << endl;
|
c@116
|
152
|
c@116
|
153 m_p.lastCentre = m_p.firstCentre + (m_p.atomsPerFrame - 1) * m_p.atomSpacing;
|
c@116
|
154
|
c@116
|
155 m_p.fftHop = (m_p.lastCentre + m_p.atomSpacing) - m_p.firstCentre;
|
c@116
|
156
|
c@116
|
157 cerr << "fftHop = " << m_p.fftHop << endl;
|
c@116
|
158
|
c@116
|
159 m_fft = new FFT(m_p.fftSize);
|
c@116
|
160
|
c@116
|
161 for (int k = 1; k <= m_p.binsPerOctave; ++k) {
|
c@116
|
162
|
c@116
|
163 int nk = round(m_p.Q * m_p.sampleRate /
|
c@116
|
164 (m_p.minFrequency * pow(2, ((k-1.0) / bpo))));
|
c@116
|
165
|
c@127
|
166 vector<double> win = makeWindow(nk);
|
c@116
|
167
|
c@116
|
168 double fk = m_p.minFrequency * pow(2, ((k-1.0) / bpo));
|
c@116
|
169
|
c@116
|
170 vector<double> reals, imags;
|
c@116
|
171
|
c@116
|
172 for (int i = 0; i < nk; ++i) {
|
c@116
|
173 double arg = (2.0 * M_PI * fk * i) / m_p.sampleRate;
|
c@116
|
174 reals.push_back(win[i] * cos(arg));
|
c@116
|
175 imags.push_back(win[i] * sin(arg));
|
c@116
|
176 }
|
c@116
|
177
|
c@116
|
178 int atomOffset = m_p.firstCentre - int(ceil(nk/2.0));
|
c@116
|
179
|
c@116
|
180 for (int i = 0; i < m_p.atomsPerFrame; ++i) {
|
c@116
|
181
|
c@116
|
182 int shift = atomOffset + (i * m_p.atomSpacing);
|
c@116
|
183
|
c@116
|
184 vector<double> rin(m_p.fftSize, 0.0);
|
c@116
|
185 vector<double> iin(m_p.fftSize, 0.0);
|
c@116
|
186
|
c@116
|
187 for (int j = 0; j < nk; ++j) {
|
c@116
|
188 rin[j + shift] = reals[j];
|
c@116
|
189 iin[j + shift] = imags[j];
|
c@116
|
190 }
|
c@116
|
191
|
c@116
|
192 vector<double> rout(m_p.fftSize, 0.0);
|
c@116
|
193 vector<double> iout(m_p.fftSize, 0.0);
|
c@116
|
194
|
c@116
|
195 m_fft->process(false,
|
c@116
|
196 rin.data(), iin.data(),
|
c@116
|
197 rout.data(), iout.data());
|
c@116
|
198
|
c@116
|
199 // Keep this dense for the moment (until after
|
c@116
|
200 // normalisation calculations)
|
c@116
|
201
|
c@116
|
202 vector<C> row;
|
c@116
|
203
|
c@116
|
204 for (int j = 0; j < m_p.fftSize; ++j) {
|
c@116
|
205 if (sqrt(rout[j] * rout[j] + iout[j] * iout[j]) < thresh) {
|
c@116
|
206 row.push_back(C(0, 0));
|
c@116
|
207 } else {
|
c@116
|
208 row.push_back(C(rout[j] / m_p.fftSize,
|
c@116
|
209 iout[j] / m_p.fftSize));
|
c@116
|
210 }
|
c@116
|
211 }
|
c@116
|
212
|
c@116
|
213 m_kernel.origin.push_back(0);
|
c@116
|
214 m_kernel.data.push_back(row);
|
c@116
|
215 }
|
c@116
|
216 }
|
c@116
|
217
|
c@116
|
218 assert((int)m_kernel.data.size() == m_p.binsPerOctave * m_p.atomsPerFrame);
|
c@116
|
219
|
c@116
|
220 // print density as diagnostic
|
c@116
|
221
|
c@116
|
222 int nnz = 0;
|
c@116
|
223 for (int i = 0; i < (int)m_kernel.data.size(); ++i) {
|
c@116
|
224 for (int j = 0; j < (int)m_kernel.data[i].size(); ++j) {
|
c@116
|
225 if (m_kernel.data[i][j] != C(0, 0)) {
|
c@116
|
226 ++nnz;
|
c@116
|
227 }
|
c@116
|
228 }
|
c@116
|
229 }
|
c@116
|
230
|
c@116
|
231 cerr << "size = " << m_kernel.data.size() << "*" << m_kernel.data[0].size() << " (fft size = " << m_p.fftSize << ")" << endl;
|
c@116
|
232
|
c@116
|
233 assert((int)m_kernel.data.size() == m_p.binsPerOctave * m_p.atomsPerFrame);
|
c@116
|
234 assert((int)m_kernel.data[0].size() == m_p.fftSize);
|
c@116
|
235
|
c@116
|
236 cerr << "density = " << double(nnz) / double(m_p.binsPerOctave * m_p.atomsPerFrame * m_p.fftSize) << " (" << nnz << " of " << m_p.binsPerOctave * m_p.atomsPerFrame * m_p.fftSize << ")" << endl;
|
c@116
|
237
|
c@116
|
238 finaliseKernel();
|
c@116
|
239 }
|
c@116
|
240
|
c@116
|
241 static bool ccomparator(C &c1, C &c2)
|
c@116
|
242 {
|
c@116
|
243 return abs(c1) < abs(c2);
|
c@116
|
244 }
|
c@116
|
245
|
c@116
|
246 static int maxidx(vector<C> &v)
|
c@116
|
247 {
|
c@116
|
248 return std::max_element(v.begin(), v.end(), ccomparator) - v.begin();
|
c@116
|
249 }
|
c@116
|
250
|
c@116
|
251 void
|
c@116
|
252 CQKernel::finaliseKernel()
|
c@116
|
253 {
|
c@116
|
254 // calculate weight for normalisation
|
c@116
|
255
|
c@116
|
256 int wx1 = maxidx(m_kernel.data[0]);
|
c@116
|
257 int wx2 = maxidx(m_kernel.data[m_kernel.data.size()-1]);
|
c@116
|
258
|
c@116
|
259 vector<vector<C> > subset(m_kernel.data.size());
|
c@116
|
260 for (int j = wx1; j <= wx2; ++j) {
|
c@116
|
261 for (int i = 0; i < (int)m_kernel.data.size(); ++i) {
|
c@116
|
262 subset[i].push_back(m_kernel.data[i][j]);
|
c@116
|
263 }
|
c@116
|
264 }
|
c@116
|
265
|
c@116
|
266 int nrows = subset.size();
|
c@116
|
267 int ncols = subset[0].size();
|
c@116
|
268 vector<vector<C> > square(ncols); // conjugate transpose of subset * subset
|
c@116
|
269
|
c@116
|
270 for (int i = 0; i < nrows; ++i) {
|
c@116
|
271 assert((int)subset[i].size() == ncols);
|
c@116
|
272 }
|
c@116
|
273
|
c@116
|
274 for (int j = 0; j < ncols; ++j) {
|
c@116
|
275 for (int i = 0; i < ncols; ++i) {
|
c@116
|
276 C v(0, 0);
|
c@116
|
277 for (int k = 0; k < nrows; ++k) {
|
c@116
|
278 v += subset[k][i] * conj(subset[k][j]);
|
c@116
|
279 }
|
c@116
|
280 square[i].push_back(v);
|
c@116
|
281 }
|
c@116
|
282 }
|
c@116
|
283
|
c@116
|
284 vector<double> wK;
|
c@127
|
285 double q = m_inparams.q;
|
c@116
|
286 for (int i = round(1.0/q); i < ncols - round(1.0/q) - 2; ++i) {
|
c@116
|
287 wK.push_back(abs(square[i][i]));
|
c@116
|
288 }
|
c@116
|
289
|
c@116
|
290 double weight = double(m_p.fftHop) / m_p.fftSize;
|
c@116
|
291 weight /= MathUtilities::mean(wK.data(), wK.size());
|
c@116
|
292 weight = sqrt(weight);
|
c@116
|
293
|
c@116
|
294 cerr << "weight = " << weight << endl;
|
c@116
|
295
|
c@116
|
296 // apply normalisation weight, make sparse, and store conjugate
|
c@116
|
297 // (we use the adjoint or conjugate transpose of the kernel matrix
|
c@116
|
298 // for the forward transform, the plain kernel for the inverse
|
c@116
|
299 // which we expect to be less common)
|
c@116
|
300
|
c@116
|
301 KernelMatrix sk;
|
c@116
|
302
|
c@116
|
303 for (int i = 0; i < (int)m_kernel.data.size(); ++i) {
|
c@116
|
304
|
c@116
|
305 sk.origin.push_back(0);
|
c@116
|
306 sk.data.push_back(vector<C>());
|
c@116
|
307
|
c@116
|
308 int lastNZ = 0;
|
c@116
|
309 for (int j = (int)m_kernel.data[i].size()-1; j >= 0; --j) {
|
c@116
|
310 if (abs(m_kernel.data[i][j]) != 0.0) {
|
c@116
|
311 lastNZ = j;
|
c@116
|
312 break;
|
c@116
|
313 }
|
c@116
|
314 }
|
c@116
|
315
|
c@116
|
316 bool haveNZ = false;
|
c@116
|
317 for (int j = 0; j <= lastNZ; ++j) {
|
c@116
|
318 if (haveNZ || abs(m_kernel.data[i][j]) != 0.0) {
|
c@116
|
319 if (!haveNZ) sk.origin[i] = j;
|
c@116
|
320 haveNZ = true;
|
c@116
|
321 sk.data[i].push_back(conj(m_kernel.data[i][j]) * weight);
|
c@116
|
322 }
|
c@116
|
323 }
|
c@116
|
324 }
|
c@116
|
325
|
c@116
|
326 m_kernel = sk;
|
c@116
|
327 }
|
c@116
|
328
|
c@116
|
329 vector<C>
|
c@116
|
330 CQKernel::processForward(const vector<C> &cv)
|
c@116
|
331 {
|
c@116
|
332 // straightforward matrix multiply (taking into account m_kernel's
|
c@116
|
333 // slightly-sparse representation)
|
c@116
|
334
|
c@116
|
335 if (m_kernel.data.empty()) return vector<C>();
|
c@116
|
336
|
c@116
|
337 int nrows = m_p.binsPerOctave * m_p.atomsPerFrame;
|
c@116
|
338
|
c@116
|
339 vector<C> rv(nrows, C());
|
c@116
|
340
|
c@116
|
341 for (int i = 0; i < nrows; ++i) {
|
c@116
|
342 int len = m_kernel.data[i].size();
|
c@116
|
343 for (int j = 0; j < len; ++j) {
|
c@116
|
344 rv[i] += cv[j + m_kernel.origin[i]] * m_kernel.data[i][j];
|
c@116
|
345 }
|
c@116
|
346 }
|
c@116
|
347
|
c@116
|
348 return rv;
|
c@116
|
349 }
|
c@116
|
350
|
c@116
|
351 vector<C>
|
c@116
|
352 CQKernel::processInverse(const vector<C> &cv)
|
c@116
|
353 {
|
c@116
|
354 // matrix multiply by conjugate transpose of m_kernel. This is
|
c@116
|
355 // actually the original kernel as calculated, we just stored the
|
c@116
|
356 // conjugate-transpose of the kernel because we expect to be doing
|
c@116
|
357 // more forward transforms than inverse ones.
|
c@116
|
358
|
c@116
|
359 if (m_kernel.data.empty()) return vector<C>();
|
c@116
|
360
|
c@116
|
361 int ncols = m_p.binsPerOctave * m_p.atomsPerFrame;
|
c@116
|
362 int nrows = m_p.fftSize;
|
c@116
|
363
|
c@116
|
364 vector<C> rv(nrows, C());
|
c@116
|
365
|
c@116
|
366 for (int j = 0; j < ncols; ++j) {
|
c@116
|
367 int i0 = m_kernel.origin[j];
|
c@116
|
368 int i1 = i0 + m_kernel.data[j].size();
|
c@116
|
369 for (int i = i0; i < i1; ++i) {
|
c@116
|
370 rv[i] += cv[j] * conj(m_kernel.data[j][i - i0]);
|
c@116
|
371 }
|
c@116
|
372 }
|
c@116
|
373
|
c@116
|
374 return rv;
|
c@116
|
375 }
|
c@116
|
376
|
c@116
|
377
|